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ABSTRACT
Recent research has identified significant vulnerabilities in
automated recommendation systems. Shilling attacks, in
which attackers introduce biased ratings in order to influ-
ence future recommendations, have been shown to be effec-
tive against collaborative filtering algorithms. We postulate
that the distribution of item ratings in time can reveal the
presence of a wide range of shilling attacks. To construct a
time series of ratings for an item, we use a window size of k
to group consecutive ratings for the item into disjoint win-
dows and compute the sample average and sample entropy
in each window. We show that observing the time series of
these two features can expose attack events given reasonable
assumptions about their duration. If the number of attack
profiles is known, an optimal window size can be derived
theoretically in order to best detect the rating distribution
changes caused by attacks. For practical applications where
the number of attacks is unknown, we propose a heuristic
algorithm that adaptively changes the window size. Our ex-
perimental results show that monitoring rating distributions
in a time series is an effective approach for detecting shilling
attacks.

1. INTRODUCTION
Recommendation systems have become popular in the

past several years as an effective way to help people deal
with information overload. However, since these systems
are dependent on external sources of information, they are
vulnerable to attacks. In the most common of these attacks
(which have been termed “shilling” attacks [10]), attackers
influence a recommendation system in a manner advanta-
geous to themselves by introducing biased rating profiles.
Shilling attacks can be classified as push and nuke attacks
according to their intent—making a target item more likely
or less likely to be recommended, respectively.

Because recommendation systems are widely used in the
realm of e-commerce, there is a natural motivation for pro-
ducers of items (manufacturers, authors, etc.) to use these
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shilling attacks so that their items are recommended to users
more often. Therefore, an important research challenge in
recommendation systems is to detect and defeat shilling at-
tacks.

A considerable complication in detecting shilling attacks
is that it is difficult to precisely and completely define the
set of shilling attack patterns. New attacks will continue
to arise over time, so an attack detection approach should
avoid being restricted to any predefined set of attacks. Our
goal in this paper is to seek methods that are able to detect
a diverse and general set of recommendation attacks.

Our work begins with the following observation. If we as-
sume that attack profiles are injected into the system within
a relatively short period of time,1 most shilling attack mod-
els (discussed in detail in Section 2) share a common charac-
teristic despite their diversity: over their attack period they
induce changes in the rating distributions of target items
(and possibly other items). For example, a push attack,
regardless of its attack model, will cause the rating distribu-
tion of a target item to be concentrated on high ratings (or
the highest possible rating) during its duration. Similarly, a
target item’s rating distribution will be concentrated on low
ratings (or the lowest rating) in a nuke attack. Our thesis
is that examining the rating distribution for each item over
a time series can yield a considerable diagnostic power in
detecting a large set of attacks.

The idea of treating shilling attacks as events that dis-
turb the rating distribution differs from previous methods
that decide whether a user’s rating profile is a biased (at-
tack) profile or a normal profile based on how it compares
with others overall. Detecting attacks in time series has two
key benefits. First, it enables detection of attacks that are
difficult to isolate in previous methods where each attack
profile is considered separately. Attack profiles generated
by some attacks (such as sampling attacks) looks very simi-
lar to normal profiles, and thus are almost indistinguishable
when only considering individual rating pattern. They are
perhaps better detected by systematically mining for rating
distribution changes. Second, unusual distributions in time
series can reveal previously undefined or unknown attacks.
This is a significant advance over heuristic rule-based cate-
gorizations or supervised classifications. We note that the
time series approach may also find valuable non-malicious
anomalies. A simple case might be that a book quickly be-
comes popular due to a special event.

1One attack event may span from several minutes to sev-
eral days in order to take effect, depending on the size of a
recommendation system.



Two key questions that arise are how to effectively ex-
tract properties of rating distributions and how to construct
a times series in a manner that is appropriate for attack de-
tection. For the first question, we suggest that sample av-
erage and sample entropy are effective properties. Sample
average captures the change in an item’s popularity, while
sample entropy captures the distributional change (the de-
gree of dispersal or concentration) in an item’s ratings. For
the second question, we construct a time series for an item
by taking every disjoint k consecutive ratings given to the
item (according to their given time) as a window (the basic
unit). Sample average and sample entropy are then com-
puted for each window. We show that observing the time
series of these two properties exposes attack events.

