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Abstract

Models of incomplete information use signals to capture the uncertain values of
variables. The relationship between these signals and the relevant variables can then
be described by a joint probability distribution function. In this paper, we contrast
generated signals and interpreted signals. Generated signals are distortions of the
true values or outputs of some process. Interpreted signals are predictions based on
inputs of a process or attributes of an object. These two types of signals produce
distinct statistical signatures. In particular, under rather mild assumptions, inter-
preted signals will be negatively correlated in both the accuracy, be it conditional
or unconditional, whereas generated signals will be independent conditional on the
state. Thus, our findings limit the contexts in which results pertaining to information
aggregation in auctions, markets, and voting may apply.
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1 Introduction

When making economic or political decisions, agents rarely have the benefit of full
information. They rely on partial or distorted information or on crude predictive
models. Social scientists model this incomplete information in the form of signals. A
joint probability distribution characterizes the statistical relationships between these
signals and the variable of interest: the better the information, the tighter the link
between the signals and the underlying variable of interest. In this paper, we show
that assumptions about these joint probability distributions, such as independence or
independence conditional on the state, constrain the set of environments that could
produce the signals. The statistical properties of signals influence strategic choices and
therefore outcomes. For this reason, analyses of economic and political institutions
hinge on statistical assumptions. This paper helps to connect those assumptions,
and therefore those results, to specific environments. In doing so, the paper lays a
foundation for understanding the design and the performance of markets and political
mechanisms.

To show how properties of the joint distribution function depend on the micro
level foundations of the signals, we contrast two frameworks for producing signals.
One of these frameworks assumes that signals are generated by a process. The other
assumes that agents construct predictive models that produce signals. Both types of
the signals, of course, can be modeled by joint probability distributions. However,
the assumptions applicable to the two types differ. Binary signals generated by a
process are typically independent. Binary signals based on predictive models cannot
be. They must be negatively correlated. And moreover, the degree to which they are
negatively correlated is uniquely determined by their accuracy.

In what follows, we refer to signals produced by some process as generated sig-
nals. Two agents’ generated signals differ because the agents draw different samples
or experience idiosyncratic shocks or distortions. Alternatively, agents can produce
signals by filtering a high dimensional reality onto dimensions or into categories that
they believe important. They can then construct predictive models based on those
filterings (Fryer and Jackson 2003, Page 2007, Nisbett 2003).! We call these inter-
preted signals. Two agents’ interpreted signals differ if the agents’ predictive models
differ in how they categorize or classify objects, events, or data.?

Given our constructions, generated signals have a probabilistic relationship to
the relevant outcome variable. No number of generated signals, independent or non

!Organizations also differentially filter reality. See for example, Stinchecombe 1990.

20ur introduction of the term interpreted signals is new to the literature. Similarities exist be-
tween our interpreted signal framework and models of causal inference (Pearl 2000), fact free learn-
ing (Aragones, Gilboa, Postlewaite, and Schmeidler 2005), and complexity (Al-Najjar, Casadesus-
Masanell and Ozdenoren 2003). Interpreted signals also resemble predictions from PAC learning
(Valiant 1984) and classification theory (Barwise and Seligman 1997). The acronym PAC refers to
Probably Approximately Correct. We differ from PAC learning and classification models in that we
consider multiple agents each with his/her own classification rule.



independent, pins down the outcome value with certainty. Moreover, any number of
generated signals can be produced satisfying the same distributional and correlational
assumptions. Neither of these statements need be true of interpreted signals. If
all relevant attribute values can be learned, then the value of an outcome may be
predicted with certainty. If a poker player knows all of the cards in her opponents’
hands, she knows whether she wins or loses. Given that interpreted signals depend
on attributes, the number of distinct interpreted signals is bounded by the power set
of the set of attributes. This latter implication implies that any model that assumes
a large number of signals assumes generated signals and rules out interpreted signals,
an insight we take up in more depth in the discussion at the end of this paper.

In this introductory paper, we focus on independent interpretations — interpre-
tations that consider distinct attributes of a common representation, or perspective
(Hong and Page 2001, Page 2007). This captures situations in which agents look at
distinct but relevant pieces of information when making predictions. We also consider
the special case where the outcome of interest takes on only binary values. Doubtless,
the model generalizes, but the binary case provides the cleanest entry into the issues
of concern.

Given independent interpretations, we show that some common distributional
assumptions are not consistent with independent interpreted signals. Many models
of information aggregation in common value auctions, voting, and in information
cascades assume the following signaling structure that involves two states G' (good)
and B (bad) and two signals g and b: The two states are equally likely, the two signals
predict the two states with equal likelihood, the signals are independently correct (i.e.
knowing that one signal is correct tells nothing about the probability that the other
is correct) and the signals are informative, i.e. they are correct more than half of
the time. These assumptions are inconsistent with independent interpreted signals,
which must negatively correlated conditional on at least one outcome. Moreover,
these signals cannot be independently correct. They must be negatively correlated in
their correctness both unconditionally and conditionally on at least one outcome.

The negative correlation result bodes well for information aggregation but has a
contingent normative implication for auctions depending on whether we're aligned
with the buyers or the seller. Were our result only that the correlation is negative, it
would not be of much use. However, if as often assumed, good and bad predictions are
equally likely, the probability of a correct interpreted signal uniquely determines the
extent of this negative correlation. Thus, we have a benchmark correlation assumption
for interpreted signals, but it is not zero.

In sum, the statistical properties of generated and interpreted signals differ sub-
stantially. These differences call into question the generality of many existing results.
A close reading of the auction, voting, or signaling literature reveals that some models
make assumptions consistent with generated signals, while others make assumptions
consistent with interpreted signals. Particular assumptions often seems to be based
on tractability and not on descriptive realism. In that part of the auction literature
that relates to the derivation of optimal bidding strategies, the assumptions align with



our interpreted signal framework (Klemperer 2004). However, in that part concerned
with information aggregation in common value auctions, particularly those papers
with large numbers of bidders, the assumptions are inconsistent with interpreted sig-
nals. Similarly, the bulk of the political science literature, including almost all jury
models and election models (Ladha 1992, Feddersen and Pesendorfer 1997), makes
assumptions consistent with generated signals.

The remainder of the paper is organized as follows. In Section 2, we provide
examples of generated and interpreted signals and compare them. In Section 3, we
introduce a framework for interpreted signals and discuss three notions of indepen-
dence: independent interpretations, independent signals, and independently correct
signals. In Section 3, we prove our main results, introduce the idea of signals based
on overlapping interpretations and connect features of interpreted signals to the com-
plexity of the outcome function. In Section 4, we compare interpreted signals to
generated signals and demonstrate how to construct non independent interpreted sig-
nals that satisfy the conditional independence. In Section 5, we show how interpreted
and generated signals provide alternative lenses through which to view the affiliation
assumption (Milgrom and Weber 1982). The affiliation assumption requires stronger
restrictions on generated signals than on interpreted signals. Moreover, if we allow for
endogenous interpretations, i.e. strategically chosen predictive models, the affiliation
becomes even weaker. In the conclusion, we discuss the implications of our results
and future research questions.

2 Generated and Interpreted Signals: Examples

We begin with an example that highlights the statistical differences between gener-
ated and interpreted signals. Consider two venture capitalists who receive signals
about the quality of an investment, say a restaurant. This restaurant can either be
a good investment (V' = G) or a bad one (V' = B). Each outcome occurs with equal
probability. We first describe the standard generated signal model.

2.1 Generated Signals

Generated signals can be thought of as noisy glimpses or distortions of an outcome
value V. Imagine, for example, that two potential investors eat meals prepared at the
restaurant. We can think of those meals as generated signals denoted by s; and s
that either take value g (for good) or b (for bad). Conditional on the restaurant being
a good investment, i.e. conditional on state GG, we assume that the probability of
getting a good meal, i.e. of receiving the signal g, equals 2/3. Similarly, conditional
on B, the probability of getting the signal b equals 2/3. Each of these signals is
further assumed to be an independent draw from this distribution. Thus, we can
write the joint probability distributions of signals conditional on the restaurant’s
value as follows:



Generated Signals Conditional on GG

51/52 ‘ b g
b 1/9 2/9
g 12/9 4/9

Generated Signals Conditional on B

S1/82 ‘ b g
b 4/9 2/9
g 12/9 1/9

Using this information, we can compute the probability that the restaurant is a
good investment conditional on the signals of the two investors.

