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Introduction 

The remarkable recent progress in computing power, networking, and sensors combined with the 
power of machine learning and data mining techniques have enabled researchers and 
practitioners to create pervasive computing systems that reason intelligently, act autonomously, 
and respond to the needs of users in a context aware manner.  The field of pervasive computing 
and smart environments is at an interesting and critical point in its development.  On the one 
hand, the field has matured to the point where tangible, beneficial testbeds such as smart homes, 
body area networks, health monitoring systems, and social networking media are becoming fairly 
commonplace.  These visible successes are built on mature underlying technology that performs 
device communication, information routing, sensor fusion, activity recognition, and user 
preference learning.  On the other hand, however, these systems have been designed and tested 
on small to medium-scale applications with limited dissemination of the tools, results, and 
datasets. 

Next year is the 20th anniversary of Mark Weiser's ubicomp vision landmark Scientific 
American paper on ubiquitous computing: "The Computer for the 21st Century". While there has 
been significant progress towards his vision most research has focused on the development of 
small-scale pervasive systems, tested by a handful of users, interacting with a limited number of 
devices. In order to advance the field and make technology truly pervasive, the research 
community needs to address the issue of scale. Future large-scale pervasive systems need to 
operate over different spatial and temporal scales, encompass a large number of diverse devices 
(e.g., mobile phones, tablets, wearables, embedded wireless sensors) that enable a spectrum of 
applications, deal with very large amounts of data distributed over a diverse set of networking 
platforms and devices, and support 100s of millions of users.  

The trajectory from small to massive scale pervasive computing systems is underway. 
Recently, smart environments, body-area sensor networks, and smartphones with embedded 
sensors are enabling the delivery of a wide variety of applications from predicting traffic jams 
and modeling human activities, to social interactions, behavioral and mobility patterns, to 
community health tracking, public safety and large-scale environmental sensing. These recent 
developments are being driven by the availability of embedded sensors; the ease at which 
researchers and developers can distribute new applications to millions of users; and the 
emergence of the mobile computing cloud.  

The goal of this NSF sponsored workshop was to discuss the challenges for scaling our future 
pervasive applications, algorithms, models, data and systems. The problem of scaling pervasive 
systems is multi-disciplinary in nature, including challenges in HCI, machine learning, data 
mining, mobile systems, wireless and sensor networks, smart environments, security and privacy, 
signal processing, control theory, information theory, game theory, optimization techniques, 
psychology and social networking.  

The workshop program included four keynote talks by Gaetano Borriello (University of 
Washington), Andy Hopper (Cambridge University), David Culler (University of California at 
Berkeley) and Shwetak Patel (University of Washington); NSF perspective by Keith Marzullo 
(Division Director of CNS Division, NSF); a number of panels and breakout sessions related to 
scaling ubicomp; and a plenary discussion on 20 years after Mark Weiser's ubicomp vision 
moderated by Mahadev Satyanarayanan (Carnegie Mellon University) and Roy Want (Intel). 
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Workshop Format 

The goal of this workshop was to provide researchers with a forum to discuss the future of 
Pervasive Computing at Scale.  Specific objectives included: 

 identify open problems and fundamental challenges that must be addressed to enable 
deployment of pervasive computing systems at massive scale; 

 understand the needs of new applications capable of complex inferences about 
personal, social, and urban spaces across a set of domains, including but not limited to: 
smart health and well-being, social networks, smart environments, human behavioral 
modeling and persuasion, cyber-physical systems, and environmental and critical 
infrastructure monitoring and protection (e.g., smart grids); 

 explore infrastructures, algorithms and tools necessary for the collection and analysis 
of data from large ensembles of pervasive heterogeneous and distributed devices (e.g., 
mobile phone sensing, wearable sensors, embedded sensors) and intelligent multi-
scale decision making; 

 understand the implications for privacy, security, trust and social aspects of large-scale 
pervasive computing systems; 

 identify software challenges, including middleware and operating systems, for 
pervasive computing and associated applications; 

 explore new interfaces and modes of interactions between people and pervasive 
computing devices, applications or environments; 

 study the computing continuum and trade-offs where pervasive applications are self 
adaptive across a wide spectrum of devices and networking technologies, from the 
smallest embedded sensors to the computing cloud; 

 provide theoretical foundations that define the "Science of Pervasive Computing"; for 
example, How to guarantee reliable pervasive computing at scale in the presence of 
uncertain and incomplete information? How to quantify and assess information quality 
for making accurate decisions? 

 explore the nexus between scalability and application characteristics and context with 
the goal of identifying fundamental insights, models and methods; 

 identify new networking challenges as very large pervasive systems become 
commonly integrated with the Internet; 

 understand assurance and verification for critical applications (e.g., health-care or 
safety); and 

 identify challenges in simulation, emulation and experimentation with pervasive 
systems at scale. 

The organizing committee solicited two-page white papers from the community on various 
topics related to scaling in pervasive systems.  We received 250 submissions and invited 57 
participants from these submissions.  In addition, we invited speakers and attendees from 
funding agencies and groups working in key areas. 

The workshop consisted of keynote talks from four invited speakers:  Gaetano Borriello, 
Andy Hopper, David Culler, and Shwetak Patel.  Additional vision presentations were made 
from nine authors of the submitted white papers.  The rest of the time was devoted to discussions 
of current and future directions in the field.  Twelve breakout sessions were organized to discuss 
specific topic areas and a plenary discussion time was devoted to looking at the history of the 
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field as a whole and where it could move in the next decade.  Finally, participants were asked to 
complete an online survey to get their individual opinions and visions for the field. 

Each breakout session facilitator was asked to direct discussions around the following set of 
questions.  In addition, survey participants answered similar questions in order to get individual 
insights that could shape the field and provide recommendations to NSF.  The questions include: 

 What are the future directions of PeCS in the short term (3-5 years), medium term (5-
10 years), and long term (>10 years)? 

 What are the grand challenge problems in PeCS that could help the field move 
forward?  What technical breakthroughs are necessary to solve these problems? 

 Why should the federal government invest in PeCS, as compared to industry?  Is there 
a need for a cooperative effort and what kind of technical advances could evolve out 
of PeCS that could lead to new industry jobs? 

The rest of this report summarizes each of these discussions and summarizes overall 
conclusions and recommendations to NSF.  A list of attendees, the workshop program, and 
individual survey responses are included as appendices to this report. 
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Overview of Keynote and Invited Talks 
 

As part of the workshop program, the organizers invited four researchers who represent key 
areas of work to give keynote speeches to the group.  These speakers were Gaetano Borriello 
(University of Washington), Andy Hopper (Cambridge University), David Culler (University of 
California at Berkeley), and Shwetak Patel (University of Washington). 

The first keynote talk of the meeting, given by Gaetano Borriello, was titled “Looking 
forward to ubiquitous computing that looks ahead”.  In this talk Gaetano provided a survey of the 
pervasive computing landscape and then identified necessary technologies that are missing in 
this landscape.  The current landscape includes a variety of portable devices that gather and store 
information (tabs, pads, and boards).  Communication has become faster, more robust, and most 
pervasive as it is attached to a variety of everyday devices.  The danger with the proliferation of 
these technologies is that we are not embedding computing into the fabric of life, we are instead 
making computing the fabric of life.  Computing already occurs at an immense scale, to the point 
where individuals cannot keep informed and educated on where the data is, how to understand 
and analyze it, and how to use the latest apps.  A challenge for the community is to let the 
devices do a lot of this work for us.  This talk highlighted the Cell Biology laboratory at Intel 
Labs in Seattle as a prototype for how information can be propagated to both machines and 
scientists to assist with daily research tasks. 

In the second keynote talk, titled “Computing for the future of the planet”, Andy Hopper 
argued that sustainability computing is not just defense, but offensive:  computing can be used to 
solve sustainability problems. Computing for the future of the planet must include optimal digital 
infrastructure that do not just design better transistors that use less energy but must focus on 
energy-proportional computing. Our systems can also optimize sensor type and placement to 
make use of renewable energy and surplus energy. Andy’s group has developed a Zen package 
that facilitates reasoning about energy usage of computing components and searches through 
possible energy sources to power these components.  Other key components are the ability to 
sense and react, such as using sensor information to provide sports analysts with insights on 
athlete movement in order to more effectively train, and digital alternatives to physical activities. 

The third keynote talk, titled “Beyond the lamplight – lessons from making sensor networks 
real”, was given by David Culler.  This talk highlighted a number of general principles that are 
valuable in attempting to scale pervasive computing systems.  These include learning from 
failure and rejection, making sure to “nail it before you scale it” and are punctuated with lessons 
learned from previous large-scale projects such as the Mote/TinyOS development, the NEST 
Open Embedded Platform, and live monitoring of the Golden Gate Bridge.  The talk raised 
questions for the audience of what should be scaled (#nodes, extent, fidelity, accuracy, 
reliability, duration, realism), and why should it scale.  There are many advances, tools, and 
testbeds available – research at scale should build on these projects rather than start from scratch. 

In the final keynote speech, titled “Strategies for large scale deployment of energy monitoring 
and sensing in the home”, Shwetak Patel described the design of devices for monitoring resource 
utilization in everyday environments.  This technology, which allows for fine-grained monitoring 
of energy consumption, water consumption, and gas use as well as status of devices in the 
environment, is valuable for promoting energy-conscious behavior in everyday environments.  
Because the energy monitoring technology can be installed by the user, is small and efficient, 
and analyzes continuous noise generated on power lines, it is able to scale to use in every home 
and building.  All of the monitoring devices support long-term deployments and use in hard-to-
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reach areas, which allow the ideas to truly scale to a variety of geographic areas and end-user 
applications. 

In addition to the keynote talks, short (8 minute) vision statements were given by nine 
selected participants.  Jim Rehg discussed how pervasive sensing of social behavior can be used 
to provide early-childhood screening for autism as well as a host of other behavioral and 
developmental disorders.  Santosh Kumar discussed how mobile phone apps can enable stress 
monitoring and management for users and individuals with whom they interact.  Each of these 
presenters talked about how to scale their own applications, and Svetha Venkatesh discussed 
how to scale a class of pervasive computing systems using feature extraction and analysis. 

The next set of speakers introduced specific technologies that will benefit aspects of the 
scaling challenges.  Gil Zussman talked about energy harvesting active networked tags.  These 
tags, which enable Internet of Things research, are self-reliant because they harvest ambient light 
and make use of ultra-low-power communications.  The WISPs that were described by David 
Wetherall also represent smart tags that harvest power but are also programmable, and are 
coupled with sensors.  The tags can actually represent hosts to run apps, as routers or APs to 
provide power and network services, and as sensors to provide data to users.  Karthik Dantu 
discussed how bee swarms are able to accomplish large-scale tasks at a colony level.  By 
emulating this behavior with robotic bee swarms complex tasks can be tackled, without complex 
programming, precise sensors, and excessive energy usage at an individual node level. 

In his talk, Oliver Brdiczka argued that contextual intelligence can help disambiguate 
meaning from the massive digital information that is collected and transmitted by current 
pervasive computing systems.  The information can be converted into a personal semantic 
network.  Thomas Little introduced the notion of ubiquitous networking through manipulation of 
light as a communications medium.  By controlling light, sensors and mobile devices can 
participate in the optical field and can be maintained as part of the container in which humans 
live, work, and play.  In the final talk, Mahadev Satyanarayanan argued that future pervasive 
computing research needs to conserve the most precious resource, human attention.  This can be 
accomplished by eliminating system-induced distractions such as failures, poor performance, 
confusing output, and unnecessary interactions.  He discussed the idea that hardware virtual 
machine technology can lower the external complexity of a software system by transforming it 
into internal complexity.  By decoupling personal computing state from hardware and using VMs 
to encapsulate and recreate the state, migrating processes and transitioning computing from 
personal to pervasive can be graceful and non-disruptive.  
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Executive Summary of the PeCS Workshop and its Recommendations to NSF 

Throughout the various workshop discussions and presentations, a number of salient issues, 
observations, and visions recurred.  These general insights are summarized in this section along 
with specific challenges and recommendations to NSF for future support of Pervasive 
Computing at Scale. 
 