We give a theoretical analysis to quantify the changes in
sample average and sample entropy in time series when at-
tack profiles are injected. Assuming that the number of at-
tack profiles is known, an optimal window size is derived to
maximally amplify changes caused by attacks, which helps
to enhance the performance of attack detection. For prac-
tical applications where this assumption does not hold, we
propose a heuristic algorithm to estimate the number of at-
tack profiles and adaptively adjust the window size.

The rest of the paper is organized as follows. Section 2
summarizes the related work on shilling attacks. Section 3
describes our approach of constructing the time series. In
Section 4 and 5, we present a theoretical analysis and a
heuristic algorithm to find the optimal window size. Finally,
we give experimental results in Section 6 and conclude with
a discussion in Section 7.

2. RELATED WORK
In this section, we describe popular recommendation at-

tack models and summarize the related work on recommen-
dation attacks.

Five popular attack models are briefly introduced here
in the context of a push attack. In Random attacks (see
Figure 1), a target item will be given the highest rating
(rmax), but ratings to filler items (a proportion of the re-
maining items) in each rating profile are chosen randomly
(usually from a normal distribution). Average attacks are
a more sophisticated variation: the ratings for filler items
in crafted attack profiles are distributed around the mean
for each item. Segmented attacks target users in a particu-
lar segment (e.g., readers expressing an interest in fantasy
books). Therefore, attackers concentrate on a set of popu-
lar items of similar content to the target item, and give the
highest rating to the target and this segment and the lowest
rating to filler items. Bandwagon attacks can be viewed as
an extension of random attacks. They take advantage of
the Zipf’s law distribution of popularity in consumer mar-
kets: a small number of items will receive the lion’s share
of attention and also ratings. Attackers in this model give
the highest rating to selected frequently rated items and
random ratings to filler items. Besides the above four mod-
els, there is a Sampling attack model introduced in [13], in
which attack profiles are constructed from entire user pro-
files sampled from the actual rating database augmented by
the highest rating for the pushed item.

O’Mahoney et al. [13] first performed empirical studies
of the resistance of a user-based CF algorithm [7] under
shilling attacks. They further presented a theoretical anal-
ysis of the effect of noise—including that injected by at-

tackers (shills)—on the performance of memory-based algo-
rithms. Lam and Riedl [10] evaluated the impact of attacks
on both user-based and item-based algorithms, and their
study suggested that the item-based approach [14] is much
less affected by these attacks. More recently, Burke et al.
[5] and Mobasher et al. [12] showed that segmented attacks
have a higher likelihood of success on attacking item-based
algorithms than random attacks and average attacks.

In order to detect shilling attacks in recommendation sys-
tems, Chirita et al. [6] proposed several empirical metrics
for analyzing rating patterns of attack profiles and evaluated
their potential for detecting random attacks. Zhang et al.
[16] introduced a probabilistic approach to effectively detect
random attacks. It works by computing the log-likelihood
of each rating profile given the low-dimensional linear model
that best describes the original rating matrix. Unfortu-
nately, both approaches are incapable of detecting average
attacks. To the best of our knowledge, there is no approach
in the literature that provides a systematic methodology to
detect a large variety of shilling attacks.

Previously, time series have been exploited for detecting
attacks in network traffic analysis [4, 8]. Entropy has also
been proposed for anomaly detection in other contexts, e.g.,
intrusion detection by [11] and network traffic anomaly de-
tection by [9].

3. CONSTRUCTING A TIME SERIES
Our thesis is that the analysis of rating distributions in

time is a powerful tool for the detection of recommendation
attacks. The intuition behind this thesis is that all (known)
attack models cause changes in the rating distributions of
target items (and possibly other items). For example, Ta-
ble 1 lists the effects of the five attack models surveyed in
Section 2. Rating distributions of target items will always
become concentrated on high ratings (in push attacks) or low
ratings (in nuke attacks) whatever attack model is used. For
filler items, distributions become concentrated on low rat-
ings when segmented attacks are injected. When other at-
tack models are used, the rating distributions of filler items
may also be concentrated depending on the variance of the
distribution that generates ratings.

Figure 2 illustrates how the rating distribution of a target
item (from MovieLens, described in Section 6) changes as
the result of a push attack. Each plot shows a distribution
of 50 ratings. On the left is the distribution during a normal
case, and on the right is the distribution during a period
in which 40 attack profiles are injected to give the highest
rating to this target item. The right plot shows that the
distribution becomes more concentrated during attacks.