Probability of a Good Investment
Conditional on Generated Signals

81/82‘ b g
b | 1/5 1/2
g |1/2 4/5

The above table can be read as follows. If both investors get the signal b then the
probability that the restaurant is a good investment equals %

2.2 Interpreted Signals

We now turn to interpreted signals. Interpreted signals are predictions based on inter-
pretations. Interpretations create partitions (or categorizations) of the set of possible
restaurants. Interpretations partition the set of attributes that define a restaurant.
In this example, we consider those attributes to be the restaurant’s location and its
prices. We assume that each investor sees only one of these attributes and bases her
prediction on that attribute’s value.

Interpreted signals require a outcome function, V', that maps the restaurant’s
attributes, into a probability that the restaurant is a good investment. Here, we
assume that the location ¢ and the prices $ can be either good 1 or bad 0, and
that each combination of attribute pairs is equally likely. We assume the following
functional form for the outcome function.?

3In the paper, we consider deterministic outcome functions. Any probabilistic outcome function
can be transformed into a deterministic outcome function by adding attributes. In this example, we
need only add a third independent attribute h that takes take three values, say 0, %, and 1, with
equal probability. The outcome function can then be written as a deterministic function as follows:



if(0+$) <1

otherwise

=Wl

vie.s) = {

In this example, we assume that the first investor looks only at the location and
the second looks only at prices. The investors then construct predictive models based
on their attributes’ values. In brief, if the attribute’s value equals 1 (resp. 0), the
investor predicts the restaurant will be good (bad). The investors’ interpreted signals
equal the value of the investors’ attributes. In the general framework, predictions
can be based on multiple attributes and therefore are not identical to the attributes
themselves. Given these interpreted signals, we can now write a joint probability
distribution for the signals and the value of the outcome function.

Probability of a Good Investment
Conditional on Interpreted Signals

(s 0o 1
0 |1/3 1/3
1|1/3 1

We can then calculate the joint probability distribution of the interpreted signals
conditional on the restaurant’s quality. As with the generated signals, the probability
of an agent getting the good (bad) signal conditional on the restaurant being of good
(bad) quality equals 2.

Interpreted Signals Conditional on G

%] 0 1
0 |1/6 1/6
1 [1/6 1/2

Interpreted Signals Conditional on B
(s 0o 1

0 |1/3 1/3
1 1/3 0

1 ifh=Tor:({+8) >1
0 otherwise

vxa$,h){



Comparing the generated and interpreted signals reveals several differences. First,
the interpreted signals are not conditionally independent. Conditional on the restau-
rant being a bad investment, having a good location reduces the likelihood that the
prices are also good. In fact, the probability of having good prices equals zero. Sec-
ond, the generated signals are independently correct, but the interpreted signals are
not. Again, conditional on the restaurant being a bad investment, if one interpreted
signal is incorrect, the other must be correct. Third, with interpreted signals, the
correlation between the signals and values depends on the outcome function. With
generated signals, whatever correlation exists is just assumed. Finally, in the case of
interpreted signals, we are limited to two attributes: location and prices. The only
constraint on the number of generated signals is the chef’s time.*

3 The Interpreted Signal Framework

We now describe the interpreted signal framework. To avoid confusion, we also dis-
tinguish among several types of independence. In constructing interpreted signals, we
differentiate between between the set of objects or events and their outcome values.
We define the environment, €2, to be a finite collection of objects or events with a
cardinality equal to N. Each of these events or objects has associated with it an
outcome. We denote the set of outcomes by S and the deterministic mapping from
events to outcomes as an outcome function O : Q — S. 5

The problems we consider are equivalent to binary classification problems in which
an agent has to place the NV objects into |S| bins representing possible outcome values
and are related to the problem of selecting regressors (Aragones, et al 2005). Here,
we restrict attention to cases in which the cardinality of S equals two. To create an
interpreted signal an agent partitions the environment into non-overlapping sets. We
denote the partition of agent 7, II’, to be the sets {m}, 75, ..., @} }, where n; is the
number of sets in agent 4’s partition. IT is agent i’s representation of the environment
and this representation is incomplete as long as not all sets in the partition are
singletons. When an agent sees an object or event, she associates it with the set in
her partition that contains this object. We call these partitions interpretations.

Let P : Q — [0,1] be the probability distribution over 2 where P(w) denotes
the probability that event w arises. Given this distribution over events and an inter-
pretation of the environment, an agent makes predictions about the outcome. For
example, an agent might use a Bayesian approach to making these predictions and

4This example creates a clean distinction between between generated and interpreted signals,
whereas often the differences can be subtle. Consider a university whose quality ¢ in {0, 1} depends
on its faculty’s abilities: each faculty member ¢ has an ability a; in the set {0,1} drawn from some
distribution F'. Assume that this university produces students at regular intervals and that each
graduate j receives an added value z; in [0,1]. The graduating students’ added values would be
generated signals and the faculty’s abilities would be interpreted signals. Thus, their statistical
properties would differ in the ways that we describe.

5As previously mentioned, the framework extends to include probabilistic mappings.



assume that the most probable outcome arises conditional on the set in her interpre-
tation. We refer to these as experience generated predictions. At this point,
though, we do specify how predictions are generated. Agent i’s prediction ®; is sim-
ply defined as a function from € to S with the restriction that ¢; is measurable with
respect to agent ¢’s interpretation II*. We refer to these predictions as interpreted
signals.® The following example illustrates the main components of the interpreted
signal framework:

Example 1 The environment, Q = {wy,wq, w3, ws,ws,ws}. All events are equally
likely, P (w;) = ¢. The set of outcomes, S = {G, B}. The outcome function maps the
first three events to G and the rest to B. Let Il = {m, ma} be an agent’s interpretation
of the environment where m; = {w1, ws, ws} and m = {ws, ws,we} . If this agent makes
experience generated predictions, then her predictions can be described by the following
function

~ G forw; € m

¢ (wi) = { B for w; € my

This example corresponds to the following specification in the standard signal
model. There are two states {G, B}, each state is equally likely. The agent gets a
noisy signal x. We denote the signals with lower case letters g and b. The probability
distribution of these signals conditional on state is given by:

Conditional Probability Distribution of x

State ‘ Signal

of World | g b
G 2/3 1/3
B 1/3 2/3

In the example and generally, the outcome function O : Q — S together with a
prediction ¢ : €2 — S induce another random variable, (5 called the correctness of
predictions, which can defined as follows: 4§ : Q — {c, z} such that

g(w)— ¢ forwe w’GQié(w/):é(W/)
)i forwe w’EQiqz(W,)7é6(wl)

where ¢ means “correct” and ¢ means “incorrect”. Intuitively, the accuracy of a
prediction gb can be defined as the probability of its associated ) taking c as its value.
in the above example, 8 (w ) = cforw € {wi,ws,ws, ws} and 6 (w) =iforw e {ws,wy}.
Thus, with probability %, ¢ makes correct predictions.

6Unless in direct contrast with generated signals, we call them predictions as opposed to inter-
preted signals throughout the paper.



3.1 Definitions and Relationships of Types of Independence

We now turn to our discussion of various types of independence that relate to in-
terpreted signals. Seveal of these definitions and results we describe are standard.
We include them to place the new definitions and results in their proper context.
We consider only pairwise independence. Extensions to include any finite number of
interpretations are trivial.

definition 1 Interpretations, II' and I1?, are independent interpretations if

Prob (7@1 N 7r]2> = Prob (7?1) X Prob (’/sz)

forallie{l,...n1} and j € {1,...,n2}

Two interpretations are independent implies that knowing how one agent inter-
prets an event provides no information about how the other agent interprets that
same event. Note that interpretations are not predictions, they are the sets within
which agents place singular events. We now state a surprising result: independent
interpretations imply that the environment can be written as a product space and the
interpretations written as projections onto variables.

To make the logic that drives this result as transparent as possible, we first assume
that each event in €2 is equally likely. Consider the following trivial observation: if
Q) can be represented as a product of attribute spaces and if agents’ make partitions
by looking at subsets of attributes, then the agents have independent interpretations.
For example, if the environment is written as a two by two lattice and one agent
considers the row and the other considers the column, then these interpretations are
independent. This is not surprising. Knowledge of an event’s row, tells us nothing
about its column.