State of the Art 

First, workshop attendees were fully convinced that pervasive computing is a recognized area 
and is distinct from related areas such as cyber-physical systems.  Aspects of pervasive 
computing that are unique and define the field include pervasive communication (one could 
argue, in fact, that the name of the workshop should be PeCCS, Pervasive Computing and 
Communication at Scale).  In addition, fields such as cyber-physical systems explore 
technologies outside of a human context.  In contrast, pervasive computing focuses on sensing, 
interacting with and aiding humans at an individual and community scale throughout their lives. 

The PeCS community recognizes the wide-spread miniaturization and low-cost building of 
portable devices and applications for these devices.  The number of such devices has certainly 
scaled to massive numbers.  Current mobile phones are as powerful as personal computers of 
old. The ability of these devices to collect and store information is well established. In addition, 
communication has become fast, fairly robust, and certainly pervasive. 

Each of these well-established areas of pervasive computing is partnered with a conceptual 
gap or area that needs to be better explored. While devices and applications are being 
increasingly manufactured and used, they are demanding more user time rather than alleviating a 
user’s burden.  Users need to spend more time understanding the data and educating themselves 
about the latest hardware and software.  The proliferation of sensor and data modalities also 
increases the risk of various types of privacy invasion and attack by adversaries, yet researchers 
and industry are largely unaware even of what the potential issues are. 

Another area that has been heavily explored recently is ambient energy harvesting; a critical 
capability that would allow pervasive systems to be deployed at scale without constant 
maintenance to recharge, or change, their power source.  Small computing devices that consume 
measured amounts of power can be designed to harvest enough ambient energy for some 
pervasive tasks.  However, their ability to harvest energy needs to scale to thousands of 
pervasive computing devices and for alternative energy sources including solar radiation, 
vibrations, radio frequency transmissions, thermal gradients, and kinetic energy.  Researchers 
need to understand the limits of energy production models and how to design energy-aware 
hardware and software systems that optimize the availability of a power source.  They also need 
to be aware of the dangers that are posed by the proliferation of devices, including hazardous 
trash at scale that results from people replacing phones and trashing old models. 

Workshop attendees also recognized that social network tools for adults are sophisticated and 
have scaled to massively large networks of users.  However, less attention has been given to 
social networks for kids and their potential benefit for healthy behavior development.  Additional 
attention could be given to integrating virtual information such as online social networks with 
physical information collected by sensors.  Researchers can also use social network information 
for additional analyses such as identifying opinion leaders and trend analysis. 
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Vision and Grand Challenges 

The workshop theme is pervasive computing at scale.  In the spirit of the workshop, attendees 
suggest that this idea of scale be attacked more aggressively.  We would like to see pervasive 
computing systems scale up to home area networks, metropolitan area networks / systems and 
smart communities that learn behavioral information and trends across a larger region. 

Researchers at the workshop realize that scaling pervasive computing may result in an 
increased amount of data and variety of applications that demand users’ time and attention.  They 
pose challenges for the community to define metrics that quantify this demand such as ease of 
use and expected value of information and tasks.  They also recommend that researchers learn 
and identify contextual information that can be integrated into more automated decision making 
with the goal of reducing demands on user’s time. They would also like to see a unifying theory 
for pervasive computing that can scale to large numbers as well.  

There was a workshop-wide demand for the creation of publically-available testbeds, datasets, 
simulation models, and open source software.  These common tools should be easy to use and 
allow researchers to benchmark and compare the performance of pervasive computing 
components.  They also challenge researchers to create datasets that scale to multiple age groups, 
demographics, and are longitudinal in nature.  

A number of grand challenges were posed by PeCS workshop attendees across a number of 
different research domains.  In what follows, we summarize the key challenges in each area. 

Smart Health. The first set of challenges focuses on pervasive computing for healthcare.  Current 
research has focused on collecting sensor information that could potentially be used for health 
assessment.  The challenge is to take this to the next step and perform automated assessment 
using this information.  In addition to assessing physical health, researchers can design 
algorithms to assess mental health including detection of dementia, depression, and PTSD.  In 
addition to assessing well being for adults, researchers can perform early screening of children in 
order to detect conditions for which early intervention is critical.  In addition to assessing current 
health status, researchers are challenged to identify health trends, and perform predictive 
assessment and prevention.  Researchers are already aware of the need to integrate information 
into personal health records – the availability of pervasive computing information only highlights 
this need and makes it even more important to address this challenge. 

Machine Learning and Data Mining. There is a need for robust tools capable of analyzing large 
scale spatio-temporal real-world data for physical, social and mental behavior of an individual, 
community or population. There is a lack of large scale annotated data sets available for 
experimentation and analysis. An important component for modeling is the availability of 
longitudinal data to study behavioral trends. The annotation process can be expensive and time 
consuming. Developing novel means of annotating data can alleviate these problems, and will be 
a new direction to pursue. With pervasive computing at scale, machine learning and data mining 
algorithms have to deal with data being generated from thousands of multimodal sensors. 
Development of distributed machine learning algorithms can collaboratively extract relevant 
information in real-time. Compressed sensing approaches adopted in the signal processing/vision 
community can provide insights for developing such algorithms. Furthermore, machine learning 
algorithms have to often make decisions based on insufficient and noisy data samples, which is a 
likely scenario for pervasive computing at scale. Design and development of robust algorithms, 
capable of making decisions in such uncertain conditions, and confidence measures that quantify 
the uncertainty need to be explored. 
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Smart Objects. Current research has allowed objects to become smarter, have greater memory, 
propagate information, and power themselves.  Workshop attendees posed applications that 
challenge the design and use of these smart objects, such as smart eating that requires tagged 
food items, smart streets that utilize tag vehicles, roads, and traffic lights, smart buildings that 
build on tagged items for efficient search and utilty, and smart education that makes use of 
tagged items throughout schools to provide a more immersive educational experience. 

Smart Phones 2020.  To best understand the future of smartphone research we envisioned the 
smartphone in 2020.  In a distracted world, Phone 2020 will help us deal with the data deluge by 
offloading much of the current human burden caused by information overload. Phone 2020 is 
itself continuously capturing large quantities of data about our lives—including location traces, 
readings from internal and external sensors, and logs of our mobile-based activities—and 
contributing to the steady increase in data collection. But it will also help analyze and interpret 
these new data streams to maximize their value. By learning our patterns, Phone 2020 will make 
suggestions about our daily lives, anticipate our actions, and become woven into the fabric of our 
existence. In order to assist us, the future smartphone will interact with everything—other 
phones, the cloud, nearby sensors and actuators, vehicles and buildings—and display information 
in ways tailored to each user. 

Security, Privacy, and Ethics. The security and privacy of a pervasive system must scale. We 
need to understand the privacy implications of such long-term historical records, and develop 
usable privacy abstractions and interfaces so people are aware of the (evolving) risk and the 
opportunities for personal choice to manage those risks. We need meaningful behavioral data-
mining with privacy support. Embedded components must be secure and thus must be adaptive 
to new threats.  For example, the emerging area of mHealth raises new risks (e.g., attacks on 
medical instruments such as pacemakers). Usable security and privacy for pervasive systems 
remains a challenge. Usability becomes more difficult along many dimensions of scale: as the 
number of devices expands in a person’s life, the number of interactions is quadratic and the 
configuration challenge explodes. In addition, sound models are needed for trust in safety-critical 
pervasive applications and applications that include actuators.  

Social Networks and Modeling. The dynamic evolution of social networks over time necessitates 
an approach to PeCS in which data is gathered continuously and analyzed using models, which 
capture the dynamics of evolving patterns of interaction. One example in which dynamic 
phenomena come to the forefront is in the formation of social groups, for example when students 
meet for the first time at the start of the school year. The study of these emergent socialization 
phenomena is of great interest in psychology and sociology and could be enabled by PeCS at an 
unprecedented scale. Another area with significant research challenges is the use of PeCS to 
influence social behavior, both collectively and at the individual level.  This leads to the notion 
of developing socially adaptive systems, which can be viewed as a logical extension of the more 
common idea of context-aware computing. These adaptive systems need to be informed by the 
evolving social context in which their users are living out their lives. 

HCI. We believe that HCI is still an important aspect of pervasive computing, but it should be, 
ideally, an invisible aspect.  That is, users should notice, as little as possible that they are 
interacting with a novel system.  We do want the technologies to be invisible, but sometimes we 
want the data to become visible again; that is, we want the data in pervasive computing systems 
to be able to impact user behavior. With respect to understanding and defining what good HCI is 
in pervasive computing at scale, two competing options exist: we can either train every user to 
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use the same interface or we can enable interfaces to tailor themselves to each user’s preferences. 
In addition, the emergence of crowdsourcing may provide techniques to help applications and 
their users deal with the deluge of data.  At the same time, crowdsourcing introduces new HCI 
issues, including introducing questions of how to deal with cultural differences among users. 

Energy Analysis, Harvesting, and Storage.  Micro-scale energy harvesting will greatly reduce the 
reliance on traditional batteries in next-generation pervasive computing systems, removing one 
of the biggest showstoppers to their large-scale adoption and greatly reducing the large number 
of batteries that are discarded every year. It is important to define a new metric for evaluating 
energy harvesting systems beyond “lifetime”. One possible metric might be the ability to be 
energy-neutral or self-sustained, essentially evaluating whether the system scavenges enough 
energy per day to satisfy all of its computation and communication requirements.  It is also 
important to understand the fundamental limits of these various harvesting modalities and 
transducers in terms of the amount of energy that they can provide per unit size. This research 
direction involves the design of efficient hardware and software systems that are “harvesting 
aware.” There is also a need to study design methodologies and tools that enable systematic 
design space exploration of micro-scale energy harvesting systems. 

Intelligent Transportation. Vehicular and aerial networks are important components of future 
pervasive systems. Today, traffic lights, on-board navigators, and city traffic centers do not talk 
to each other. The challenge is to connect existing solutions via state-of-the-art communications 
and networking to provide efficient, coordinated real-time traffic and air quality control. The 
closing of the loop between traffic and air quality data sensing and vehicle routing will enable an 
urban traffic management that can adjust to the rapidly changing traffic and air quality conditions 
typical of large cities. Urban transportation is essentially multi-modal and future intelligent 
transportation solutions must address traffic and pollution issues assuming multiple cooperative 
and competitive transportation means. Future highways and vehicles will communicate with one 
another, making the highway system aware of the drivers’ travel plans and allowing it to 
cooperate with, and actively instruct, the driver on achieving them. Aerial networks also present 
distinct challenges in computing at scale. Unlike traditional sensor networks, such swarms not 
only collect data but need to have the ability to make decisions using the data collected in real 
time. Actuation (flight) is much more expensive in terms of energy requiring a rethinking of 
trade-offs to be made in terms of using communication to make better actuation decisions. 