The rating distribution is a high-dimensional object and
so can be difficult to work with directly. However, we can
make the observation that in most cases, one can extract
very useful information from the following two properties:
the degree of dispersal or concentration of the distribution
and the degree of popularity. In the above example, the fact
that the distribution is concentrated is a strong indication
that should be useful for attack detection, and the degree
of popularity is useful for identifying that the item is being
pushed.

The measure we use to capture the degree of dispersal or
concentration of a rating distribution is the sample entropy.
Assume that we have an empirical histogram X = {ni, i =
1, · · · , rmax}, meaning that the ith possible rating occurs ni
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Figure 1: Four popular recommendation attack models (assuming that a target item is pushed).

Table 1: Effects on rating distributions by various attack models
Attack Model Rating Distributions Affected
Random attack Target items, filler items (possibly—depending on the variance of the used distribution)
Average attack Target items, filler items (possibly)
Segmented attack Target items, items in the targeted segment, filler items
Bandwagon attack Target items, frequently rated items, filler items (possibly)
Sampling attack Target items
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Figure 2: Distribution changes of a target item’s
ratings induced by push attacks. The distribution
becomes concentrated to the highest rating during
attacks.

times in the sample. Then the sample entropy is defined as:

H(X) = −
rmax�
i=1

(
ni

S
) log2(

ni

S
),

where S = � rmax

i=1 ni is the total number of ratings in the
histogram. The value of the sample entropy lies in the range
[0, log2 rmax]. The value 0 is taken when the distribution is
maximally concentrated, i.e., all ratings are the same. Sam-
ple entropy takes on the value log2 rmax when the distribu-
tion is maximally dispersed, i.e., n1 = n2 = · · · = nrmax

.
The measure we use to capture the degree of popularity

is the sample average. Using the above notation and assum-
ing that the ith possible rating has the value i, the sample
average is defined as

M(X) =
� rmax

i=1 ni ∗ i

S

The value of the sample average lies in the range [1, rmax].
To construct the time series of the above two measures

for an item, we first sort all the ratings for the item by their

time stamps, and then group every disjoint k consecutive
ratings into a window. Here, the number of ratings (k) in a
window is referred to as the window size. For each window,
we compute its sample average and sample entropy. There-
fore, we obtain two time series, each corresponding to one
of the measures.

Grouping equal-size ratings together is not the only way
to construct a time series. In the network literature, a basic
unit of a time series is usually a unit of time, e.g., 5 minutes.
The reason that we choose our approach is that many items
are rarely rated in a recommendation system because of the
Zipf’s law distribution. Even for frequently rated items,
the number of ratings during some time slots might still be
tiny. Therefore, grouping every k ratings together enforces
a measure of fairness in each window.

Denote as wj the jth window for an item. If ratings to the
item are i.i.d. from a distribution P = {p(x), x ∈ [1, rmax]}
with mean µ and variance σ2, we can use the following two
Propositions to show M(wj) and H(wj) are asymptotically
Normal. We note that nothing is assumed about the distri-
bution P except the existence of a mean and variance.

Proposition 1. If ratings to an item are i.i.d. with mean
µ and variance σ2,

M(wj) − µ

σ/
√

k
→ N(0, 1).

In other words, the sample average for the item can be ap-
proximated using a normal distribution with mean µ and
standard deviation σ/

√
k.

The above proposition follows from the Central Limit The-
orem [15].

Proposition 2. If ratings to an item are i.i.d. from a
distribution P ,

H(wj) − H�
Var(− log2 p(x))/

√
k
→ N(0, 1),
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Figure 3: A push attack event stands out clearly
when viewed through the lens of sample average and
sample entropy. The window size is 50 and the win-
dow containing attacks is marked with a circle.

where H is the true entropy. In other words, the sample en-
tropy for the item can be approximated using a normal distri-

bution with mean H and standard deviation

√
Var(− log2 p(x))

√
k

.

This proposition follows from a result in [2] (see also [1]).
As both sample average and sample entropy are asymp-

totically Normal, we can decide whether a window is an
anomaly by computing its z-score (the difference from the
mean divided by the standard deviation) for each measure.
We illustrate the effectiveness of this approach through the
example in Figure 3. The figure plots sample average and
sample entropy of the target item around the time of the
push attack event whose histograms were previously shown
in Figure 2. The window size is 50 and the window contain-
ing attacks is marked with a circle. Both plots show that
the attack event stands out clearly, while sample average and
sample entropy of those windows containing normal ratings
vary within a small range. During the attack event, sample
average of the window containing attacks inclines sharply
and sample entropy declines sharply, consistent with a rat-
ing distribution concentration on the highest rating.