We show that the converse also holds. If two interpretations are independent,
then the event space can be mapped into a coordinate system (a two attribute model)
where each event is represented by (z,y), and one interpretation considers only the
x attribute and the other is along the y attribute. This result implies that any two
independent interpretations can be rewritten as projections onto different attributes
of the same perspective (Hong and Page 2001, Page 2007).” We provide the formal
statement of this result below. It’s proof along with all proofs of many subsequent
claims is contained in the appendix.

"Recall that a perspective is an representation of the entire space of possibilities. Two agents use
different perspectives if they represent the set of the possible alternatives with different languages.
These languages can be basis. For example, one agent may identify a point in the plane using Carte-
sian coordinates (z,y). Another agent may use polar coordinates (r,6). The natural interpretations
differ for these two perspectives. In the former, someone might partition the space into points in
which = < 5 and points in which x > 5. In the latter, an agent, might partition the space into points
such that » < 10 and points in which r > 10.



Claim 1 Assume that each event in Q is equally likely. Let TI' - - - TI" (n > 2) be
non-trivial interpretations of 2. If they are independent, then £ can be represented
by an n-attribute rectangle such that 11" is along the ith attribute. Thus N = [[}_; ap
for some larger-than-1 integers ap, h = 1,...,n8

Intuitively, Claim 1 implies a bound on the number of independent interpretations.
It cannot exceed the number of primes in the factorization of N. As stated in the
Corollary below, a finite set of events admits few independent interpretations.

Corollary 1 Assume events are equally likely. Let [1%_, p; be the unique prime fac-
torization of N, that is,

k
N = sz‘
i=1

where each p; is a prime. Then, the mazximum number of independent non-trivial
interpretations s k.

The implications of this corollary sink in when applied to a specific example such
as the set of possible independent interpretations of all of the 300 million people
who in the United States. Such interpretations, the parsing of people into categories
like soccer moms or NASCAR, are used to construct predictive models for economic,
political, and social outcomes. The corollary implies that there exist fewer than thirty
independent interpretations for the entire US population.’

Independent interpretations are distinct from independent predictions. Saying two
agents’s predictions are independent means that knowing one agent’s prediction about
the outcome of an event provides no information about the other agent’s prediction.

definition 2 Predictions, ggl and ggg, are independent predictions if they are in-
dependent random variables.

Note that if two agents have independent interpretations, then their predictions
are independent as well.

8The result above is established with the assumption that all events are equally likely. This
assumption is not essential. We can show that if events in the original space €2 do not have equal
probability, there exists an equally probable event space ' that has greater cardinality (the least
common denominator of probabilities of original events expressed in fractions) such that €’ can be
represented by an n-attribute rectangle and the independent interpretations of the original event
space 2 correspond to interpretations of the new event space 2’ along different attributes. The key
is that for independent interpretations, probabilities have the rectangle property, i.e.,

Prob(w; Nx}) = Prob(m}) x Prob(r3)

9This result assumes that each attribute is binary such as { male, female }. To be precise, 228 is
slightly less than 300 million and 229 exceeds it by a substantial margin.

10



Observation 1 Independent interpretations imply independent predictions.

Proof: Since each agent’s prediction is measurable w.r.t. her interpretation, the claim
follows.

In contrast, predictions can be independent without agents having independent
interpretations. This result should come as no big surprise, but it drives a conceptual
wedge between the two types of independence.

Observation 2 Independent predictions may not imply independent interpretations.

Proof: Due to the measurability requirement, an agent’s prediction defines a partition
on the event space that is in general coarser than her interpretation. Recall Example
1. We can add a second agent whose interpretation is

I1* = {{wi,wo}, {wa, w5}, {ws, we }}

and whose prediction is

B otherwise

ng(w) _ { G for w € {w,ws, w3, we}

It can be shown that this agent’s prediction is independent of the prediction made
by the agent in Example 1, even though the two interpretations are not independent.

Relatedly, we say that two predictions are independently correct, if knowing that
one agent’s prediction of an event is correct gives no information about whether the
other’s prediction of the same event is correct.

definition 3 Predictions, q~51 and &2, are independently correct predictions if o
and 9o are independent random variables.

Our next observation reveals the absence of a causal linkage between independent
predictions and independently correct predictions. Even though seeing the world in-
dependently implies predicting independently, it need not imply being independently
correct.

Observation 3 Independent predictions need not be independently correct.

Proof: Consider the following example:

Predictions | g g b b
g G G G B
g G G B G
b G B B B
b B G B B




In this example, each of sixteen events is equally likely. The upper case letters rep-
resent outcomes of events. The lower case letters in the first column and in the first
row are predictions of the row agent and the column agent respectively. By con-
struction, the two predictions are independent. However, they are not independently
correct. The joint probability of both agents making correct predictions is % while
the multiplication of the probabilities of each agent making correct predictions equals

3 x 3 =2 They are not equal.

Finally, the correctness of predictions need not be independent even if the inter-
pretations are.

Observation 4 Independent interpretations may not lead to independently correct
predictions.

4 Results

We now present results within the interpreted signal framework. We first show inde-
pendent predictions to be inconsistent with predictions being independently correct.
Since independent interpretations imply independent predictions, these inconsistency
results also apply to independent interpretations. We establish these results for the
case of binary outcomes in which agents’ predictions have identical probability dis-
tributions and equal accuracy.'’

As before, we let upper case letters, G and B, refer to outcomes and lower case
letters, g and b refer to predictions. Let P(G) and P(B) denote priors, assumed to be
common among all agents. P(g) and P(b) denote the probabilities of predicting g and
b respectively. P(g,g) denotes the probability of both predicting g. P(b,b), P(g,b)
and P(b,g) are similarly defined. P(c) and P(i) denote the probabilities of making
correct and incorrect predictions, which are also assumed to be the same for both
agents. Finally P(c,c), P(i,i), P(c,i) and P(i,c) denote joint probabilities of both
correct, both incorrect, agent 1 correct but agent 2 incorrect and agent 1 incorrect
but agent 2 correct respectively. We impose the following symmetry assumptions:

P(g,b) = P(b,g) and P(c,i) = P(i,c).

4.1 Reasonable and Informative Predictions

Given an interpretation, an agent need not make the best possible predictions. For
example, an agent who categorized agents by gender could predict that women are
taller than men. To impose some degree of competence we assume that predictions
are either reasonable or informative.

10We have derived a set of results that do not assume that agents’s predictions have identical
distributions.

12



definition 4 A prediction is reasonable if it is correct at least half of the time, i.e.,
P(c) = 3.

definition 5 A prediction is informative if it is correct more than half of the time,
i.e., P(c) > 3.

In the binary outcome case, an experience generated prediction must be reason-
able. Further if at least one prediction is correct more than half of the time, then
an experience generated prediction is also informative. However, as we observe next,
an informative prediction need not predict correctly half of the time conditional on
every state.

Observation 5 An informative prediction need not be reasonable conditional on a
state.

This observation may be obvious to some. Nevertheless, we provide an example
because the underlying logic is central to our analysis.

An Informative Prediction

Prediction | Outcomes
g G G B
g G G B
g G G B
g G G B
b B B G

Assuming each outcome to be equally likely, P(c) = 2, implying that the predic-
tion is informative. However, conditional on outcome B, the probability of making
correct prediction equals P(c | B) = P(b | B) = g, implying that the prediction is
not reasonable conditional on the bad state. This example provides insight into why
when predicting rare events, agents may not make reasonable predictions.

We now state two lemmas that build to our results about negative correlation
of interpreted signals. The lemmas that follow are interesting in their own right.
They reveal a tension between the accuracy of predictions and the correlation of their
correctness. When predictions are independent, the higher the accuracy, the less
correlated their correctness is. In fact, highly accurate predictions must be negatively
correlated in their correctness. In what follows, we relax the assumption that the
probability of a good prediction and a bad prediction are equally likely. Without loss
of generality, we assume P(g) > %

Lemma 1 The correctness of independent and reasonable predictions exhibit positive
(zero, negative) correlation if and only if P(g) > [=, <] P(c).

13



The intuition that drives this result is straightforward. If the probability of pre-
dicting the good outcome is large relative to the probability of being correct, then
both agents often predict good outcomes at the same time whether or not the pre-
diction is correct. Thus, the correctness of their predictions must also be positively
correlated.