Sustainability and Energy Management. The research in the area of sustainability and energy 
management aims to reduce the energy usage and to improve the energy efficiency of a system 
by monitoring and control. Sustainable systems typically rely upon heavy penetration of 
renewable energy sources with intermittent power generation characteristics.  For energy 
management, one of the challenges is the use of pervasive computing and handheld devices to 
measure and monitor the power consumption (e.g., carbon footprint) of an individual as they 
move and interact with the environment. By applying statistical techniques, one can then infer 
the power consumption of the population in a city.  If data about the power consumption of an 
individual is known, then adaptation of human activity as a result of guidance is likely to lead to 
altered human behaviors, which may not be easy to capture in models. A grand challenge in this 
area is to monitor and control the closed loop demand response of an entire city to within 5% of 
a target reference power with significant dynamic power variability due to high penetration rates 
of renewable sources.  
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Theoretical Foundations. There is no strong theoretical foundation for PeCS. Namely, there are 
almost no specific metrics (e.g., similar to scaling of network capacity in networking) or 
analytical tools that are tailored for PeCS, and that can effectively deal with the scalability 
issues. Moreover, existing theoretical elements in related areas have not yet been adapted for 
Pervasive Computing (e.g., Fitt’s law, from HCI theory related to desktop PCs, type of analysis 
does not easily carry over to mobile devices and new interfaces). Such a theory should be able to 
deal with scalability to very large numbers and to a variety of devices, applications, and 
interaction methods (as a few examples). In particular, since PeCS necessarily exacerbates the 
current scalability challenges in system architectures, there is a need for insights regarding the 
scalability as a function of the number of nodes, users, and quantity of data. There is also a need 
for better understanding of interactions among components, resources, and humans. Namely, 
there is a need for theory that would support the understanding of emergent behavior. Since the 
human interactions with the devices are interleaved with interactions among the devices and 
among humans, there is a need for theoretical tools that will take the users and their interactions 
into account. 
 
Interdisciplinary Opportunities and Challenges 

Workshop attendees identified a great diversity of potential interdisciplinary collaborations.  As 
was pointed out, we need to collaborate with economists to design business models for PeCS.  
While researchers usually define for and measure performance factors such as delay, message 
overhead, and recognition accuracy, they need to also factor in system design, management, and 
use cost. 

In addition, engineers can benefit in many ways from collaborating with psychologists and 
social scientists.  First, engineers can learn how to conduct human subject experiments from 
these researchers.  Workshop attendees would like to see experiences shared for writing 
Institutional Review Boards (IRB) applications and sample applications.  They also see a need to 
educate IRBs on the nature of pervasive computing research.  Computer scientists need to work 
with Psychologists to understand and automate modeling of human behavior and to understand 
the impact of pervasive computing on users. 

Pervasive computing researchers can also work with individuals in sociology, psychology, 
law, and public policy to understand privacy, technology acceptance, and to define policy and 
regulations for ethical research in pervasive computing.  These collaborations can help with 
designing pervasive computing interfaces that are sensitive to cultural differences, particularly 
for crowdsourcing. 
 
Educational Opportunities and Challenges 

Researchers at the workshop identified several educational opportunities that arise from research 
in pervasive computing at scale.  Building on the observation that students enjoy playing with 
new gadgets and respond well to competition, they recommend that curriculum developers make 
use of pervasive computing devices in the classroom and design competitions such as designing 
applications to minimize power consumption. 

As was pointed out, interdisciplinary training is necessary for students in pervasive 
computing.  Many schools assume that students will obtain this training by taking classes in 
different disciplines.  However, we recommend that schools offer actual interdisciplinary courses 
that integrate information across disciplines and focus on defining a common vocabulary. 
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Recommendations to NSF 

By reading the grand challenges listed in this section, we can see the nature of funding 
opportunities that are recommended by this group of researchers.  Workshop attendees note that 
federal funding is needed for this research because industry focuses on short-term advances and 
profit.  As a result, long-term directions, theoretical foundations, and expanding to 
underdeveloped countries might be overlooked.  We feel that these directions are important and 
therefore should be supported by NSF. Some of the key recommendations raised at the workshop 
are outlined below. 

 
 Inter-disciplinary research for behavior modeling. Strong collaborations between 

computer scientists and psychologists are essential to develop a better understanding of 
the taxonomy and properties of human behavior. 

 Create, share and maintain large scale data sets. Since large scale data sets are critical 
for the design and development of algorithms, the panel recommends supporting research 
that aims to develop pervasive computing solutions at scale that can assist in the process 
of unobtrusive real-life data collection. 

 Develop pervasive infrastructure testbeds. These testbeds will support various cross-
cutting PeCS challenges, for example, consider security and privacy research: It is often 
necessary to construct a testbed differently if one wants to conduct security-related 
research, e.g., because one needs to be able to attack the devices and services within the 
testbed and yet not cause negative consequences outside the testbed. 

 Work to develop strong cross-directorate collaboration between CISE & SBE. Encourage 
more inter-disciplinary funding programs and inter-disciplinary projects. 

 Explicitly support cross-disciplinary, integrative proposals. NSF should recognize that 
there is depth in integration. This is essential to advancing the state of the art in smart 
objects. 

 NSF should encourage proposers to develop cross-cutting curricula. These curricula will 
foster the development of graduate students in the area. 

 Support the board goals of Phone 2020. Support experimentation at a large scale via  
phone testbeds, continuous sensing of people and their environments, collaborative 
sensing, and smart security and privacy models.  

 Develop new tools and methodology for determining ground truth at scale in the wild. 
These resources can help researchers tap into the strengths of machine learning and 
automated reasoning algorithms. 

 Develop new models and techniques to influence social behavior. These influences can 
occur both collectively and at the individual level. 

 Gather and analyze continuous data which capture the dynamics of evolving patterns of 
interaction in social networks. Collaboration with graph theorists and sociologists would 
be valuable for this work. 

 Support of interdisciplinary pervasive computing HCI projects.  It is essential that we 
broaden the number of researchers involved in and aware of HCI issues at scale. 

 Recognize the type of funding that is needed to perform this work.  These scaling studies 
are more traditionally considered “development efforts” that require engineers for system 
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development.  These should be recognized as part of the research process, given the 
fundamentally different nature of HCI research.   

 Study and develop highly efficient micro-scale energy harvesting systems. These 
approaches range from devices, circuits, and architectures to power management 
algorithms, design exploration frameworks, and new networking protocols. 

 Support cross cutting programs in vehicular/intelligent transportation issues. Facilitate 
collaboration with industry, as well as international collaboration. Coordinate with other 
national research programs, such as the Transportation Research Board of the National 
Academies, Strategic Highway Research Program (SHRP 2), the Research and 
Innovative Technology Administration of the U.S. Department of Transportation, and the 
U. S. Department of Transportation Intelligent Transportation Systems, Joint Program 
Office. 

 Scaling of smart health technology. Smart health technology needs to scale so it can be 
adopted widely by both the general public and by scientists in scientific studies of health 
issues.  

 Develop open extensible platforms and testbeds for smart health. Smart health software 
platform and testbed support for both wearable sensors and mobile phones that is 
affordable and accessible to the larger scientific community. 

 Access to health datasets. Datasets on real people (such as the MIT arrythmia dataset and 
the PhysioNet dataset) are critical to the development and evaluation of various 
algorithms and models in smart health. 

 Access of data from utility companies. NSF can discuss with Utility companies and 
Utility-University Centers of Excellence groups terms for generating anonymous data on 
pricing information, load demand curve, etc.   

 Organize exchange programs or workshops between academics and engineers working in 
utilities.  This will provide an opportunity to exchange ideas and increase collaboration. 

 Foster collaborative relationships between multiple mature theoretical areas that provide 
the basis for PeCS theory. Such collaborations include, for example, HCI, networking, 
and machine learning. 

 Promote research focused on theoretical foundations. Such research should also include 
collaborations between foundational projects and systems/experimental projects. 
 

In addition to the grand challenges and opportunities and recommendations listed above, 
many attendees emphasized the NSF support the creation of testbeds and datasets, particularly if 
they support the validation of what cannot be currently done or evaluated.  They suggest that 
investigators be strongly encouraged to avoid designing systems from scratch, and instead to 
specifically build upon current or prior tools, datasets, testbeds, and results. 

They also argue that NSF should fund disruptive technologies, those that look ahead to 
upcoming trends, changing paradigms, and how pervasive computing scales.  As usual, they feel 
that NSF should fund projects that are interdisciplinary.  Several joint programs were 
recommended, particularly ones that allow NSF to work together with NIH, DARPA, 
transportation boards, and industry. 

Workshop attendees feel strongly that NSF should create a program specifically for pervasive 
computing and communication technologies.  The range of vision papers and discussions 
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highlight the unique contributions of this field and the need to support advancement of the state 
of the art in this area. 
 
Workshop benefits 

Workshop attendees uniformly commented that they dramatically benefitted from the workshop.  
Many commented that the workshop discussions were more beneficial than conferences, and 
want to see workshops of this type integrated into most major conferences (and for NSF to 
sponsor more workshops like this!).  In particular, attendees appreciated the diversity of 
attendees, research areas, and opinions, and felt that they received new ideas and collaborations 
that will fuel their research programs and spark new directions for their own research efforts. 
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Appendix B – Workshop Program 
 

Thursday, January 27, 2011 

 

8:30- 8:45 Welcome by workshop chairs  

8:45- 9:00 NSF Perspective 
                Keith Marzullo (Division Director of CNS Division, NSF)  

9:00- 9:30 Keynote: Looking Forward to Ubiquitous Computing that Looks Ahead 
                Gaetano Borriello (University of Washington)  

9.30- 10.10 Presentation Session 1: Human Sensing and Smart Devices at Scale  
                Moderator: James Landay (University of Washington / Microsoft Research Asia)  

                   

Pervasive Assessment of Social Behavior [5 mins] 
James Rehg (Georgia Institute of Technology)  
Scaling Personal Stress Assistance in Natural Environment [5 mins] 
Santosh Kumar (University of Memphis)  
Surviving the data deluge [5 mins] 
Svetha Venkatesh (Curtin University of Technology)  
Energy Harvesting Active Networked Tags (EnHANTs) [5 mins] 
Gil Zussman (Columbia University),  
Simple Scaling for RFID-based Pervasive Computing Systems [5 mins] 
David Wetherall (University of Washington),  
Q&A  

            

10:30- 11:55 Breakout session 1  

                   

B1: Cloud computing/ crowdsourcing; 
Facilitators/Scribes: Deepak Ganesan (University of Massachusetts)  
B2: Machine learning/behavior modeling, data mining; 
Facilitators/Scribes: Narayanan Krishnan (Washington State University), Qiang 
Yang (Hong Kong University of Science and Technology, Hong Kong)  
B3: Privacy/security/ethics; 
Facilitators/Scribes: David Kotz (Dartmouth), Roy Campbell (University of 
Illinois at Urbana-Champaign)  
B4: Smart Objects / tags / buildings; 
Facilitators/Scribes: David Wetherall (University of Washington), Hari 
Sundaram (Arizona State University)  

            

11:55 - 12:40 Breakout reports and discussion  

12:40- 1:40 Lunch and funding agency overviews  
                 NSF: Sajal Das, Krishna Kant, Sylvia Spengler, Zygmunt Haas; NIH: Wendy Nilsen)  

1:40- 2:10 Keynote: Computing for the Future of the Planet 
                 Andy Hopper (Cambridge University)  

2:10- 2:40 Presentation Session 2: Ubicomp Problems at Scale  
                 Moderator: Roy Campbell, (University of Illinois at Urbana-Champaign)  
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Contextual Intelligence: Scalability Issues in Personal Semantic Networks
Oliver Brdiczka (PARC)  
Coordinating Robotic Bee Swarms 
Karthik Dantu (Harvard University)  
Ubiquitous Networking for Human Containers  
Thomas Little (Boston University)  
Achieving Ubiquity through Hardware Virtualization 
Mahadev Satyanarayanan (Carnegie Mellon University)  
Q&A  