4. A THEORETICAL ANALYSIS
Having introduced an approach for constructing a time

series for an item, we now quantify the changes of sample
average and sample entropy caused by an attack event. Our
discussion below is focused on a target item, and all nota-
tions used previously for Proposition 1 and 2 will still apply
here. We note that the following analysis also holds for other
items affected by attacks, e.g., filler items in segmented at-
tacks.

When attack ratings for the target item are injected, more
than one window may contain attack ratings. We focus our
analysis on the window that has the largest number of attack
ratings, and denote it as anomalous window. In case there
are two or more anomalous windows, one is chosen randomly.

In the following, we will first compute the expected frac-
tion of attack ratings in the anomalous window (subsec-
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Figure 4: The number of attacks in the anomalous
window when the start position of the initial window
moves from the start of attacks to the end of attacks
in case 2 (dn/2e < k < n).

tion 4.1); and then find the optimal window size k to maxi-
mize the absolute value of its z-scores for the sample average
(subsection 4.2) and for the sample entropy (subsection 4.3).
Maximizing the absolute value of these two z-scores helps to
identify the anomalous window more accurately in our ap-
proach.

4.1 The expected fraction of attack ratings
Assuming that the number of attack profiles during an

attack event is n, the number of attack ratings for the target
item is also n. For ease of expression, we will initially assume
that there are no normal (real) ratings given to the target
item during the attack. In other words, the n attack ratings
are consecutive. The more general situation in which real
ratings and attack ratings are intermixed will be discussed in
Subsection 4.4. Because the start position of attack ratings
is random, we now compute the expected fraction (denoted
as λ) of attack ratings in the anomalous window in each of
the following three cases.

In case 1 where n ≥ 2k − 1 (k ≤ dn/2e), there always
exists a window that is filled with attack ratings. Therefore,
we have λ = 1.

In case 2 where dn/2e < k < n, we compute λ by moving
a window from the start of attacks to the end of attacks.
When the start position of the window is located in the
start of attacks (see Figure 4), the number of attacks in the
anomalous window (initial window) is k. This holds un-
til the start position moves to the (n − k)th attack. After
that, the number of attacks in the anomalous window (ini-
tial window) drops linearly until the start position moves
to the middle point, n/2. Then, the previous window be-
comes the anomalous window and the number of attacks
in that window increases linearly until the start position of
the initial window moves to the kth attack. After that, the
anomalous window (previous window) is always filled with
attacks. Overall, the expected number of attacks in the
anomalous window is the area of the right plot divided by
n, which gives us 2k − k2/n − n/4. Thus, λ in this case is
2 − k/n − n/(4k).

In case 3 where k ≥ n, λ can be computed in a similar
way to the above. When the start of the initial window
moves from the start of attacks to the middle point (see
Figure 5), the number of attacks in the anomalous window
(initial window) decreases linearly from n to n/2. When the
start of the initial window moves from the middle point to
the end, the number of attacks in the anomalous window
(previous window) increases from n/2 to n. Therefore, the
expected number of attacks is the area of the right plot
divided by n, that is 3n/4. Thus, λ is 3n/(4k) in this case.

Combining all three cases, we conclude that the expected
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fraction of attack ratings in the anomalous window is

λ =

�� � 1 k ≤ dn/2e
2 − k

n
− n

4k
dn/2e < k < n

3n
4k

k ≥ n
(1)

4.2 Sample average
Denote the anomalous window as �w, and denote its z-score

for sample average as ZM ( �w). We now quantify the expec-
tation of ZM ( �w) and compute the optimal k that maximizes
its absolute value. Recall that by Proposition 1, the mean of
sample average for the item is µ and the standard deviation
is σ/

√
k. Assuming that the item is being pushed, it follows

that

|E(ZM ( �w))| =
E(M( �w)) − µ

σ/
√

k

=
(1 − λ)µ + λrmax − µ

σ/
√

k

=

√
kλ(rmax − µ)

σ
.

The above equation shows that |E(ZM ( �w))| relates to the
window size k, the mean value of the item’s rating distribu-
tion µ, and the standard deviation σ. When µ and σ are
smaller, |E(ZM ( �w))| becomes larger, which implies that it
is easier to identify the anomalous window �w at that time.