Next, we reverse the assumption. We require that the predictions be indepen-
dently correct. We can then show that the predictions themselves are independent
or negatively or positively correlated depending again on the relationship between
the probability of the more frequently picked prediction and the probability of being
correct.

Lemma 2 Independently correct and reasonable predictions exhibit positive (zero,
negative) correlation if and only if P(c) > [=, <] P(g).

Our claim follows from Lemma 1 .

Claim 2 Independent informative predictions that predict good and bad outcomes
with equal probability must be negatively correlated in their correctness.

We can restate this claim as follows:

Corollary 2 Any independent and independently correct predictions that predict good
and bad outcomes with equal probability cannot be informative.

Since independent interpretations imply independent predictions, we also have the
following:

Corollary 3 If interpretations are independent and if their associated predictions
are informative and predict good and bad outcomes with equal probability then the
correctness of their predictions must be negatively correlated.

In the special case, where the probability of good and bad outcomes are equal
and, not only do we know that the interpreted signals must be negatively correlated,
we also know the exact value of that correlation. In other words, the accuracy of
independent interpreted signals uniquely determines their negative correlation.

Claim 3 Independent interpreted predictions that predict good and bad outcomes with

equal likelithood and are correct with probability p exhibit negative correlation defined
by the following expression

14



pf. Define variable y; as the indicator of the correctness of signal s;. In other words,
x; = 1 if s; predicts correctly and otherwise y; = 0. Then the correlation coefficient
of the correctness of the signals, p, is defined as

_ Cov (X1, X2)
VVar (x)y/Var (xo)

Consider the following relationship between events and their probabilities. Let p;
denote the probability that s; is correct. Then

P

p1 = Pr(1 agrees with 2 and 1 is correct) + Pr (1 disagree with 2 and 1 is correct )
= Pr (1 and 2 agree and both correct) + Pr (1 and 2 disagree and 2 is incorrect)

And, similarly,

pe = Pr(1 and 2 agree and both correct) + Pr (1 and 2 disagree and 2 is correct)
Add the two equations, we have

p1+p2 = 2Pr(both agree and correct) 4+ Pr (1 and 2 disagree)

The above equation hold without any specific assumptions. Now we assume that
p; = p; = p and that interpreted signals s; and s, are independent. Then

Pr(1 and 2 disagree) = 2p(g)p(b) = 2p(g)(1 — p(9))
So,
Pr (both agree and correct) = p—p(g9)(1 —p(g))

We can now compute the correlation coefficient of the correctness of interpreted sig-
nals, p.

Var(x;) = Exi — (Ex;)® = p—p°
Cov (x1,x2) = |: E(xix2) — (Ex1)(Ex2) = p—p(g)(1 —p(g)) — p*
Therefore,
, P —2(9)A=p9) —p* _ | pl9)(1 =p(9))
p—p? p—p?
To complete the proof, note that p(g) = %, then
g Alp — p?)

This last two claims together with the corollaries reveal a fundamental conflict
between an assumption that agents see the world independently (independent inter-
pretations) and an assumption that the interpretation based predictions they make
are independently correct.

15



4.2 Signal Accuracy, Correlation, and Function Complexity

We next discuss some findings that relate signal accuracy and correlation with the
complexity of the outcome function. Intuition would suggest that the more com-
plex the outcome function, the less accurate the signals and the less correlated the
correctness of the signals. We show that while both of these intuitions hold true if
we average across all possible functions, neither intuition holds for a large class of
complex functions. Specifically, we show that these relationships depend on where
the complexity lies in the space of attributes.

We restrict attention to the special case of a two dimensional attribute space in
which each attribute takes on one of 2K values. We further assume that good and
bad outcomes as well as good and bad interpreted signals are equally likely. This
implies that we can write each outcome as a vector (x,y), where x and y take values
in {1,..2K}. Moreover, without loss of generality, we can assume that if z < K (resp
> K, then the interpreted signal based on the first attribute equals ¢ (resp b) and that
the same conditions hold for the interpreted signal based on the second attribute.

To proceed, we need some measure of the complexity of the outcome function.
Complexity has many meanings (Miller and Page 2007) Here, by complexity we mean
nonlinearities and interaction terms in the outcome function. Given that our function
only takes two values, we can appeal to a crude but simpler measure that we call
attribute based value changes, which we denote by AV. For each attribute value, we
can count the number of times the value changes as that attribute ranges from 1 to
K. For each attribute, we denote this value as §(z)To compute AV, we compute the
sum of the 0(z)’s. We show two examples below for the case K = 3.
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_ O = = O
O~ O~ O+

N e R =]
N~ O === =g
N oo o~ ol
wo oo~ o~E

A =35

W~
o

16



YyioY2 Y3 Ys Ys Y| O()
|0 1 1 0 1 1 3
3|1 1 1 0 1 1 2
|1 0 1 1 0 0 3
4|0 1 1 0 0 0 2
s |1 0 0 0 1 0 3
|0 1 1 0 0 0 2
504 4 2 2 3 1[A=31

Given a outcome function V', we can define A*(V') to be the minimum value of
A(V) given any permutation of the attributes such that interpreted signals for the
first K attribute values equal ¢ for both attributes. We can partition the set of
outcomes into two sets: the agreement set and the disagreement set.

definition 6 The agreement set A = {(x,y) s.t. s1(z,y) = s2(x,y)}.
definition 7 The disagreement set D = {(x,y) s.t.s1(z,y) # sa(z,y)}.
We can now state the following claims whose proofs are straightforward.
Claim 4 Changes in A in D have no effect on accuracy or the correlation of accuracy

Claim 5 Increases in A in A decrease accuracy and decrease the correlation of ac-
curacy

These claims imply that all complexity relevant to correlation is captured in signal
accuracy.

4.3 Overlapping Interpretations

We conclude our investigation of interpreted signals by considering cases in which
agents overlap in the attributes that they include in their predictive models. These
overlaps can result in correlated predictions. For example, if profits contribute to a
firm’s value, then two investors who both consider profits when making their pre-
dictions may make unconditionally positively correlated predictions. However, if we
take this common attribute into account, we are left with independent interpreta-
tions. Therefore, all of our results for independent interpretations can be interpreted
as independent conditional on common attributes.

We first show that most of the results for independent interpretations apply to
overlapping interpretations as well. We then relate the properties of overlapping in-
terpretations to the complexity of the outcome function. In our example, we assume
five binary attributes determine whether an outcome is good or bad. One interpreta-
tion considers the first two attributes and the other considers only the third. These
interpretations and the associated outcomes can be represented with rectangles. In
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each box, let (G, B) be the vector denoting the number of good and bad outcomes
respectively so that (3, 1) refers to three good outcomes and one bad outcome. Each
box contains four outcomes as there are four possible values that the other two binary
variables can take.

Non Overlapping Interpretations
1 and 2" /37 | # # 0| # # 1

00# (3,1) (4,0)
10# (2,2) (1,3)
01# (3,1) (2,2)
11# (2,2) (0,4)

The row interpretation predicts good outcomes for the first and third rows. The
column interpretation predicts good outcomes for the first column. The probability
that the row player predicts correctly equals %, the probability that the column player
predicts correctly equals ;—g and the probability that they are both correct equals é—g
which as we know is less than the product of the probabilities that each is correct
given the negative correlation.!!

We now assume that the column player also considers the second attribute. This
generates the following rectangular representation. Some of the cells are now empty

because the two interpretations conflict in those cells.

Overlapping Interpretations

15 and 2" 2" and 3" | # 00| # 01| #10]| #11

00# 31 | 40
10# 22 | 1,3
01# 31 | 2.2
11# 22 | 04

The column interpretation now predicts good outcomes everywhere but in the last
column and is correct with probability % The probability that both interpretations
predict correctly equals %. The probability that they are both correct is still less
than the product that each is correct.'> Thus, in this example, the overlap in inter-
pretations does not create positive correlation in the correctness of their predictions.

This example also reveals a diagonal structure to the outcomes. Once we take
into account the common attributes, the interpretations are again independent. This

intuition can be stated formally.

11 19%23

1237533

32%32

is approximately 13:6

o
is approximately %
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Observation 6 Conditional on the values of their overlapping attributes, any two
interpretations based on the same perspective are independent.