            

2:40- 4:10 Breakout session 2 

                   

B5: Smart phones; 
Facilitators/Scribes: Andrew Campbell (Dartmouth), Geoffrey Challen 
(University at Buffalo)  
B6: Social networking / modeling; 
Facilitators/Scribes: James Rehg (Georgia Tech), Paul Lukowicz (University of 
Passau)  
B7: HCI; 
Facilitators/Scribes: James Landay (University of Washington, USA & 
Microsoft Research Asia), Christine Julien (University of Texas at Austin)  
B8: Energy analysis, harvesting, storage; 
Facilitators/Scribes: Vijay Raghunathan (Purdue University), Shwetak Patel 
(University of Washington)  

            

4:10- 4:30 Coffee break  

4:30- 5:15 Breakout reports and discussion  

5:15- 6:15 Plenary Discussion: 20 years after Mark Weiser's vision on ubiquitous 
computing - what next? 
                 Facilitators/Scribers: Mahadev Satyanarayanan (Carnegie Mellon University), 
                 Roy Want (Intel)  

 
Friday, January 28, 2011 

 
8:00- 8:30 Keynote talk: Beyond the Lamplight - Lessons from Making Sensor Networks 
Real  
                 David Culler (University of California at Berkeley)  

8:30- 9:00 Keynote talk: Strategies for the Large Scale Deployment of Energy Monitoring 
and Sensing in the Home 
                 Shwetak Patel (University of Washington)  

9:00-10:30 Breakout Session 3 

                   
B9: Intelligent transportation / vehicle networks / aerial networks; 
Facilitators/Scribes: Mohan Trivedi (University of California at San Diego), 
Liviu Iftode (Rutgers University)  
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B10: Smart Health; 
Facilitators/Scribes: Santosh Kumar (University of Memphis), Diane Cook 
(Washington State University)  
B11: Sustainability and Energy Management; 
Facilitators/Scribes: Vincent Wong (University of British Columbia), Brian 
Kelley (University of Texas at San Antonio)  
B12: Theoretical Foundations;  
Facilitators/Scribes: Gil Zussman (Columbia University), Justin Shi (Temple 
University)  

10:45-11:30 Breakout reports and discussion  

11:30-12:00 Closing remarks, plans for written report 
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Appendix C - Breakout Session Reports 

 
Breakout Session Report: 

Machine Learning, Behavior Modeling, and Data Mining 
 

Narayanan Krishnan and Qiang Yang 

Participants: David Chu, Gustavo de Veciana, Dejing Dou, Diane Cook, Farnoush Banaei-
Kashani, Mirco Musolesi, Oliver Bridczka, Wang-Chien Lee, Tanzeem Choudhury, Wendy 
Nilsen, Michael Anderson, James Landay, James Rehg, Mohan Trivedi, Svetha Venkatesh, 
Andrew Campbell, Peter Bajcsy, Du Li. 
 
Introduction 
 
The rapid advances in pervasive computing will result in proliferation of a wide variety of 
sensors deployed at a large scale. This in turn results in huge amounts of data that has to be 
carefully analyzed to extract the relevant information. Data mining and machine learning have 
the potential to play a pivotal role in this process of seeking the bits and pieces of relevant 
information from the data explosion. The long term vision is that data mining and machine 
learning domains will grow to handle spatio-temporal data at large scales with optimal 
computing resources for extracting necessary and relevant information for understanding human 
behavior. While the current progress is promising, there are a number of research challenges that 
have to be addressed to achieve this vision. 
 
State of the Art 
 
The last couple of decades have seen rapid strides being made in the area of machine learning 
and data mining for modeling human behavior. These developments in the form of novel 
algorithms and methodologies are reflected in many application areas such as (but not limited to) 
activity recognition, emotion and facial expression recognition, abnormal behavior detection, 
recognition of body mannerisms and gestures, detecting physiological states. Most of these 
technologies are currently limited to data gathered from a laboratory or controlled real-world 
setting. While these are promising developments that have initiated inter-disciplinary research 
between computer scientists, behavioral and cognitive psychologists and social scientists, much 
needs to be done to take the state-of-the-art to the next level for dealing with large scale data sets 
in a real-world setting.  
 
Vision and Challenges 
 
Machine learning and data mining have the potential to impact behavior modeling at scale in 
many positive ways.  There are a number of challenges that have to be overcome for realizing 
this goal. Following is a brief discussion of some of these research challenges.  
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 Large scale data sets: One of the key challenges for the future is making available large 
scale well annotated data. There is a lack of large scale data sets available for 
experimentation and analysis.  At present researchers collect data in silos, most often 
focused towards a very narrow problem. Large scale data collection through multiple 
modalities (such as vision, speech, wearable and environmental sensors) is essential for 
the design, development and prototyping of algorithms to work in real-world settings. 
Furthermore, multi-modal data is necessary for behavior modeling as it captures the 
inherent multi-dimensional characteristics of human behavior. While it is impractical to 
collect data using different modalities at a single place, development of standardized data 
formats will facilitate sharing the data between researchers.  

 Access to longitudinal data sets: An important component for behavior modeling is the 
availability of longitudinal data. Be it physical, mental or social behavior, all of them 
tend to change over time and data collectedfacilitates analyzing behavioral trends. At 
present there is no data available for conducting these types of studies. For modeling the 
behavior accurately, these data sets have to be collected as part of a longitudinal study.  

 Annotated data: Collecting large scale data results in a fundamental problem of 
annotating the data. The annotation process can be expensive and time consuming. 
Developing novel means of annotating data can alleviate these problems and will be a 
new direction to pursue. Another approach for solving this problem would be developing 
interactive machine learning algorithms that can iteratively query for data samples that 
are relevant for learning.  

 Context recognition: Current machine learning and data mining algorithms have a narrow 
vision of understanding of the problem. These algorithms can benefit tremendously from 
the contextual information available when the data is captured. A new direction to pursue 
would be to develop pervasive computing technologies that provide context information, 
and mechanisms for integrating this data tinto traditional learning paradigms. 

 Collaborative distributed machine learning and data mining for real-time information 
extraction: With pervasive computing at scale, machine learning and data mining 
algorithms have to deal with data being generated from thousands of sensors. 
Development of distributed machine learning algorithms that can collaboratively extract 
relevant information in real-time. Compressed sensing approaches adopted in the signal 
processing/vision community can provide insights for developing these algorithms. 

 Decision making in uncertain conditions:  Machine learning algorithms often have to 
make decisions based on insufficient and noisy data samples, which is a likely scenario 
for pervasive computing at scale. Design and development of robust algorithms, capable 
of making decisions in such uncertain conditions have to be explored, along with 
confidence measures that quantify the uncertainty. 

 
In summary, the machine learning and data mining community envisions development of robust 
tools capable of analyzing large scale spatio-temporal real-world data and make inferences on 
the physical, social and mental behavior of an individual or a community. 
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Recommendations to NSF 
 
The following are the recommendations of the panel for addressing the challenges discussed 
above. 

 Support for inter-disciplinary research for behavior modeling:  
o The panel recommends funding for inter-disciplinary research for behavior 

modeling. Strong collaborations between computer scientists and psychologists 
are essential to develop a better understanding of the taxonomy and properties of 
human behavior. Furthermore, these collaborations have the potential to 
crystallize the goals and objectives that drives innovation of new technologies. 

 Supporting research aimed at creating, sharing and managing large scale data sets:  
o Since large scale data sets are critical for the design and development of 

algorithms, the panel recommends supporting research that aims to develop 
pervasive computing solutions at scale that can assist in the process of 
unobtrusive real-life data collection. In particular, the panel emphasizes the need 
for research that aims at collecting data over a long time. Design and development 
of novel data annotation mechanisms is also of interest to the community. 

o Another recommendation of the panel is for NSF to partner with industries 
providing real-world data-sets to the research communities. These data sets can be 
made available as part of competitions at conferences to benchmark  state of the 
art algorithms, and facilitate incremental development of these algorithms; akin to 
the KDD-CUP (an annual data mining and knowledge discovery competition 
organized by the ACM special interest group on knowledge discovery and data 
mining)  

 Educational opportunities:  
o The panel recommends support for inter-disciplinary courses that encourages 

development and learning of a shared vocabulary amongst the disciplines. This 
facilitates the translation of theories and ideas between the different domains. For 
example, theories and formulations from computational psychology can be used 
to develop novel machine learning/data mining algorithms; while computer 
science can provide valuable empirical and analytical evidences to support some 
of the psychology/behavioral theories.  
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Breakout Session Report: 
Security, Privacy, Ethics 

 
David Kotz and Roy Campbell 

 
Participants: Roy Campbell, Geoffrey Challen, Sajal Das, Mario Di Francesco, Mads Haahr, 
Ahmed Helmy, Liviu Iftode, Vassilis Kostakos, David Kotz, Santosh Kumar, Thomas Little, 
Justin Shi, Ioannis Stavrakakis, Vincent Wong, Pei Zhang. 
 
Introduction 

In the following summary we provide the key nuggets extracted from our discussion, in bullet 
form, aligned with the seven questions asked in the Guidelines for breakout sessions. 

State of the Art and Existing Conceptual Gaps 

State of the art: What aspects do we understand well enough (i.e., mostly scope for refinements 
instead of breakthrough research). 

Pervasive technology security and privacy is either non-existent or crude.  

a. Many common (pervasively deployed) Internet gadgets have nearly no security against 
adversaries and many others (including smartphones) have only crude methods for securing 
the platform from a physically present or  remote adversary. 

b. Today we are good at collecting and aggregating lots of data, but with uncertain privacy 
implications and too-limited control given to the user whose data is being collected. In 
addition, we do not know how to scale user security and privacy across multiple devices, 
applications, and services that may source information to large aggregated data sets?  

c. There are a few libraries of sensed data available to pervasive-computing researchers with 
which to study privacy or security issues, but these libraries are limited in their scale and 
scope. 

d. Secure & privacy policy technologies exist and there are research papers that define privacy 
frameworks, policy languages, and privacy interfaces.  However, these mechanisms have not 
caught on in main stream deployed systems.  

e. The state of the art in usable privacy interfaces is extremely poor; as one put it, we live in a 
‘lawless land’ where anything goes, and users are on their own when it comes to discovering 
privacy policies and specifying privacy choices.  

f. The privacy challenges in other aspects of pervasive computing are poorly understood.  For 
example:  the emerging area of mHealth; the evolving issues of location privacy where 
several solutions offer privacy-preserving location-based services and location 
anonymization, but little is understood about users’ concerns regarding location privacy or 
the broad range of meanings for “location”,or its uses in pervasive systems.  

g. Applications like targeted advertisements. These can be based on patterns of users’ behavior 
in the virtual world (cyberspace), but the use of broader sensing modalities is just beginning 
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to be incorporated into inference-based systems and the implications for security and privacy 
are unknown. 