Since µ and σ are fixed, maximizing |E(ZM ( �w))| is re-

duced to maximizing the term
√

kλ. From the previous
subsection, λ has three different representations when k is
changed. We thus do the optimization in each case.

In case 1 where k ≤ dn/2e, λ = 1. Thus, we have
√

kλ =√
k. This is maximized when k = dn/2e. The maximum

value is � dn/2e ≈
√

2
2

√
n.

In case 2 where dn/2e < k < n, λ = 2− k
n
− n

4k
. It follows

that

√
kλ = 2

√
k − k

√
k

n
− n

4
√

k
.

With basic calculus, we can determine that the above term is

maximized when k = 2+
√

7
6

n ≈ 0.7743n. The corresponding
maximum value is about 0.7944

√
n.

In case 3 where k ≥ n, λ = 3n

4k
. Thus, we have

√
kλ =

3n

4
√

k
. This case is maximized when k = n, with a maximum

value of 0.75
√

n.
Combining all the above cases, we get the following The-

orem.

Theorem 1. The absolute value of the expected z-score
for sample average in the anomalous window, |E(ZM ( �w))|,

is maximized when the window size is equal to 2+
√

7
6

times

the number of attacks, i.e., k = 2+
√

7
6

n.

Theorem 1 shows that if the number of attacks is known,
the optimal window size exists and can be computed to best
detect the change of sample average caused by attacks. Note
that this Theorem also holds if the item is given other rat-
ings, e.g., the lowest rating in nuke attacks.

4.3 Sample entropy
Denote the z-score of �w for sample entropy as ZH( �w).

We now quantify |E(ZH( �w))| and compute the optimal k
to maximize this value. Recall that from Proposition 2, the
mean of sample entropy for the item is the true entropy H
corresponding to its original distribution P and the standard
deviation is � Var(− log2 p(x))/

√
k.

If the fraction of attack ratings in the anomalous window
is λ′, the entropy of �w can be bounded using the following
idea. To generate a rating in �w, we first toss a coin. With
probability 1 − λ′, a normal rating is generated from the
original distribution P ; and with probability λ′, the high-
est rating rmax is generated. If the random variable that
describes the outcome of the coin toss is denoted as C, we
have,

H( �w) ≤ H( �w, C) = H(C) + H( �w|C)

= H2(λ
′) + (1 − λ′)H

≤ 1 + (1 − λ′)H,

where H2(λ
′) = −λ′ log2 λ′ − (1 − λ′) log2(1 − λ′). On the

other hand,

H( �w) ≥ H( �w|C) = (1 − λ′)H.

As λ = E(λ′), the absolute value of the expected z-score for
sample entropy in the anomalous window is as follows:

|E(ZH( �w))| =
H − E(H( �w))� Var(− log2 p(x))/

√
k

,

√
k(λH − 1)� Var(− log2 p(x))

≤ |E(ZH( �w))| ≤
√

kλH� Var(− log2 p(x))
.

The above inequality shows that both the lower bound and
the upper bound on |E(ZH( �w))| become larger when H is

larger and � Var(− log2 p(x)) is smaller. Using a similar
reasoning to that in the previous Subsection, we have that

the upper bound is maximized when k = 2+
√

7
6

n, and the

lower bound is maximized when k =
2H−1+

√
7H2−4H+1

6H
n.

Because when H is large,
2H−1+

√
7H2−4H+1

6H
converges to

2+
√

7
6

, we obtain the following Theorem.

Theorem 2. The absolute value of the expected z-score
for sample entropy in the anomalous window, |E(ZH( �w))|,
is maximized when k ≈ 2+

√
7

6
n (for large H).

Taken in conjunction with Theorem 1, this shows that an op-
timal window size can be found to simultaneously maximize
both the absolute value of the expected z-score for sample
average and for sample entropy in the anomalous window.

4.4 An Extension
The above analysis can be easily extended to the case in

which real ratings and attack ratings are intermixed in time.



Define ω (0 < ω ≤ 1) as the ratio of attack ratings to the
total number of ratings (including both attack and real rat-
ings) given to the item during an attack event. Because the
number of attack ratings is n, the total number of ratings is
n/ω and is denoted as the length of an attack event. Assum-
ing that the ratio of attack ratings to real ratings is fixed
within any sub-series of consecutive ratings, the following
Corollary can be obtained using a similar reasoning to those
in the previous two Subsections.