By implication, if agents are aware of jointly considered attributes, then the cor-
rectness of their predictions will be negatively correlated conditional on the values
of those attributes. All of the results that we derive for independent interpretations
also hold for overlapping interpretations provided that the overlapping attributes are
common knowledge. Therefore, the assumption of independent interpretations may
not be especially restrictive.!3

Unconditional on the values of the common attributes, the correctness of predic-
tions can be positively correlated. This would be more likely the greater the predictive
power of the common attributes. Common attributes of high predictive power imply
less variance in outcomes within boxes along the diagonal and more variance in values
across the diagonal boxes. For example, if profits are a crucial determinant of firm
value, then in the high profit box, predictions are likely to be that the firms have
high values, and in the low profit box, predictions are likely to be that the firms have
low value. The overlap would then create positive correlation in both correctness and
prediction

We can explore this intuition more generally. It suffices to consider a case in
which the column interpretation adds an attribute already considered by the row in-
terpretation. By symmetry, we can further restrict attention to the case where the
column interpretation now predicts good outcomes in some cases where it previously
predicted bad. Let X denote the set of outcomes previously predicted as bad out-
comes but now predicted as good outcomes by the column interpretation. X can be
partitioned into two sets X and X which denote the good and bad outcomes within
X. Let lower case letters, x¢ and xp denote the cardinality of these sets. With the
addition of the new attribute, the column interpretation is now correct in (zg — )
more instances. This number must be positive otherwise the correct prediction for
the column interpretation would be bad rather than good.

Let X7¢ denote the set of outcomes in X that the row interpretation predicts
good outcomes. Define X%P similarly. Then, the change in the number of outcomes
where both interpretations are correct equals (7 — 277). Contrary to intuition this
number can be negative and when positive, it can be larger than (z¢ — ).

Observation 7 When an overlapping attribute is added to an interpretation, the
number of outcomes in which both interpretations are correct can either decrease or
increase. The increase in the number of outcomes in which both are correct can exceed
the increase in the number of outcomes for which the altered interpretation is correct.

Recall that the change in the number of cases that both are correct equals

27 — 278 First, we show that both can be correct less often. This can happen so

13If we consider more than two interpretations and the overlap among these is not common, then
independent interpretations can exist across pairs.
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long as z7¢ < 2%P. This inequality holds provided that in the set X, the row inter-
pretation predicts bad outcomes correctly more often than it predicts good outcomes
correctly. This condition is easily satisfied. Consider the example below. By defini-
tion, X denote the second column. Prior to adding the new attribute, the column
interpretation predicted bad outcomes in X. Now it predicts good outcomes.

Overlapping Interpretations: Decreased Correlation

15 and 2" 2" and 3" | # 00| # 01| # 10| #11

00# 04 | 3.1
10# 04 | 3.1
01# 04 | 04
114 04 | 04

The two bad outcomes in X were previously predicted correctly by both interpre-
tations, now they are predicted correctly only by the row interpretation. All other
outcomes that both predicted correctly are unchanged, so the total number of out-
comes that both predict correctly falls. As a result, the correctness of predictions
changed from being positively correlated to being negatively correlated after the col-
umn interpretation added the new attribute.

It remains to show that the change in the number of outcomes that both predict
correctly can exceed the change in the number of outcomes that the column inter-
pretation predicts correctly. Consider the following variant of the previous example.
By definition, X consists of the first and second columns. The column interpretation
used to predict bad outcomes in X, but now it predicts good outcomes.

Overlapping Interpretations: Increased Correlation

15 and 2" 2" and 3" | # 00| # 01| # 10| #11

00# 31 | 3.1
104 31 | 3.1

01# 04 | 04
11# 04 | 04

The increase in the number of outcomes that the column interpretation predicts
correctly equals 12 — 4 = 8. The row interpretation only predicts good outcomes
in X, so previously none of the outcomes in X were predicted correctly by both in-
terpretations. That number now equals 12. Therefore, the increase in the number
of outcomes that both are correct exceeds the increase in the number of outcomes
that the column interpretation is correct. As a result, the correctness of predictions
changed from being negatively correlated to being positively correlated after the col-
umn interpretation added the new attribute.
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An implication of this observation is that we can never be certain of the effect
of adding an overlapping attribute to each interpretation. Doing so can increase the
amount of positive correlation in accuracy. But, the opposite can also occur: Even
though the probability that each prediction is correct cannot decrease, the probability
that both predictions are correct could fall. Which of these outcomes occurs depends
upon the functional relationship between outcomes and attributes.

Note also the striking difference in the correlations of the correctness of predictions
as a result of the new overlapping attribute in the two examples used in the proof
of the previous claim. These differences can be attributed to the difference in the
predictive power of the common attribute for the row player. In the first example,
the common attribute does not have any predictive power for the row player while in
the second example, it has a substantial impact.

From our many examples, it should be clear that the outcome function implicitly
defines the statistical properties of the signals. We want to clarify how more complex
functions can create independent signals even with overlap. Assume that the outcome
function defined over five binary attributes equals one if and only if three or more
of the attributes have value one. Consider two interpretations, each of which looks
at four attributes. These two interpretations must overlap on at least three of the
attributes. A straightforward calculations reveals that the predictions of the agents
are, on average, positively correlated.

Next, we consider a more complicated function defined over these five attributes.
For this function if the sum of the first three attributes is even, then the probability
that the function takes value one equals 0.5 % (z4 + x5), but if the sum of the first
three variables is odd, then the probability that the function takes value one equals
1—0.5% (x4 +x5). It is a simple exercise to show that if one interpretation looks at the
first four attributes and the other interpretation looks at the first three attributes and
the fifth attribute, then the predictions are independent. This example shows that
overlapping interpretations can be consistent with independent interpreted signals
but only if the outcome function includes interactive terms.

5 Interpreted vs Generated Signals

We now discuss some of the differences between interpreted and generated signals. We
first embed this interpreted signal framework within the standard signal framework
where each signal is described by conditional (on states or outcomes in our terminol-
ogy) probability distributions. We then explore, in a multi-agent signal model, the
implication of the standard assumption of conditional independence between signals,
keeping in mind that these signals are in fact interpreted. We show that the stan-
dard assumption of conditional independence, which is arguably quite reasonable for
generated signals, implies a positive correlation structure on the interpreted signals.
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5.1 Conditionally Independent Interpreted Signals

We first show how to construct a collection of signals which are independent condi-
tional on the value of the outcome within our interpretation framework. We restrict
attention to cases where the objects have equal probability and that good and bad
outcomes are equally likely. Let p = -~ denote the probability that a signal is correct.
We assume that 2r > m > r so that this probability lies in the open interval (0.5, 1).
The fraction - will also equal the probability that a signal is correct conditional on
each state. To construct K interpreted signals that are conditional independent on
the state we set IV, the number of objects of equal probability equal to 2m*.

We can denote a object as a vector of K + 1 attributes in which the first attribute
takes one of two values, for convenience, 0 or 1, and each of the remaining K variables
take values in the set {1,2....m}. As a matter of convention, we write an object as
a vector of attributes (0, z1, xo, ...x,,). We construct the payoff function so that if an
even number of the last K attributes are greater than r, the value of the function
equals 0. Otherwise, the value equals (1 — 6).

f0,2)=0if |{i:xz; >r}|=2j for some j
=1—-0 else

We define the interpretations and the interpreted signals as follows. Interpretation
i considers every attribute except attribute i, i.e. (0,27;). The interpreted signal, s;
based on this interpretation equals 6 if an even number of the attributes other than
1 take values greater than r and equals 1 — # otherwise:

si(0,22;) =6 if |{j#i:x; >r}|=2j for some j
=1—10 else

Given our assumption that all outcomes are equally likely, the probability that
this signal is correct equals --. Further, that is also true conditional on either state.
A straightforward exercise establishes that the interpreted signals s; and s; are also
independent conditional function’s value.

Unlike generated signals, in which an agent gets a signal that is correct with some
probability, these interpreted signals correspond to models that leave out one piece of
information — the value of an attribute. Most of the time, the realization of that value
will not change the value of the outcome, but sometimes it will. Thus, it is possible
for conditionally independent signals as occurring provided each agent constructs a
predictive model that ignores a different attribute and if the functional form has
the property that each attribute has a proportionally similar effect on the outcome
regardless of the values of the other attributes.

As we now show, this last restriction rules out all functions over attributes except
those isomorphic to the class of examples we just described.