Vision and Challenges 

Existing conceptual gaps: longer term picture, vision, new areas; in no particular order: 

The security and privacy of a pervasive system must scale.  

a) Huge amounts of data may be collected and aggregated over long time scales (years). We 
need to understand the privacy implications of such long-term historical records, and develop 
usable privacy abstractions and interfaces so people are aware of the (evolving) risk and the 
opportunities for personal choice to manage those risks.  On a related topic, sampling of 
sensed data can reveal identities even if the data has been anonymized.  If data is kept for 
months or years, does it become more or less vulnerable to such threats?   

b) We need meaningful behavioral data-mining with privacy support. Although the data-mining 
community has done a lot of work on privacy-preserving data-mining, much of that work is 
in the context of databases where each person is represented by a single ‘record’; in the 
pervasive-systems context, the data may represent a time series of observations about the 
users’ behavior in multiple pervasive systems, the information may be complex structured 
sensor data (rather than attributes), etc.; so the existing methods may not apply.  

c) Individuals are not the only entities that need to consider their security, or their privacy. 
Organizations – schools, corporations, and governments – have a need to secure their 
systems, and to protect proprietary interests. How do pervasive systems reflect the needs of 
the organization as well as the preferences of the individuals within an organization (which 
may sometimes conflict)?  

d) Embedded components must be secure and thus must be adaptive to new threats.  For 
example, the emerging area of mHealth raises new risks – which still need definition – and 
include security threats that can, quite literally, kill you.  

e) Usable security and privacy for pervasive systems remains a challenge. Usability becomes 
more difficult along many dimensions of scale: as the number of devices expands in a 
person’s life, the number of interactions is quadratic and the configuration challenge 
explodes. This configuration challenge is a cognitive burden that we know (from the pc 
world) will lead to security holes and privacy leaks.  

f) We need natural interfaces for security and privacy that suits the task at hand – even more 
important as a pervasive system fades into the background is the need to offer access to its 
security and privacy aspects. Intuitive abstractions drawn from the non-technology world 
may help users to express their privacy preferences and be aware of their exposure to 
outsiders.  

g) Mechanisms to allow users to control information across a range of integrated applications 
and services. Today, each application or service has its own configuration interface, and 
where they exist, privacy settings.  

h) A conceptual framework that will help researchers and developers balance utility, privacy, 
and social benefits and make those choices well.  

i) An answer as to whether privacy management can be automated, and to what extent?  
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j) A better definition of privacy that allows it to be refined from application to application or 
context to context, or culture to culture?  What information needs protection, and how much?  

k) An answer to whether trust should be embedded into low-level distributed computation and 
communication technology, or whether it belongs in higher layers. Conversely, is it 
necessary to have low-level support for trust (e.g., trusted computing platforms) to be able to 
build high-level trustworthy systems?   Sound models are needed for trust in safety-critical 
pervasive applications, and applications that include actuators.  

l) Solutions to enable researchers to conduct large-scale experimentation with real users, for a 
wide variety of pervasive systems. Not all pervasive systems are apps that run on smart 
phones.  

m) Cyberwarfare: it is conceivable that a large-scale pervasive system, especially one that has 
‘disappeared’ because it is so ingrained into daily life as to become invisible, may be the 
target of (or vector for) cyberwar. An adversary may disrupt such a system as a method of 
disturbing, misleading, or even terrorizing a large population.  Consider an attack on home-
heating systems in midwinter, on commerce when all transactions (including point of sale) 
are conducted via mobile phone, on public health when everyone’s clothing is connected to 
the Internet. 

Interdisciplinary Collaboration 

What interdisciplinary collaboration would be critical to address item (2) above? What are major 
challenges/proposed solutions for interdisciplinary research? 

We need stronger relationships with other disciplines including social science (sociology, 
psychology, law, public policy). These connections may be particularly difficult to form in cases 
where the key players are not motivated by research funding. There is a language barrier across 
disciplines; each has its own jargon and methods.  

We need better ways to engage industry – handset makers, sensor makers, software makers, 
platform providers, and cellular providers. Today it is difficult for more than a handful of 
researchers to build meaningful relationships. 

Challenges 

Challenges and approaches for supporting large scale experimental research in the areas 
addressed by your breakout? For example, how do you get academics access to real smart grid 
facilities (not just simulators)? What are the cost, safety, training, development, support, and 
other issues? Can you support a “planetlab” of such facilities? Ditto for smart buildings, 
transportation, etc. 

We should build shared testbeds of various kinds of pervasive infrastructure.  A shared testbed 
should have a board (drawn from the research community) that can review proposed research 
projects, allocate testbed resources, and consider ethical issues (particularly if human or animal 
subjects are involved). 

a) We should develop large, representative user cohorts who are willing to be part of a series of 
ongoing studies of pervasive-computing technologies. See social-science examples. 
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b) We need help defining policy (or regulations) for ethical research in pervasive computing, 
regarding user privacy, and regarding security research in pervasive infrastructures. We need 
community norms that will guide researchers to ethical approaches to research. 

c) We need to educate IRBs about the nature of pervasive computing research; most IRBs are 
accustomed to medical research and certain types of social-science research but have little 
experience with information technology. 

d) Our community should share IRB experience across research groups to lower the barrier to 
setting up testbeds and experiments.  Examples of successful IRB applications may allow 
others to ramp up research more quickly. 

Mechanisms to Improve Experimental Research 

What mechanisms do we need to explore that will improve data availability for experimental 
research? There could be many aspects here including IP issues, sharing, provenance, 
infrastructure for making it available, data quality, who manages the data, form of access, etc.?  

a) We need to fund research on ways to publish datasets that remain meaningful and usable, but 
protect privacy of users in data. That is, how do we anonymize traces (collected in pervasive 
sensor systems) while maintaining utility for research? Large-scale data collections will 
never be possible without an answer to this question. 

b) For pervasive-infrastructure research, the community could work with national labs who 
have data on such infrastructure (at the national scale), to make data available for research. 

c) We should learn from long-term efforts to collect social-science datasets. Those communities 
have been doing this for decades. 

d) We need to develop community norms (see above) – what does our research community 
believe is ethical to collect, and to share, when human subjects are involved? 

e) We need to make data available in ways that social-science researchers can use it. They too 
can benefit and bring an important (different) perspective to the data. 

Educational Opportunities and Challenges 

Educational opportunities and challenges, including multidisciplinary education and training of 
faculty & Postdocs. (This may be mostly focused on education to enable interdisciplinary 
research). 

a) We should support cross-training of postdocs & graduate students, so that technology 
students learn sociological and psychological research methods, ethics, philosophy of 
privacy, while non-technology students learn about technology, security, privacy.  We need a 
cohort of researchers who are comfortable working across the CS / Social Science boundary. 

b) We as technologists are obligated to educate the public about security & privacy risks – and 
best practices – in pervasive computing.  What are the risks, and the best practices, anyway? 

c) We need more research on the ethics of pervasive computing – especially in pervasive 
systems that include humans.  And, are the ethics of society evolving as technology drives 
social change? Has our cultural sense of privacy evolved? Are we more comfortable with 
invasion of technology into our personal life? 
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d) We need more research on the ethics of international cyber conflict, especially when it 
involves direct attacks on individual citizens. 

Recommendations to NSF 

Fund several pervasive infrastructure testbeds, of various flavors, designed with security & 
privacy research in mind. It is often necessary to construct a testbed differently if one wants to 
conduct security-related research, e.g., because one needs to be able to attack the devices and 
services within the testbed, and yet not cause negative consequences outside the testbed. 

a) Work to develop strong cross-directorate collaboration between CISE & SBE, to encourage 
more inter-disciplinary funding programs and inter-disciplinary projects. 

b) Consider asking the NAS/NAE to bring together researchers & industry experts to clarify 
ethics of research and products in pervasive computing. The questions are still muddy, and 
the answers even muddier, and the product developers can do pretty much whatever they 
want. Where are the boundaries? What are our norms? 

c) Seek ways to explore the potential for cyberwarfare via pervasive systems, and the risks 
therein, in open (non-classified) research programs.  
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Breakout Session Report: 
Smart Objects / Tags / Buildings 

 
David Wetherall and Hari Sundaram 

Participants: Mads Haahr, Mario Sznaier, Gang Zhou, Du Li, Gil Zussman, Qinru Qiu, David 
Liu, Niklas Elmqvist, Brian Kelley, Joshua Smith, Shwetak Patel, Andreas Savvides, Joshua 
Smith, Vincent Wong, Karthik Dantu, David Wetzlof 

Introduction 

The breakout group focused on physical objects, including everyday objects, and buildings, 
enhanced with computational elements. These computational elements include the ability 
compute, store and communicate. We made the distinction between smart objects and familiar 
electronic devices deemed smart i.e. smartphones. 

Advances in smart objects, when deployed at scale, can profoundly influence our daily lives. 
These objects can assist the elderly with tasks of daily living, provide critical monitoring of our 
nation’s infrastructure, help with food safety, efficient and safe public spaces, design of proactive 
and responsive buildings, and advance agriculture. 

State of the Art and Existing Conceptual Gaps 

Our ability to develop and scale smart objects is rapidly improving: we can now manufacture 
small and inexpensive sensors. Sensors  attached to physical objects can be made small enough 
they do not alter the object’s affordances. It is now possible to embed ambient energy harvesting 
technologies in smart objects; while there are important constraints, including the smallest 
physical dimensions at which harvesting yields benefits, this is now a practical solution. The 
harvesting of energy at the smart object is an important factor to enable scaling. Participants also 
noted that industry has adopted the ZigBee specification for wireless monitoring devices, and a 
university-industry collaboration has adapted IPv6 to run on emerging smart objects and sensor 
networks, although much work still remains on issues of discovery, routing, and transport.  

The group focused on several conceptual gaps. We can now develop point solutions — enhance 
a specific object — but cannot yet create smart object ecosystems. Seamless, scalable integration 
across devices has proven to be challenging for several reasons. First, while we have the 
knowledge to build smart objects, a scalable communication architecture for smart objects is less 
clear. Second, we lack programming languages, tools, and abstractions to work across smart 
objects in a device independent way. Furthermore, since such such objects are typically energy 
constrained, we need programming models that view energy capture and usage as afundamental  
char parameters of their design. . Third, there is a lack of consistent semantics across devices to 
enable service composition and integration. Finally, we need clarity on applications for smart 
objects, including how to address privacy concerns; national priorities including health, energy, 
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education, and security may be important drivers for smart objects. The applications will help 
close the loop with smart object ecosystem design, by providing clarity on the essential smart 
object constraints. 

Grand Challenge Applications  

The group brainstormed applications, to support smart object research. A driving theme of our 
discussion was the idea that smart objects should cause change — either through actuation of 
other devices or services, or by changing human behavior through notifications. We now list 
some key applications: 

1. Smart Food: If each food item, including processed food, vegetables, meat / fish / 
poultry, had an embedded tag, the tags could record interaction history. Then, customers 
could examine such tags to determine food origin, and if the food had been handled 
safely. 

2. Safe Streets: Embedded tags in vehicles and traffic lights would enable public safety — 
we can alert people crossing the street to potential threats. Additionally, with embedded 
tags in cars and in parking infrastructure, we can enable efficient parking.  

3. Responsive Buildings: In developing smart buildings, including warehouses and 
hospitals, both sensing and actuation are necessary. Robots can actuate changes to the 
state of the building based on events detected by embedded tags. 

4. Mobile objects: We can develop a “smart swarm” of bees, which can help with 
agriculture, including pollination. 

5. Decentralized physical object search: If all manufactured objects are enhanced with tags, 
then decentralized physical object search is possible. You can “ask” the table, about the 
misplaced book — we can develop a “Google” for the physical world.  We can embed 
relational information, including cyber-physical links, in the tag, which can be queried at 
a later stage. Search and query mechanisms can be particularly important in the case of 
people with disabilities and the elderly. 

6. Infrastructure maintenance: In addition to the design of new, smart buildings, 
maintaining and monitoring existing infrastructure is of critical importance. These 
include working alongside infrastructure in existing homes, and retrofitting building, 
bridges, power stations and other physical infrastructure of national importance.  