Corollary 1. If the ratio of attack ratings to the to-
tal number of ratings (given to the item) during an attack
event is ω, the absolute value of the expected z-scores for
sample average and sample entropy in the anomalous win-
dow, |E(ZM ( �w))| and |E(ZH( �w))|, are maximized when k ≈
2+

√
7

6
n
ω
.

5. A HEURISTIC APPROACH
The previous section shows that when the length of an

attack event is known, an optimal window size can be found
to best detect rating distribution changes caused by attacks.
However, this assumption does not hold for practical appli-
cations. In this section, we propose a two-step heuristic
approach to first estimate the length of an attack event and
then adaptively adjust the window size.

At first, a default window size is chosen and two time se-
ries corresponding to sample average and sample entropy are
constructed for the item. The default window size can be set
as the largest number of attack profiles that is considered
negligible. Since the default window size is relatively small,
rating distributions of several windows will be affected by
a typical attack event. Meanwhile, there might be some
detected anomalies in normal windows. However, we can
argue that it is unlikely we will find a series of consecutive
spikes (with the same direction) in normal windows. There-
fore, the length of an attack event can be estimated as the
largest number of consecutive anomalies (with the same di-
rection) times the default window size.

After estimating the length of an attack event, we can set

the optimal window size as 2+
√

7
6

times that length. With a
more appropriate window size, attack events will stand out
more clearly while fewer false alarm cases are returned.

We observe that in practice when the length of an attack
event is much larger than the default window size, some win-
dows containing attacks might not be reported as anomalies.
This implies that the length of an attack event will be un-
derestimated at that time. To solve this problem, we can
always re-estimate the length of the event using the current
window size and then adjust the window size accordingly.
This can be repeated iteratively until there is no series of
two or more consecutive anomalies.

We illustrate the effectiveness of this heuristic approach
in Figure 6. It plots the z-score (for sample entropy) of the
same target item previously used in Figures 2 and 3. The
number of attacks to push the item is 100, and the frac-
tion of attack ratings (ω) is 2/3. Those windows containing
attacks are marked with a circle. The first plot shows the
time series with a default window size of 20. If a thresh-
old requiring that the absolute value of z-score be larger
than 2 is used, three windows containing attacks (marked
with filled circles) will be considered as anomalies. This
gives us an estimate that the length of the attack event is
3 × 20 = 60. Therefore, we adjust the window size to 46
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Figure 6: A push attack event stands out more
clearly after a heuristic approach is used to repeat-
edly estimate the length of an attack event and ad-
just the window size appropriately.

(approximately 0.7743× 60) and obtain the second time se-
ries. This time, two consecutive windows containing attacks
are marked as anomalies. A re-estimation of the length of
the attack event is thus 2 × 46 = 92. Finally, we obtain
the third time series with a window size 71 (approximately
0.7743 × 92). Compared with the first time series, this one
reveals a much clearer presence of the attack event. The
z-score of the anomalous window is −2.87 while the lowest
z-score of the windows containing attacks in the first time
series is −2.17.

In each iteration of the above heuristic approach, the win-

dow size increases by a factor at least 2 × 2+
√

7
6

. There-
fore, the total number of iterations (time series) needed is
O(log n

w
).

6. EXPERIMENTS
Our experiments are focused on answering three ques-

tions: (1) how well can our method detect attack events?
(2) how does the context of attacks affect the performance
of the method? and (3) Does our heuristic approach improve
the detection performance compared with using a fixed win-
dow size?

We selected all the items (618 in total) with at least 500
ratings from a MovieLens data set consisting of about 1 mil-
lion ratings. Ratings are discrete-valued between 1 and 5.
We sort ratings for each item by their time stamp. To sim-
ulate an attack event, we insert a number of attack ratings
for an item into its normal ratings. The start position of an
attack event is random, and the ratio of attack ratings to
the total number of ratings (given to the item) during the
attack event is set to ω.

For each time series of sample average and sample entropy,
we mark a window as an anomaly if the absolute value of
its z-score is larger than 2. Because the distribution of sam-
ple average and sample entropy are approximately Normal,
this threshold corresponds to the 95.5% confidence level. A
naive combination of these two features is also considered by
computing the square root of the sum of the squared values,
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Figure 7: Detection results of push attacks when the
number of attack ratings in an attack event varies.
Sample entropy yields the best performance overall.

that is � ZM (w)2 + ZH(w)2. A threshold of 2
√

2 is used for
this combined variable.