Claim 6 Any conditionally independent signal can be mapped into this class of ex-
amples by combining events
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Let f be an outcome function, taking values 0 and 1 with equal probability. Let s,
So,...,Sk (where K > 2) be any collection of signals that are independent conditional
on the value of the outcome function in our framework. For each signal s;, we assume
that the probability of being correct is - where 2r; > m; > r;. We also assume
that - equals the probability that signal s; is correct conditional on each
outcome. (This seems to be a crucial assumption for the proof to work.). Then f
and si, So, ..., Sg can be mapped into our interpretation framework in the following
way.

Define K + 1 attributes, (6, x1, ..., zx ), where 6 € {0,1} and z; € {1,...,m;}. Call
each realization of attributes (6, x1,...,xx) a state. Let each state be equally likely.
Then the given f and sy, s9, ..., sg can be reduced forms of the following: f takes
the value 6 if an even number of the last K attributes are greater than r; respectively.
Otherwise, the value equals (1 — 6).

f(0,2) =0if | {i:x; >r;} |:=2k: for some :k
=1—6 else

For any i € {1, ..., K}, it considers every attribute except attribute x;, i.e. (6, x2;).
The interpreted signal, s; based on this interpretation equals # if an even number of
the attributes other than i take values greater than r; respectively and equals 1 — 0
otherwise:

si(0,22;) =6if |{j #i:x; >r;}|:=2k: for some :k
=1-—6 else
An example is provided here. Let there be two signals. Each signal is correct with
probability % In each cell below, the number that is not in the parenthesis represents
the value of f. The first (second) number in the parenthesis represents the value of

s1 (s2).

0=0
1’1\33'2 1 2 3
1 [0(0,0) 0(0,0) 1(L,0)
2 10(0,00 0(0,0) 1(1,0)
3 |1(0,1) 1(0,1) 0(1,1)
=1
x1 \ T2 1 2 3
1 1(1,1) 1(1,1) 0(0,1)
2 1(1,1) 1(1,1) 0(0,1)
3 10(1,0) 0(1,0) 1(0,0)

Given our assumption that all states are equally likely, it is straightforward to show
that the probability that s; is correct equals 7% That is also true conditional on either
of the outcome function’s values. Now we show that these signals are independent
conditional on the function’s values. First, observe the following relationship among
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the three events.
{f=0}={0=0& {i:x;>nr;} iseven}U{0=1& {i:x; >r} is odd}

and the two events on the right of the equation are disjoint. Now for any k € {1, ..., K'}
we have that

{sp=f=0}
={sy=0=0& {i:z; >r;} iseven}U{s, =0& 0 =1& {i:x; >r;} is odd}
={rp <rp&0=0& {i:x;>nr;} isevenfU{z, <ry, & 0=1& {i:x; >r;} is odd}

Therefore,

Pr(sy = f=0)

=Pr(z, <rp & 0=0& {i:2; >r;} iseven)+Pr(xp <r, & 0=1& {i:z; >r;} is odd)
=Pr(z, <rp & 0=0& {i:2; >r;} iseven)+Pr(x <1, & 0=0& {i:z; >r} is odd)
= Pr(zp <1, & 0 =0)

Note that the second to the last equality utilizes the assumption that conditional
on the value of the outcome function, the probability of being correct is the same.
Similarly, we can show that for any subset {ki,....k;} € {1,..., K},

Pr(sp, =0& ... & sp, =0 & f=0) =Pr(wy, <, & .o & oy <1y, &0 =0).

Similar relations hold for f =1 and s; = 1 hold with the corresponding adjustments
that # = 1 and z; > r,. This means that conditional on the value of the outcome
function, the signals s, ..., sk are identical to the signals based attributes 1, ..., rx,
each observing the value of the corresponding attribute, conditional on the value of 6.
Given the rectangle structure of these signals conditional on 6, sq, ..., sk are therefore
independent conditional on the value of f.

This claim implies that while it is possible to create conditionally independent
interpreted signals, doing so implies a unique outcome function and requires that
each agent neglects one piece of information. Thus, paradoxically, conditionally in-
dependent signals are not consistent with agents looking at different attributes of an
arbitrary function but they are consistent with agents neglecting different pieces of
information give a specific function mapping attributes to outcomes.

5.2 Mapping Interpreted Signals into Generated Signals

We can also perform the inverse translation. We can map interpreted signals into
the generated signal framework. Relatively speaking, this task is much simpler . Let
p denote the probability that an agent predicts g conditional on the true outcome
being GG and q denote the probability that an agent predicts b conditional on the true
outcome being B, that is,

p="P(g|G)
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q=P(|B)

Interpreted signals can then be written as a typical binary signal model with the
following conditional distributions (conditional on outcomes)

Conditional Probability Distribution of Signals

outcome\ signal ‘ g b
G p 1-p
B 1—gq q

Consistent with the notation from the previous section, we have the following
unconditional distribution of predictions.'4

P(g) = P(G)p+ P(B)(1 —q)

and
P(b) = P(G)(1 —p) + P(B)q

We can now relate independent interpretations and predictions to signals that are
independent conditional on outcomes. The first claim states that informative and
experience generated predictions — therefore, reasonable predictions — that satisfy in-
dependence conditional on outcomes must be unconditionally positively correlated.
In other words, the assumption that interpreted signals satisfy the standard assump-
tion from signaling models (independence conditional on outcomes) implies that the
predictions themselves are positively correlated and cannot come from independent
interpretations.

Claim 7 Ezperience generated and informative predictions that are independent con-
ditional on outcomes must be positively correlated unconditionally.

The intuition behind this claim can be seen in an example. Suppose that good and
bad outcomes are equally likely and that conditional on the state each of two agents
predicts correctly with probability % Suppose, for example, that the environment
consists of nine good outcomes and nine bad outcomes and that each is equally likely.

14Binary generated signalsare often assumed to satisfy the Strong Monotone Likelihood Ratio
Property (SMLRP). Using the notation above, a signal satisfies the SMLRP if and only if

1—
p _1-p
L—q q
or equivalently
p+q>1

It can be shown that if predictions are experience generated and informative, then they satisfy
the SMLRP.
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For the predictions to be independent conditional on the state, two agents would have
to both predict four of the good outcomes correctly and both predict one of the good
outcomes incorrectly. Each would also have to predict two good outcomes correctly
that the other predicted incorrectly. The same holds for the bad outcomes. We can
represent this in a table.

Conditionally Independent Predictions

agent 1 /agent 2 ‘ PredictsG ~ PredictsB
PredictsG 4G and 1B 2G and 2B
PredictsB 2G and 2B 1G and 4B

Notice that the predictions are not independent. If agent 1 predicts G then agent
2 predicts G with probability g. If agent 1 predicts B then agent 2 predicts G with
probability %. The predictions are positively correlated. Independence conditional on
the state requires that the predictions be positively correlated.

We can now state the flip side of Claim 7.

Claim 8 Assume that predictions are experience generated and are informative. If
predictions are independent, then for at least one outcome, predictions conditional on
that outcome are negatively correlated.

Either of the above two claims implies an inconsistency between conditional inde-
pendence and independent interpretations.

Claim 9 Conditional independence of predictions is inconsistent with informative
and experience generated independent predictions and therefore with independent in-
terpretations.

This final claim parallels our previous result showing a conflict between reasonable,
informative, independent predictions and independently correct predictions. These
two claims together reveal a fundamental incompatibility between standard signaling
assumptions and independent interpretations: Seeing the world independently, looking
at different attributes, not only does not imply, it is inconsistent with, both conditional
independence of signals and independently correct signals.

6 Affiliation Assumption and Signal Type

We have established that the statistical properties of generated and interpreted signals
differ. In this section, we use models of common value auctions as an example to
illustrate the relevance of our results. In a companion paper, we apply interpreted
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signals in the context of voting models Our investigation of affiliated values here
provides a brief, but powerful example of why the distinction matters.

In what follows, we consider generated and interpreted signals and their relation-
ships to the affiliation assumption in a common value auction model. The literature
devoted to characterizing optimal bidding strategies and the efficiency of auction
mechanisms admits various assumptions about values, in particular whether they are
public or private. The common value framework is the more relevant setting for think-
ing about generated and interpreted signals as they concern a single object with an
unknown value. In a seminal paper, hereafter denoted as MW, Milgrom and Weber
(1982) identified a symmetric Nash equilibrium for the second price auction in a gen-
eral setting with both private and common value components. Their results require
the assumption of affiliation. Affiliation is satisfied when if an agent obtains a high
signal, it is likely that other agents also obtain high signals and that the unknown
common value is likely to be high.