Mechanisms to Improve Experimental Research 

Lack of infrastructure reuse is a significant impediment to advancing the state of the art in smart 
object research. Today there is a lack of shared infrastructure, software tools and data traces. The 
lack of shared infrastructure is crucial — today, researchers have to develop both the hardware, 
and a smart object test-bed to support their research. While infrastructure development is 
valuable in many circumstances, rediscovering and spending time dealing with issues addressed 
by contemporaneous research, is wasteful. We do not need each and every team to develop a 
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smart-sensor, -power meter, and -building. A process overseen by the NSF that enables 
researchers to reuse and share infrastructure, including hardware devices, software tools and 
libraries, and data traces, developed by peer NFS-funded research would be very valuable and 
accelerate the Nation’s return on research investments in this area.  

Educational Opportunities and Challenges 

We need an interdisciplinary approach to educate PhD students about developing smart object 
ecosystems. As many participants observed, this is a cross-disciplinary area, including computer 
systems and software, communications (both lower and the upper network layers), and circuit 
design. At present, a typical faculty member encourages their PhD students to take courses from 
different disciplines with the expectation that the students will integrate knowledge across 
classes.  

We need to design inter-disciplinary courses, both at the graduate and undergraduate levels, 
which are broad in terms of scope, and which focus on integration across the different 
disciplines.  Holistic courses, for example, could require each student to build smart objects, 
including hardware platforms, software libraries, and web service, thus clarifying the need for 
integrative understanding.  

The challenge is to make the course have depth; one possible solution is to have several inter-
disciplinary courses in sequence.  Another possible solution is to have multiple “self-contained” 
courses that increase in depth.  The group also focused on energy use as a key concept to 
transcend pedagogical approaches to smart objects. Class competitions can motivate efficient 
energy use, with minimization of power as the main goal.  Another challenge brought out in the 
discussion is that the new class needs to fit within the existing programs. 

Recommendations to NSF 

There are three concrete recommendations to the NSF: 

1. The NSF should explicitly support cross-disciplinary, integrative proposals. In particular, 
it needs to recognize that there is depth in integration. This is essential to advancing the 
state of the art in smart objects. Prior funded research, while advancing the state of the art 
in a particular layer (e.g. communication), does not in of itself, yield novel outcomes in 
smart objects. Such layer specific research makes “black box” assumptions about other 
layers; the assumptions may not hold in practice, while integrating across layers.  The 
challenge in exploring pervasive sensing at scale is a strong focus on the systems 
perspective – of really getting the whole thing to work – rather than the component 
perspective which more often is common in academic circles.  One keynote said it best: 
“Nail it before you scale it.”  

2. The NSF should encourage proposers to develop cross-cutting curricula, to foster the 
development of graduate students in the area. 
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3. Infrastructure re-use is critical in advancing the state of the art: there is little need for 
each project to develop its own infrastructure. The NSF should develop mechanisms to 
ensure that each new project builds on the outcomes, including devices, testbeds, 
datasets, from concurrent or prior funded research.  This includes support for novel 
mechanisms to fabricate and share hardware artifacts – something akin to a MOSIS for 
embedded systems hardware. 
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Breakout Session Report: 
Smart Phones 

 
Geoffrey Challen and Andrew Campbell 

Participants:  Gaetano Borriello, Andrew Campbell, Roy Campbell, Geoff Challen, David Chu, 
Sajal Das, Mario Di Francesco, Mads Haahr, Ahmed Helmy, David Kotz, Narayanan Krishnan, 
Mohan Kumar, Thomas Little, Jie Liu, Mirco Musolesi,  Kishore Ramachandran,  Mahadev 
Satyanarayanan, Andreas Savvides,  Bill Schilit, David Wetherall,  Vincent Wong, Feng Zhao, 
Gang Zhou. 
 
Introduction 
 
Phones are the first pervasive mobile computing technology. Between 1990 and 2010 the number 
of mobile phone subscriptions grew by two orders of magnitude. Today’s phones are migrating 
from so-called feature phones—limited to voice and text messaging—to smartphones which 
integrate powerful processors, multiple communication technologies, ample storage and sensor 
suites. The ubiquity and increasing capabilities of smartphone devices make them our best option 
for realizing the pervasive computing vision at scale. 
 
State of the Art and Existing Conceptual Gaps 

Today’s smartphone is as powerful as larger mobile devices were several years ago. It integrates 
multiple processors, including some specialized for specific tasks. It can communicate data over 
1,000s of meters to cellular towers using 3G or 4G, over 10s of meters to 802.11 access points 
using Wi-Fi, and over 1s of meters to many other devices using Bluetooth. This array of 
communication technologies mean that phones may provide last-hop communication to body 
area, and other deployed sensors, that lack the power required for long-distance communication. 
Cheap and plentiful storage allows smartphones to cache a great deal of information, and the 
growing power of the cloud allows them to offload expensive computation. The emergence of 
application distribution channels like the Apple AppStore and Google Android Market have 
accelerated smartphone innovation by providing access to millions of deployed iPhone and 
Android devices. 
 
Grand Challenge Applications: Phone 2020 

To frame our discussion of the future of smartphone research, our session outlined a vision of the 
smartphone in 2020. We imagine the capabilities of Phone 2020 and some exciting future 
applications below. Working backward, we develop a set of research challenges that must be 
addressed before Phone 2020 can become reality. 
 
In a distracted world, Phone 2020 will help us deal with the data deluge by offloading much of 
the current human burden caused by information overload. Phone 2020 is itself continuously 
capturing large quantities of data about our lives—including location traces, readings from 
internal and external sensors, and logs of our mobile-based activities—and contributing to the 
steady increase in data collection. But it will also help analyze and interpret these new data 
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streams to maximize their value. By learning our patterns, Phone 2020 will make suggestions 
about our daily lives, anticipate our actions, and become woven into the fabric of our existence. 
 
In order to assist us, the future smartphone will interact with everything—other phones, the 
cloud, nearby sensors and actuators, vehicles and buildings—and display information in ways 
tailored to each user. It will process the environment and help us discover and navigate the world 
around us, including visibility into social networks. By better understanding users, the Phone 
2020 will manage their attention and know when to interrupt. Through an increase in its own 
capabilities and by seamlessly inter-operating with powerful cloud resources, Phone 2020 will be 
starting to make desktop and laptop computers obsolete. 
 
The new capabilities of Phone 2020 will support new applications that open up new markets. 
Smartphones will define the classroom of the future. They will augment reality to further 
education, socialization, health care and gaming. They will sense reality to manage cities, 
workplaces and traffic while continuously recording our digital lives. Smartphones of the future 
will help us work more efficiently, serving as portable office and personal digital assistant, 
conserving useful working hours and creating time for leisure and entertainment. We expect 
future applications to be long-lived—leveraging continued interaction with users over time—and 
local—exploiting the density of smartphone penetration to augment or replace communications 
infrastructure, critical in developing countries where such infrastructure may be unreliable or 
nonexistent. The ubiquity of smartphones and their proximity to their human users will make 
them a critical component of future approaches to disaster relief and emergency management. 
 
Phones will also continue to be integrated with online social networks. Smartphones are already 
the quintessential social device. The desire of people to connect with each other drove the 
adoption of cellular phone technologies. With social networking exploding on the Internet in 
2011, Phone 2020 unites the social network with the social device. It will help us further 
understand the structure of existing social structures, while assisting in the formation of ad-hoc 
social networks grounded in physical gatherings of people with similar interests. Phone 2020 will 
also contribute to network science by monitoring user behavior, and supporting applications such 
as disease tracking. 
 
Mechanisms to Improve Experimental Research 

In order to build Phone 2020, we identified a number of challenges that our community must 
address. These divide into three categories: (1) developing the capabilities of the smartphone and 
its environment, (2) improving interaction between smartphones and users, and (3) coping with 
the potential for massive large-scale data collection using smartphone-integrated sensors. 
 
The Phone 2020 vision is predicated on continued improvements to smartphone and smartphone 
infrastructure performance. Future smartphones must be more powerful, communicate more 
quickly, store more data, and integrate new interaction technologies. Unfortunately, these goals 
are at odds with data bandwidth and battery capacities, both of which are scaling slowly. We 
expect future smartphones to deploy opportunistic algorithms that multiplex both time and space 
in order to improve performance. The overall heterogeneity of deployed devices and standards is 
another challenge limiting device-to-device inter-operation and the potential for Phone 2020 to 
interact with all the devices it encounters. We also discussed the importance of integrating the 
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smartphone with existing Wi-Fi networks to improve connectivity and network performance. 
Peer-to-peer architectures were suggested as a potential way to improve performance, 
particularly when infrastructure is lacking. 
 
Another property that is not scaling over time is human attention. We already pay too much 
attention to our smartphones to believe that we have achieved the invisibility captured by early 
visions of ubiquitous computing, and this problem is worsening. To better optimize our attention 
future smartphones must deploy interfaces allowing more nuanced interaction with users and 
capable of processing emotional cues. To improve the interaction between humans and their 
devices, new algorithms must be developed enabling behavior-based modeling, computing, and 
testing. In addition, user interfaces need to be reconsidered, including those that, while 
unsuitable for larger devices, may work well on smartphones. Phone 2020, with its ability to 
interact seamlessly with objects around it, will be able to leverage “found” interface elements in 
the environment to enable much richer interaction modalities than those possible on the 
smartphone itself. 
 
Smartphones hold the potential both to contribute to and to alleviate the growing data deluge. 
Large-scale deployment of sensor suites on smartphones combined with cheap bandwidth and 
storage will lead to a growing amount of data produced by the smartphones of the future. 
Securing this information—much of it sensitive and personal—will be a major challenge. 
Designed as a personal device, smartphones are increasingly interacting with each other and the 
environment, creating new opportunities to steal and misuse information. Developing security 
and privacy models that users can understand and adapt to their needs is a critical challenge to 
the continued advance of this technology. 
 
Interpreting and processing the collected data will also be difficult. There are opportunities for 
harnessing the distributed power of large numbers of smartphones through collaborative 
computation. These capabilities, if developed, might complement the continued aggregation of 
computation in the cloud. Fundamentally, however, the smartphone of the future will be a portal 
to the intelligent processing and management of data in order to reduce user distraction and 
allow users to focus their attention elsewhere. 
 
Educational Opportunities and Challenges 
 
One germane direction for the academic community to explore is in the use of smartphones to 
enhance education and learning. The future smartphone may enter the classroom and help put 
lessons in context, as well as extending the reach of learning beyond the classroom. 
 
We also believe that continued growth and competitiveness in the smartphone market depends 
on educating the next generation of computer scientists on smartphone development. Given the 
centrality of the smartphone and the cloud to future computing, we must train engineers that can 
help integrate these two technologies in ways that harness the properties and capabilities of both. 
We recommend support for the continued development of courses in smartphone programming, 
application development, and smartphone-cloud interaction. 
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Recommendations to NSF 

Our recommendations highlight areas where the research community can make significant and 
distinct contributions. Industry is already very active in this space and has many advantages, 
particularly when working at scale. However, there remain many opportunities for the academic 
community to develop the future smartphone in directions complementary to those being pursued 
by industry. 
 