Two metrics, detection rate and false alarm rate, are used
to evaluate the detection performance. The detection rate is
defined as the number of detected attack events divided by
the number of attack events. An attack event is considered
to be detected if a window containing attacks is marked as
an anomaly. The false alarm rate is defined as the number
of normal windows that are predicted as anomalies divided
by the number of normal windows.

We first measure how well our method detects attacks by
using it to observe the time series of target items. We ex-
ecute a push attack for each of the 618 items and attempt
to detect the attack by examining its time series. The to-
tal number of detected attack events and the total number
of false alarm cases are computed over all the items. The
window size is set to 20 because this is about the minimum
number of attacks that will have a considerable effect in
MovieLens according to our experiments and results in [10].
The ratio of attack ratings (ω) is set to 0.8. The number
of attack ratings to push the item varies from 20 to 200.
Five trials were performed in total, and detection results
are plotted in Figure 7. It shows that both time series (for
sample average and sample entropy) and their combination
yield high detection rates (> 95%) and low false alarm rates
(< 1%) when the number of attacks is between 40 and 100.
When this number is higher, the detection performance us-
ing the sample average drops quickly, while the performance
using sample entropy is still stable. The figure implies that
sample entropy is the better measure in this case. When the
number of attacks is larger than or equal to 60, the sample
entropy detection rate is always larger than 95% and the
false alarm rate is consistently lower than 0.5%.

A similar experiment is conducted for nuke attacks, and
results are plotted in Figure 8. This figure shows that sam-
ple average yields a consistently low false alarm rate; how-
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Figure 8: Detection results of nuke attacks when the
number of attack ratings in an attack event varies.
The combination of sample average and sample en-
tropy achieves a good balance on the detection rate
and false alarm rate.

ever, its detection rate drops when the number of attacks
becomes larger. In contrast, sample entropy always obtains
a high detection rate, but its false alarm rate is higher. The
combination of these two measures achieves a good balance
on both metrics in this case. In most case, its detection rate
is larger than 90% with a false alarm rate smaller than 0.5%.

To answer the second question about how our method
works when the attack setting changes, we first vary the ra-
tio of the number of attack ratings to the total number of
ratings (given to the target item) during an attack event.
The target item is pushed and the number of attack rat-
ings in an attack event is set to 100. Results are presented
in Figure 9, which shows that both measures obtain good
detection results when ω ≥ 0.7. When ω is smaller, rating
distributions of affected windows become less concentrated.
This results in a lower detection rate and a higher false alarm
rate. However, even when ω = 0.5, which means that the
number of attack ratings equals the number of real ratings
given to the item during an attack event, our approach using
sample entropy can still get a 87.9% detection rate with a
1.4% false alarm rate.

We next consider a change in the ratings given to a tar-
get item. Instead of always giving the highest rating (5) to
push an item, we now use ratings of both 4 and 5. We vary
the fraction assigned the highest rating (β) to evaluate how
our approach responds to this parameter. Results are plot-
ted in Figure 10, which shows that both the detection rate
and the false alarm rate are almost linear in their relation
to β. When β is equal to 0.5, which means that half the
attack ratings have the highest rating, using the time series
of sample entropy can yield a 83.9% detection rate with a
1.7% false alarm rate. It is worth noting that, as one would
expect, the effect of a push attack event becomes smaller
when fewer injected ratings are given the highest rating.
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Figure 9: Result of push attacks (with 100 attack
ratings) when ω, the ratio of attack ratings to the to-
tal number of ratings (given to a target item) varies.
Detection is essentially perfect using sample entropy
when this ratio is larger than or equal to 0.7.

In all the experiments above, attack events are detected
by observing the time series of target items.2 We now show
that attacks may also be detected by observing the rating
distribution changes of filler items when the variance of the
attack ratings to filler items is sufficiently small. In aver-
age attacks, ratings given to a filler item are usually Normal
with a mean equal to the item average. We generate 100
attack ratings for each item in this way (assuming that the
item is a filler item) and try to detect attacks by analyzing
its times series using sample entropy. Figure 11 presents the
results when the standard deviation of the Normal distribu-
tion used varies. It shows that when the standard deviation
is smaller than or equal to 0.3, sample entropy has a con-
siderable power in detecting attacks—with a detection rate
higher than 94% and a false alarm rate lower than 1%.