MW describes a common value auction in which each agent obtains a private
signal. They assume that the joint distribution of the unknown common value and
agents’ signals satisfies the affiliation assumption. This view of the common value
auction is natural if signals are generated. MW further shows that if agents’ signals are
independent conditional on true values and if they all satisfy the Monotone Likelihood
Ratio Property, then the signals and the unknown common value also satisfy the
affiliation assumption.

The affiliation assumption imposes restrictions on the nature of the signal. Using
a simple example, we show that if the signals are attributes of the object with a
common value, i.e. if they are interpreted signals, then the affiliation assumption is
less restrictive. In this example, we consider two bidders and a common value object.
The common value, denoted by v, can take two possible values, 0 or 1. Prior to
bidding, each agent gets a signal z;. x; can either be 0 or 1. The joint distribution
of signals and the value is described as follows: p(z, z2;v) = i if 11 = 0,29 = 0,
and v = 0; or x1 = 1,29 = 0, and v = 1; or x1 = 0,29 = 1, and v = 1; or
1 = 1,29 = 1, and v = 1. Other possibilities all have 0 probability. Notice that
p(0,0;1)-p(1,1;1) =0 < 1—16 = p(1,0;1)-p(0, 1;1). This construction therefore violates
affiliation.

Nevertheless, MW’s strategy can be shown to be optimal. A strategy of bidding
0 upon receiving the signal 0 and bidding 1 upon receiving the signal 1 is a sym-
metric equilibrium.!® If we treat the signals as interpreted, then the affiliated values
assumption is satisfied. To show this we first write the relationship between signals
and the common value given by the joint probability distribution of signals using an
outcome function that depends on two attributes z; and x5 :

v = f(x1,22) = 1 + T3 — X119

15This example makes clear that MW’s assumptions are sufficient but not necessary for their
result, but that is not our reason for discussing it.
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where z; can either be 0 or 1 with equal probability and z; and x5 are independent.
Prior to bidding, bidder i learns the value of x; and bids accordingly. This is the
bidder’s interpreted signal. The utility function of each bidder is given by

u; (21, 2,0) = v = f(21,22) = 1 + T2 — 1122

Instead of thinking of each bidder’s utility u; as an increasing function of the
common value (which is what MW did), we think of it as an increasing function of
the the bidder’s interpreted signal. Since z; and x, are independent, they are trivially
affiliated. Thus, when we write the variables as interpreted signals, the affiliation
assumptions is trivially satisfied. This example belongs to the class of monotonic,
multi attribute, binary valued functions. Our next claim states that no function in
this class creates an affiliated joint distribution over the signals and the value. That
is, if we treat the signals as generated, as in MW, the affiliation assumption cannot
be satisfied.

Claim 10 Let X = {0,1}". If f : X — {0,1} is onto and monotonic and if for all
ie{l,2,..,N}, f(z) # x; for some x, then for any distribution P over X such that
P(z) > 0 for all x € X, the corresponding joint distribution over the signals and the
value violates the affiliation assumption.

Returning to and extending our previous argument, if we model the attributes as
interpreted signals, then every function in this class combined with a distribution P
(over (x1,...,x,) only, not over (xy,...,x,, f(x))) satisfies the conditions of the MW
model. Thus, affiliation places much stronger restrictions on generated signals than
on interpreted signals.

Up until now, we’ve assumed the function is monotonic in each attribute. We
next show that we can relax that assumption and still satisfy MW’s conditions. For
example, if

v = f(r1,22) = 1 + 29 — Q119

where 6 is a constant greater than 1, then the outcome function is not monotonic in
each attribute because of the large negative interaction term. One can easily show
that the symmetric bidding strategy

is not an equilibrium.

The failure to satisfy monotonicity need not undermine MW’s results. This is
particularly true if we allow for endogenous acquisition of information. Consider a
modified example where

v = f(z1,22) = 21 + 22 + 3 + 14 — 02179
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and # > 1. So again because of the large negative interaction term between x; and x,,
the outcome function is not monotonic in z; or x. But if prior to bidding, the first
bidder can observe x1, x5 and x3, the second bidder can observe x1, x5 and x4, and this
information is common knowledge among the bidders, then MW’s assumptions hold as
long as bidders take into account their common information. That is, by(x1, 22, x3) =
T1+To+2x3—0x129 and be(xy, T9, x4) = T1+x2+214—021 75 constitute an equilibrium.

Thus, even if the outcome function contains large negative interaction terms, as
long as the attributes producing the interactions belong to the overlap of bidder’s
information, the large negative interaction terms can be absorbed, and the rest of
Milgrom and Weber’s results carry through.!

7 Discussion

In this paper, we have contrasted generated and interpreted signals and demonstrated
important differences between them. These differences have implications for the gen-
erality of claims of the optimality of strategies and of institutional designs. At a
minimum, our results suggest modelers should relate their assumptions to the spe-
cific context: are the signals generated, interpreted, or possibly both? In addition,
the distinction between the two types of signals might enable us to better understand
differences between experimental and real world results. In experiments, information
is often generated using the standard conditionally independent signal model. In
practice, it may not be. Therefore, testing our theory using experiments may not
be testing one of the most important assumptions: the assumption of conditionally
independent signals.

This insight also applies to attempts to calibrate computational models with stan-
dard models of signals. These efforts may also run up against this fundamental in-
consistency. In an agent based model (Tesfatsion 1997, Holland and Miller 1991), the
signals are often lower dimensional projections of a larger reality. In rich, fine de-
tailed computer models, such as the trading agent competition (Wellman et al 2003),
agents do not take into account all of the information in the environment. Instead,
they monitor a lower dimensional world than the one within which they interact. In
spatial models and network models, something close to dimensional reduction also
occurs. Agents only see what happens in a local region, thereby creating interpreted
signals.

Owing to its close connections to computer science, the interpreted signal frame-
work can be seen as a computational approach to incomplete information. Ideally,
computational and mathematical models inform and complement one another (Judd
1997, Judd and Page 2004). However, our ability to align computational and math-
ematical models is hindered if the assumptions about signals that we make in our

16Whether or not, in a strategic context, the endogenous acquisition of information of attribute
values would result in this overlap is an open question.
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mathematical models are not consistent with the information that agents realize in
the computational implementations of those models.

The interpretation signal framework allows for the modeling of endogenous signals.
If agents want to predict correctly individually, this could lead to correlated signals
as they might all learn to look at the same attributes. If agents are concerned with
collective performance, such as in the case of voting to aggregate information, agents
have an incentive to look at different attributes. These insights are not surprising.
What is surprising is that by looking at different attributes, the correctness of agents’s
predictions is often negatively correlated, so their information should aggregate rather
well. However, the number of different attributes that can be considered depends upon
the dimensionality of the problem. Therefore, large groups of agents may do worse
than generated signal theory predicts because they necessarily have lots of overlap.
Small groups, in contrast, may do better than the generated signal theory predicts.

The choice over which attributes to include in interpretations in competitive sit-
uations, such as auctions, is among the most interesting questions to consider. Com-
petitive situations create both types of incentives: an incentive to be correct and an
incentive to be different. As we saw in the example above on the common value auc-
tion, bidders may simplify the strategic environment by absorbing externalities. The
question of whether such simplification, where possible, is also incentive compatible,
is an open one.

Finally, the interpretation framework also permits more fine grained analysis of
the link between complexity and uncertainty. Many of our examples involve nonlinear
mappings that include interaction terms. The complexity-uncertainty link is also the
focus of a paper by Al-Najjar, Casadesus-Masanell, and Ozdenoren (2003). They
consider the continual addition of more and more attributes. As the number of
attributes considered increases, the signals should improve. A problem is complex
if no matter how many attributes are considered, the uncertainty never goes away.
In our framework, within some sets in a partition, both good and bad outcomes
can exist. Our formulation highlights a related notion of complexity - nonlinearity
and interaction terms in the mapping from attributes to outcomes. As this mapping
becomes more complex, the inference problem becomes more difficult. Moreover,
anomalies, such as adding an overlapping attribute creates less correlated predictions,
are more likely to occur. What we might call regularities in signals should be related
in a systematic way to this second conception of complexity.
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8 Appendix: Proofs

Proof of Claim 1. We prove the claim for n = 2. The proof for more general cases
follows the same procedure.