We recommend that the NSF develop research programs addressing the key challenges to 
realizing the Phone 2020 vision outlined above: 
 
   1. We need to continue the development of smartphone and infrastructure capabilities to 
support demanding new applications. 
   2. We must tear down the walls that divide devices from each other and limit the ability of the 
smartphone to fully understand its environment. 
   3. We need better interfaces allowing the future smartphone to conserve human attention. 
   4. We need smartphones to help users cope with the ever increasing amount of data accessible 
to and collected about them. 
   5. We need security and privacy models that users can understand and adapt to match their 
expectations and the current context—the highly dynamic pool of surrounding devices and 
communications channels, the social setting, and the user’s activity. 
   6. We believe it is important to understand and document our continued co-evolution with our 
mobile devices: how we are changing them, how they are changing us. 
   7. We believe to develop new tools and methodology for determining ground truth when 
pervasive human and context sensing applications are deployed in the large. 
 
 
 
To enable academics to succeed at complementing industry, the NSF should provide them with 
resources and infrastructure facilitating experimentation at scale. NSF can also take a role in 
partnering with industry to gain access to large numbers of smartphones, air time, call logs or 
other large data sets. Further partnerships with industry might also allow us to do citizen-driven 
science in other areas that leverage the smartphone as a pervasive computing platform. 
 
Application distribution channels like the Android Market and Google AppStore also provide 
academics with the opportunity to deploy research systems at scale by leveraging channels 
established by industry. We can release our own code on the AppStore, perhaps piggybacking on 
top of other popular applications. Users worldwide might be willing to participate in a large-
scale virtual laboratory. At sufficient scale such a laboratory could provide built-in guarantees to 
researchers allowing academic research to reach large numbers of deployed smartphones. 
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Breakout Session Report: 

Social Networks and Modeling 
 

James Rehg and Paul Lukowicz 

 

Introduction 

Pervasive mobile devices provide a new capability for measuring and modeling social networks. 
While social webs such as Facebook provide a means for estimating the structure and strength of 
social connections, to a large extent these on-line sites serve to reflect the social bonds and 
connections that are constructed from face-to-face social interactions in the physical world, 
whether at work, school, or home. Pervasive mobile devices provide the potential to measure and 
gauge the strength of these interactions directly, through pervasive sensing of social interactions 
under naturalistic conditions. This can be viewed as the deployment of pervasive sensing 
technology to directly measure the substrate of interactions from which social networks arise. 
We view this as leading to the development of a new paradigm of computational behavioral 
science 

While a significant amount of work has been done on analyzing an adult social network, 
relatively little attention has been focused on the social networks constructed by children, 
particularly children at a young age. In this context the ability of pervasive computing platforms 
to sense social interactions is vital, since these children do not participate in traditional on-line 
social media. The ability to model and analyze children’s social networks would be profoundly 
useful in a variety of psychology and education contexts. For example, it is well-known that 
children who may be at risk for Autism Spectrum Disorder will respond differently from 
neurotypical children to a social bid, i.e. a request for social engagement. There is great interest 
in psychology in understanding the patterns of social interactions among children in natural 
settings. For example, there is interest in characterizing the behavioral phenotype for autism, i.e. 
the manner in which the syndrome is expressed as multiple categories of responses to social bids 
and patterns of interaction, or the avoidance of interaction. The ability to measure and analyze 
social interactions could be an important element in large scale approaches to screening for risk 
of ASD, for example based on naturally-occurring behaviors measured in a daycare environment. 
In addition to its potential utility for diagnosis and treatment of behavioral and developmental 
disorders, pervasive sensing of social interactions under naturalistic conditions can be valuable 
for education, making it possible to understand patterns of interaction that act positively or 
negatively to impact learning, including an increased capability to measure socialization and 
identify bullying. 
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Another exciting possibility at the intersection of social networking and pervasive mobile 
devices is the ability to influence behavior at community scales. The use of social media to 
organize large groups of people has been widely-observed, but with sufficiently powerful mobile 
devices it should be possible to go beyond simple communication functions and provide context-
aware services that directly influence behavior. In the field of preventive medicine and health, 
for example, it has been shown that if you can provide people with information that directly 
relates to their behavior at the moment when they are making behavioral choices, then the 
opportunity to impact behavior is maximized. 

Challenges and Opportunities 

The dynamic evolution of social networks over time necessitates an approach to PeCS in which 
data is gathered continuously and analyzed using models which capture the dynamics of 
evolving patterns of interaction. This is a significant challenge for traditional machine learning 
techniques which heavily leverage the iid assumption, i.e. that all data elements are independent 
and identically distributed. In practice, social interaction data will be coupled in time and will 
come from stochastic processes which may not be stationary. This implies a need to research 
data modeling techniques which go well beyond the standard models such as HMM which 
leverage the Markov assumption. In this context the study of semi-Markov models of stochastic 
phenomena which can capture more complex temporal dependencies is to be encouraged. One 
example in which dynamic phenomena come to the forefront is in the formation of social groups, 
for example when students meet for the first time at the start of the school year. The study of 
these emergent socialization phenomena is of great interest in psychology and sociology and 
could be enabled by PeCS at an unprecedented scale. 

Another area with significant research challenges is the use of PeCS to influence social behavior, 
both collectively and at the individual level.  This leads to the notion of developing socially 
adaptive systems, which can be viewed as a logical extension of the more common idea of 
context-aware computing. These adaptive systems need to be informed by the evolving social 
context in which their users are living out their lives. 

Applications 

The applications can be divided into three main categories. The first category has to do with 
understanding the way information and opinions build up and spread through social networks.  
One concrete example in the area of advertising is the identification of opinion leaders, which 
can provide the basis for viral advertising and marketing strategies. Currently such leaders can 
only be identified within fairly large-scale closed social systems such as Facebook or Amazon 
reviews. However there are very likely a much larger number of opinion leaders who exert 
influence on a much smaller scale which could be identified from the fine-grained interaction 
data available through PeCS.  Other examples include the understanding of the build up or 
radical opinions, dissemination of emergency information, and political and social science. 
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The second application class is more research oriented and relates to using social networks as a 
tool for large scale data collection in PeSC systems. The idea is to leverage social networks to 
recruit volunteers for data collection and use them to collect and combine data to relate 
information from different users and to enrich sensor data with semantic information contained 
in the social network. In addition social networks can be leveraged as a means of crowd sourcing 
data annotation, and also as data sources for mining activity and context descriptions. 

The third application class builds on the two described above. It is related to combining 
information from social networks with sensor information from mobile devices of many users to 
monitor and recognize collective phenomena and trends within whole communities. As a simple 
example, a correlation of  long term GPS traces with locations of different retailers can be used 
to get information about consumer confidence and changes in it (do people go to WallMart or to 
Gucci).  Using the social network this can be differentiated by social group and other related 
characteristics. Other examples include mobility patterns, health related life style attitudes, 
demographics, information relevant for urban planning or demographic developments.  
Applications are also easy to imagine in homeland security and disaster management. In a way 
we can consider the combination of PeCS with social networks leading to a virtual ‘’nervous 
system’’ of society.  The general idea builds on the concept of Reality Mining as Proposed by 
Pentland et. al., going further with respect to emphasis on collective phenomena and considering 
complex interactions over different temporal and spatial scales. 

All three application classes described above can lead to an entirely new type of social 
networking service where the boundaries between the real and the virtual worlds become 
increasing blurry. Understanding these sorts of applications and their implications is a highly 
relevant research topic. 

Data Issues 

The lack of availability of rich datasets is a significant barrier to research in this area. Most of the 
existing large-scale networks are closed, and in addition these networks are experiencing 
phenomenal rates of growth, to the point where the networks are growing faster than they can be 
crawled. In making an analogy to the speech recognition community, there is the potential for 
significant impact if funding agencies could contribute to the development of datasets and 
infrastructure for data collection. As an example, the development of a standard platform for 
measuring social interactions could facilitate the collection of data on a broader scale. Another 
productive direction is the collection and identification of best practices for data collection based 
on the experiences of some existing projects. Sharing best practices could help bootstrap the 
nascent research community in this area.  

Scalability is a significant concern, based simply on the large quantities of data under discussion. 
In current practices, research data is often hosted on individual servers at research organizations, 
and must be copied across the network to support collaboration and data sharing. There would be 
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significant benefit in coming up with a standardized system for hosting large scale data 
repositories on cloud computing sites so that they could be accessed by research teams directly, 
using services such as Amazon’s, thereby saving the need for copying and replication. A 
research infrastructure program that facilitated this kind of large-scale infrastructure for data 
sharing would be of great benefit to the research community. 

Privacy concerns are a significant issue that must be addressed in any discussion of social 
networking and the use of technology to measure social interactions. These concerns arise at a 
variety of levels. Large scale social network data make it possible to infer the actions of motives 
of individuals and are thus a significant privacy concern. Careful de-identification strategies and 
policies must be developed, and the risk of loss of anonymity is always present. In many data 
modeling applications the final fitted models are often based upon aggregations of data, e.g. the 
cluster means and covariences in fitting a mixture of Gaussians. It may be possible to do some 
initial data aggregation prior to model fitting, for the purpose of pooling individual records 
together and reducing the risk of loss of anonymity. In general, research into creating machine 
learning techniques which combine privacy preservation with the more traditional concerns of 
accuracy and generalization would seem to be a fruitful area of future research investment. 
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Breakout Session Report: 
HCI 

 
Christine Julien and James Landay 

Participants: Peter Bajcsy, Roy Campbell, Niklas Elmqvist, James Fogarty, Livai Iftode, 
Santosh Kumar, Joshua Smith, Mario Sznaier, Svetha Venkatesh, David Wentzloff, Roy Want, 
Vincent Wong, Qiang Yang, and Pei Zhang 
 
Introduction 
 
Because pervasive computing applications are intimately integrated with our physical spaces, 
human-computer interaction (HCI) is an essential concern.  This becomes increasingly true as 
pervasive computing systems increase in scale to include more devices, more capabilities, more 
humans, and more data.  In this breakout session, we discussed the state of the art in HCI for 
pervasive computing systems, conceptual gaps that exist in considering HCI issues as pervasive 
computing systems scale, and potential research directions.  Most of the issues discussed focused 
on evaluating the HCI aspects of these emerging systems since understanding the interaction 
between the human and the system comes directly from these evaluations.  In this report, we 
review the salient aspects of our discussion, including recommendations to the NSF. 
 
State of the Art 
 
Within HCI, commonly used techniques are instilled with interdisciplinary connections from a 
variety of domains including psychology and anthropology.  Techniques coming out of 
psychology are generally tailored for laboratory settings, and they do not scale well to situations 
outside of the lab.  These methods do not scale over time, they do not scale to multiple devices, 
they do not scale to multiple locations, and they do not scale to high volumes of data.  These 
aspects characterize pervasive computing applications, and the HCI aspects of these applications 
must be evaluated in situ. 
 
Alternative techniques for investigating and evaluating HCI aspects of pervasive computing 
systems have built on anthropological techniques.  These approaches do allow our experiments 
and evaluations to get out of the lab and into the real world.  These techniques, such as 
ethnographic techniques, do provide a more direct measure of the interactions of humans and the 
systems under evaluation.  For example, surveys on mobile phones have made some progress in 
evaluating pervasive computing systems in situ.  By relying on these end-user devices, 
monitoring and sensing have become more pervasive, but we are not yet really using them to 
investigate HCI issues.  In the end, these existing techniques still do not scale to the degree 
necessary for solid evaluation of HCI issues. 
 
Existing Conceptual Gaps 
 
We identified several conceptual gaps that provide opportunities for advancements in HCI as it 
relates to pervasive computing at scale.  First, as described above, field studies provide a 
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significant challenge in understanding good (and bad) HCI for pervasive computing.  Clearly, 
direct observation approaches are more reliable than indirect ones (like surveys), but indirect 
approaches may be more scalable.  In these indirect approaches that provide a reasonable starting 
point, you tend to lose quite a bit of context about the user, his or her intentions, and the context 
of the interaction.  This gap identifies the need for new field study techniques that bring together 
aspects of both direct and indirect approaches. 
 