Finally, we answer the third question about how our heuris-
tic approach (estimating the length of an attack event and
adjusting the window size) works compared with using a
fixed window size. Push attacks are used and the number
of attack ratings in an attack event is randomly set between
50 and 200. The default window size is set to 20. Five tri-
als were performed on all the items, and results from them
are listed in Table 2. The detection rates of these two ap-
proaches are almost the same, while the heuristic approach
yields a much lower false alarm rate.

We also compare these two approaches on a 24, 983 users-
by-100 items Jester data set. Ratings in Jester are originally
continuous-valued between -10 and 10. We rounded ratings
to integers and randomly permuted the ratings given to each

2These experiments also apply to detecting segmented at-
tacks by observing the time series of other items, and de-
tecting bandwagon attacks by observing the time series of
frequently rated items. All these items are either given the
highest rating or the lowest rating during attacks (see Fig-
ure 1).
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Figure 10: Result of push attacks (with 100 attack
ratings) when β, the fraction given the highest rat-
ing in an attack event varies. Both the detection
rate and false alarm rate are almost linear in their
relation to β.

item (because time stamps are not available). We use the
same experimental setting as that of the previous experi-
ment, and list results in Table 3. The results show that for
both sample average and sample entropy, the false alarm
rate decreases by at least half when the heuristic approach
is used. This verifies that our heuristic approach is effective
in improving attack detection performance.

To summarize, our experimental results above demon-
strate that for a broad range of settings in attacks, our ap-
proach has high detection rates and low false alarm rates.
The heuristic approach of adjusting the window size appro-
priately is shown to be more effective than using a fixed
window size.

7. DISCUSSION
Our approach of attack detection is based on the assump-

tion that the duration of an attack event is relatively short
so that rating distributions of some items will be changed
during that duration. We argue that this is a reasonable as-
sumption because of the following two points. First, shilling
attackers (e.g., producers of items) usually hope their attack
ratings can take effect as soon as possible, since normal user
rating patterns may also change during attacks. Second, if
an attack event cannot induce considerable changes in rating
distributions of target items within a period of time, then
the effect of this attack event will probably be negligible
overall.

Another assumption we make in this time series-based
approach is that ratings given to a certain item satisfy a
distribution (whatever it is). This assumption applies well
to almost all the items we have tested in MovieLens and
Jester. However, in a large-scale recommendation system,
ratings to a given item may have a trend over time (e.g., a
gradual increase) and/or a periodic trend (e.g., ratings in the
weekend are generally higher than ratings in the weekdays).



Table 2: Results of the heuristic approach (estimating the length of an attack event and adjusting the window
size) versus results of using a fixed window size in MovieLens. The heuristic approach achieves a much lower
false alarm rate, and the detection rates of both approaches are almost the same.

sample average sample entropy
detection rate false alarm rate detection rate false alarm rate

fixed window size 83% ± 1.2% 0.66% ± 0.03% 98% ± 0.53% 0.18% ± 0.03%
heuristic approach 82% ± 1.1% 0.56% ± 0.02% 98% ± 0.44% 0.09% ± 0.04%

improvement −1.2% 15% 0% 50%

Table 3: Results of the heuristic approach versus results of using a fixed window size in Jester. The heuristic
approach achieves a much lower false alarm rate.

sample average sample entropy
detection rate false alarm rate detection rate false alarm rate

fixed window size 100% ± 0% 2.21% ± 0.08% 100% ± 0% 0.73% ± 0.08%
heuristic approach 100% ± 0% 0.97% ± 0.06% 100% ± 0% 0.23% ± 0.09%

improvement 0% 56% 0% 68%
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Figure 11: Attack events can also be detected by
examining the time series of filler items when the
standard deviation of attack ratings given to filler
items is small.

More complex models (e.g., ARIMA, the Auto-Regressive
Integrated Moving Average [3]) are needed to incorporate
such trends.
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Appendix
A. Notation

Table 4: Notation
k window size (the number of ratings in a window)
H(·) sample entropy
M(·) sample average
µ mean of the ratings to the item
σ standard deviation of the ratings to the item
P distribution of the ratings to the item
H true entropy corresponding to the distribution P�
w anomalous window (the window that has

the largest number of attack ratings)
λ expected fraction of attack ratings

in the anomalous window
ZM (·) z-score for sample average
ZH(·) z-score for sample entropy
ω ratio of attack ratings to the total number of

ratings (given to the item) during an attack event