Without loss of generality, assume that II¢ = {ﬁ', ce ng} where for each i = 1, 2,
n; > 2. We write the event space, €1, in the following form which helps to visualize
the proof.

N2 7 N2 ’/T%ﬂﬂi2
1 2 1 2 1 2
Ty M7y Ty M 75 Ty M7y,
(1)
1 2 1 2 1 2
Ty (T Ty (V75 e T, M7,

Each cell above can be represented by a 2-dimensional rectangle with the property
that cells so represented in the same row have the same height and cells in the same
column have the same width.

To show this, we first show that for each 7 = 2,..., no, that the number of events
contained in each cell in any given column is proportional to the number of events in
each cell in the first column:

1 2 1 2 1 2
‘Wlﬂﬂj‘_‘ﬂ'Qﬂﬂj’_ _‘Wmﬂwj‘

(2)

1 2] |1 21 — T
[ Naf] my Nl ‘ﬂ}llﬂﬂﬂ

where |-| denotes the cardinality of a set. By independence (recall that each event in
Q is equally likely), for all t = 1,...,ny and all j = 2, ..., ny,

mom| x| |w]
N N N
and 1 2 1 2
| Ny _ |73 | ) ||
N N N
Therefore,
’/Til ﬂﬂ'?‘ ‘7@2‘
i nat| |nd

This proves (2) above.
For each j = 2,...,ny, let the ratio in (2) be equal to Z—j where both u; and d; are

positive integers and % can not be further simplified. That is, for each i = 1, ..., nq,
J

we can write the number of events in the ith row and jth column as % times the
J
number of events in the first column of the ¢th row.

U

1 2| _ Yy 1 2

m; ﬂwj‘— 7 U ﬂ?‘l‘l‘
J
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This implies that for each ¢ = 1,...,nq, |7 N 7% is divisible by all d;’s, j = 2, ..., na.
Let d be the smallest positive integer that is divisible by all d;’s. Then for each
1 =1,...,nq, there exists a unique positive integer k; such that

W}ﬂﬂf‘:ki-d.

d
W}ﬂﬁ?’:/{?i- (ujdj>

forall 7 =1,...,n; and j = 2,...,ny. Notice that % is a positive integer in the above
J
expression.
The above argument proves that for any i = 1,...,ny and j = 1,2,...,ny, 7} N 7rJ2-

Thus,

can be represented by a 2-dimensional rectangle of k; rows (height) and w; - g columns
J

(width). Here we have implicitly defined u; = d; = 1. Therefore, each cell in (2) can
be represented by a 2-dimensional rectangle such that cells in row ¢ all have the same
height of k; and cells in column j all have the same width of u; - %. Therefore, (2)

a
dj

columns. That means, N = (X7 k;) - (Z?il u; - d%) . It is obvious that the number

in each parenthesis is larger than 1.

can be represented by a 2-dimensional rectangle with 37, k; rows and Y72, u; -

Proof of Corollary 1. By Claim 1, a necessary condition for n non-trivial inter-
pretations to be independent is that N can be written as the multiplications of n
larger-than-1 integers. Thus, the largest number of independent non-trivial interpre-
tations is bounded by the number of prime factors which is k. Now we only need to
show that there exist £ many non-trivial interpretations that are independent. When
N = [1%_, pi, Q can be represented by a k-dimensional rectangle where the ith di-
mension has a length of p;. Let II° be the interpretation that can only identify events
along the ith dimension. Showing that these k interpretations are independent is a
straightforward exercise.

Proof of Lemma 1, Lemma 2 and Claim 2. First, observe the following identity:
P(g,b) + P(b,g) = P(c,i) + P(i,c)

Each side of this equation expresses the probability that agents disagree. Then by
symmetry,

P(g,b) = P(c,1)
Second, notice that the function (1 — z) is a decreasing function of x for = > 1.
Therefore,

P(g)(1 = P(g)) <[=>]P(c)(1 = P(c))
if and only if



That is,

if and only if
P(g) > [=, <] P(e)

Now we prove Lemma 1. If predictions are independent, then
P(g,0) = P(g)P(b)

Also, by definition, the correctness of predictions are positively correlated (indepen-
dent or negatively correlated) iff

P(c,i) < [=,>] P(c)P(i)

Combine the above two equations with the identity at the beginning of the proof, we
have the correctness of predictions are positively correlated (independent or negatively
correlated) iff P(g)P(b) < [=,>] P(c)P(i). The result then follows. Claim 2 is a
special case of Lemma 1. Lemma 2 can be similarly proved.

Proof of Claim 7. We need to show

P(g)* < P(g.9)
Here, P(g,g) denote the joint probability of both agents predicting g. We know
P(g) = P(G)p+ P(B)(1 - q)
Now we compute P(g,g). Since predictions are conditionally independent,
P(g,9) = P(G)p* + P(B)(1 - q)°

Therefore,

P(g,9) — P(g)°
= P(G)p*+ P(B)(1 — q)* — [P(G)p+ P(B)(1 - )"
= P(G)P(B) (p+q—1)°

Since the predictions are experience generated and informative,

p+qg>1

This means that
P(g,9) — P(g)* > 0

Therefore, predictions are unconditionally positively correlated.

Proof of Claim 8. We prove this claim by way of contradiction. Suppose both
conditional distributions of predictions are not negatively correlated. Then

P(g,9|G) >p?
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and
P(g,9| B) > (1 —q)?

Since predictions are independent,

P(9)* = P(g,9)

By definition,
P(g) = P(G)p+ P(B)(1 —q)

and

P(g,9) = P(G)P(g,9 | G) + P(B)P(g,9 | B)

Thus,
[P(G)p+ P(B)(1 - q)]* > P(G)p* + P(B)(1 — q)

which simplifies to
P(G)P(B) (p+¢—1)" <0

Since
p+qg>1

a contradiction.

Proof of Claim 10. By assumption P(x) > 0 for any € X. Let p be the
corresponding joint probability distribution over (z;v), e.g. if v = f(z), p(z;v) =
P(x), and if v # f(x), then p(z;v) = 0. For any z € X, let K(z) = {i : x; = 1} be
the set of attributes that take value 1. Similarly, define x(K) = (21, 29, . .., x,) where
x; = 1 iff i € K. Then there exists a K* C N such that f(z(K*)) = 0 and for any
K that strictly contains K*, f(xz(K)) = 1. In general, for any given f, there can be
multiple K*’s with this property. We concentrate on any one set that has the largest
cardinality and still call it K™* to keep the notation simple. By the assumption that
f is onto and monotonic, | K* | is strictly less than N. We now consider two cases.
First | K* |= N — 1 and second | K* |[< N — 2.

(1) | K* |= N — 1. Without loss of generality, assume K* = {1,..., N — 1} . This
means f (1,...1,0) = 0 and f(1,...1,1) = 1. By monotonicity, f (z_x,0) = 0 for any
z_y € {0,1}""". By the assumption that for any 4, f(z) # ; for some z, we know
that there exists z_y € {0,1}" " such that f (z_y,1) = 0. By monotonicity again,
f(0,...0,1) = 0. We have so far established that the joint probability distribution over
(x;v) satisfies the following: p(0,...,0,0;0) > 0, p(1,...,1,1;0) = 0, p(0,...,0,1;0) >
0, and p(1,...1,0;0) > 0. However this violates affiliation of the joint probability
distribution because affiliation requires that

p(0,...,0,1;0) - p(1,...1,0;0) < p(0,...,0,0;0) - p(1, ..., 1,1: 0)

(2) | K* |< N — 2. We prove the claim by contradiction. Suppose that the joint
probability distribution over (z;v) satisfies affiliation. Choose j,j’ ¢ K*. We show
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) = 1. We prove this for j. The proof for j' is identical.

that f(z({j}) = f(z({7'})) =
= en p(xz({j});0) > 0. Affiliation requires that

Suppose f(z({j}))
p(x(K*);0) - p(z({j}); 0) < p(z(0);0) - p(z(K* U {j});0)

But by definition, p(z(K* U {j});0) = 0 leading to a contradiction. Thus, we have
that p(z({j7});1) > 0 and p(z({j'}); 1) > 0. Affiliation requires that

p(z({7});1) - p(z({5'}); 1) < p(x(0);1) - p(z({7,5'}); 1)

But by the assumption that f is onto and monotonic, p(x(0); 1) = 0 which leads to a
contradiction.
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