Another issue in HCI research for pervasive computing systems deals with the relationship 
between scalability and usability.  Some aspects of the increasing scale of pervasive computing 
systems may in fact dampen usability challenges.  For example, the increasing ubiquity of 
interactive applications may make them easier to learn to use.  At the same time, other aspects of 
scalability may (as is intuitive) make pervasive computing system less usable.  This second gap 
demonstrates the need to identify and formalize these differences and incorporate them into the 
design of our emerging pervasive computing systems. 
 
The third conceptual gap we identified addresses the need to be able to design, rapidly prototype, 
and deploy pervasive computing artifacts to get reliable feedback on the HCI issues of the 
applications.  Specifically, we must determine how to go from pervasive computing application 
“pilot studies” to large-scale, meaningful studies.  These challenges are further complicated by 
the common use of specialized hardware for these pilot studies because the hardware can be 
unreliable and hard to use, and these challenges are hard to mask with software.  At the same 
time, we generally want to automate our evaluations to get a large amount of data with less 
effort.   
 
Directions 
 
In our discussions, we made several observations that open new research directions. 
 Specifically, we believe that HCI is still an important aspect of pervasive computing, but it 
should be, ideally, an invisible aspect.  That is, users should notice, as little as possible that they 
are interacting with a novel system.  This is even more difficult than making pervasive systems 
easy to use; instead the idea is that pervasive computing systems should become a natural part of 
the environment.  At any given time, even though a user is not explicitly interacting with a 
computer in the traditional sense, the user’s implicit interactions with resources, devices, and 
capabilities in the pervasive computing system are naturally HCI.  We do want the technologies 
to be invisible, but sometimes we want the data to become visible again; that is, we want the data 
in pervasive computing systems to be able to impact user behavior. 
 
With respect to understanding and defining what good HCI is in pervasive computing at scale, 
two competing options exist: we can either train every user to use the same interface or we can 
enable interfaces to tailor themselves to each user’s preferences.  The latter is related to the field 
of adaptive user interfaces; challenges that have been identified in this emerging field include the 
fact that these adaptive interfaces have the potential to lose the consistency of the interface that 
users tend to naturally expect. 
 
Finally, we also discussed the fact that HCI in pervasive computing systems at scale and the 
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crowdsourcing that is becoming popular in pervasive computing applications may have 
significant relationships.  Crowdsourcing may provide techniques to help applications and their 
users deal with the deluge of data.  At the same time, crowdsourcing introduces new HCI issues, 
including introducing questions of how to deal with cultural differences among users. 
 
Interdisciplinary Collaboration Potential 
 
There are obvious opportunities for interdisciplinary collaboration, including traditional avenues 
for user studies like psychology and anthropology.  At the same time, better integrating with 
application domains and interactions with experts from those domains could lead to interesting 
new interactions and a better understanding of the application issues.  One example discussed 
was the collaboration with experts from the health domain.  A major challenge of these 
collaborations is that these domain experts tend to expect real deployable systems before they are 
ready to interact on evaluation studies. 
 
Experimental Opportunities 
 
As HCI challenges often entail experimental studies, much of our discussion revolved around 
supporting large-scale experimental research.  Specifically, we must understand how to move 
from our common “pilot” studies to large scale studies.  We need to identify ways to automate 
evaluations so that we can get large amounts of data without excessive effort requirements.  We 
must also be able to generate meaningful sets of test subjects that can be widely accessible to 
researchers.  This requires identifying meaningful, unbiased motivators for these test subjects. 
 To make sure the results from the test subjects are useful, the research (i.e., the system) must be 
reliable enough that people will use it.  We not only need to be able to support these studies in 
terms of supplying resources, but we must also develop methodologies that make studies easier 
to perform in the first place. 
 
Recommendations to the NSF 
 
We identified three recommendations to the NSF that could support the breakout group’s vision 
of HCI in pervasive computing at scale: 

1. Programs to support immediate stage scaling of studies.  At this moment, we are capable 
of small scale studies.  If we have a reliable system, we have partners to do evaluations, 
but we need to first perform medium-scale studies to build the needed reliable systems. 
 Therefore, we need support for this scaling process. 

2. Recognition of the type of funding needed to perform this work.  These scaling studies are 
more traditionally considered “development efforts” that require engineers for system 
development.  These should be recognized as part of the research process, given the 
fundamentally different nature of HCI research.  Joint programs with industry may 
provide a potential avenue to achieve access to data and development resources. 

3. Support of interdisciplinary pervasive computing HCI projects.  It is essential that we 
broaden the number of researchers involved in and aware of HCI issues at scale.
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Breakout Session Report: 
Energy Analysis, Harvesting, and Storage 

 
Shwetak Patel and Vijay Raghunathan 

 

Participants: Karthik Dantu, Prabal Dutta, Brian Kelley, David Liu, Vinod Namboodiri, 
David Wentzloff, and Gil Zussman 
 
 
1. Introduction 
 
One of the biggest challenges of realizing Mark Weiser’s vision of pervasive computing as a 
near-invisible technology that does not constantly require human intervention is the problem 
of powering the thousands of pervasive computing devices that are expected to be embedded 
in our surroundings and everyday objects. Most of today’s pervasive computers are battery 
powered. Next-generation pervasive systems will be expected to operate for several months 
to years without the need for battery replacement, because frequent battery replacement for 
hundreds of devices is not only infeasible, but also means that the devices are not “invisible.” 
Given that battery technology is improving at a slow rate, the limited battery capacity of 
these systems will pose a significant challenge in the viability of these systems. A promising 
and viable alternative for powering next-generation pervasive micro-systems is to scavenge 
energy from ambient sources such as solar radiation, vibrations, radio frequency 
transmissions, or thermal gradients (we refer to this as micro-scale energy harvesting). 
Judicious design of pervasive systems to operate off scavenged energy has the potential to 
result in near-perpetual (also referred to as net-zero energy, self-sustained, or energy-neutral) 
system operation. Unlike the slow trends in battery capacity, the rapid advancements in 
electronics, embedded systems, and IC design has enabled the new possibility of practical 
power harvesting. 
 
2. Current Status and Challenges 
 
While the notion of energy harvesting has been extensively explored in the context of large 
systems such as solar farms and windmills, micro-scale energy harvesting, as a systematic 
discipline, is not as mature. Current state-of-the-art in micro-scale energy harvesting is 
limited to various research prototypes, which represent point solutions rather than 
generalized designs. Often the resulting point solutions are inherent in the very nature of the 
design of power harvesting systems, because they are often tied to specific physical 
phenomena and applications.  
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Realizing highly efficient micro-scale energy harvesting systems is challenging due to three 
main constraints. First, the form-factor constraint in these systems mandates the use of highly 
miniaturized energy transducers (often only a few cm3, and in some cases, even mm3). As a 
result, the output voltage of the transducer is very low, often far less than 1V. For example, 
miniature photovoltaic cells and thermo-electric generators produce voltages in the range of 
0.2-0.6V. Extracting energy from such ultra-low voltage sources is a non-trivial task. Second, 
the maximum power output of these micro-scale transducers is also extremely small, often in 

the W range. It is, therefore, particularly important to ensure that the energy harvesting 
subsystem is as efficient as possible to minimize losses. Third, environmental energy supply 
is highly time varying in nature (e.g., changing light intensity significantly impacts the output 
power from solar cells) and exhibits a large dynamic range. Further, energy availability can 
be intermittent in nature. Pervasive computing systems that are powered by these micro-scale 
energy harvesters should be able to adapt to such vagaries using intelligent resource 
management techniques. We have to re think the design of embedded systems to address 
many of these new challenges, which we taken for granted in the design of traditional 
battery-powered solutions. 
 
3. Key Research Directions 
 
Overcoming the challenges described above requires a concerted research effort involving all 
layers of the design hierarchy, ranging from devices, circuits, and architectures to power 
management algorithms, design exploration frameworks, and new networking protocols. In 
particular, we believe that the following research directions (and questions) are key to the 
analysis, design, and management of environmentally powered micro-scale systems: 
 
1. Foundations and basic concepts: The most common energy-related metric used to 
evaluate battery-powered systems is “lifetime.” This metric makes sense for systems that are 
powered from a source that has a fixed, finite amount of energy. However, in the context of 
energy harvesting, where energy availability is essentially infinite along the temporal 
dimension (e.g., solar cells will produce electrical energy every day as long as there is 
sunlight), it is unclear what lifetime even means. It is important to then consider the question 
of the right metric for evaluating energy harvesting systems. One possible metric might be 
the ability to be energy-neutral or self-sustained, essentially evaluating whether the system 
scavenges enough energy per day to satisfy all of its computation and communication 
requirements. In addition, the metric may also incorporate the various design elements of the 
system including size, output power, etc. Currently, there is no way to compare various 
solutions. 
 
2. Efficient power extraction from transducers and energy storage: A variety of interesting 
energy harvesting transducers has recently become available, such as thermoelectric 
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generators, piezo, and photovoltaics. It is important to understand the fundamental limits of 
these various harvesting modalities, and transducers, in terms of the amount of energy that 
they can provide per unit size. There is also a need for energy transducer models (circuit 
level models, higher-level models that are parametrizable and can be simulated) to abstract 
away the transducer devices while designing higher layers of an energy harvesting system. A 
key aspect to developing these models is to decide on what key information needs to be 
captured by these models (dynamic range of available power, temporal and spatial dynamics, 
etc.) and inform the design of the overall system. This kind of simulation mechanism also 
enables the development and evaluation of hybrid solutions, which will likely be necessarily 
in realizing many of the pervasive computing applications.  Finally, the extracted power from 
the transducer needs to be stored efficiently using energy storage elements such as 
rechargeable batteries or capacitors. Key research directions here include exploring new 
energy storage architectures that synergistically combine heterogeneous energy storage 
elements (e.g., thin film batteries and ultra-capacitors) to minimize losses during energy 
storage.  
 
3. Efficient HW/SW Systems, Algorithms, and Resource Management: This research direction 
involves the design of efficient hardware and software systems that are “harvesting aware.” 
In addition to pushing the limits on ultra-low power design (through techniques such as sub-
threshold design, low-leakage memory, etc.), a key challenge is to design systems that 
explicitly consider the spatial and temporal variations in energy availability and modulate 
system performance/power consumption accordingly, with the goal of self-sustained 
operation. A key requirement to enable such harvesting aware power management is that the 
energy harvesting hardware exposes various control points (e.g., the amount of energy 
currently available from the transducer) to software. At the network-level, key questions that 
need to be answered include how to build large networks out of intermittently available 
devices? How do these devices bootstrap and join a network? Are concepts from delay 
tolerant networking applicable and useful here? This brings up new questions about how 
interconnected devices are synchronized in this kind of environment. Can we exploit the 
inherent asymmetry between different devices in the network due to spatial variations in 
energy availability? In other words, can we leverage the fact that certain devices will have 
more available power than others and they coordinate between each other to accomplish a 
task? How can we efficiently and accurately predict future energy availability and use that 
information for resource planning?  
 
4. Enabling systematic design space exploration: This research direction involves the 
creation of design methodologies and tools that enable systematic design space exploration of 
micro-scale energy harvesting systems. This thrust is essential to transforming the study of 
micro-scale energy harvesting systems from an art that relies on designer intuition into a 
systematic science. The first step in doing this is to develop simulation models of various 
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system components (e.g., various energy transducers, power converters). These models can 
then be used to create simulation tools that allow designers to quickly evaluate the impact of 
various design choices and parameters while architecting micro-scale energy harvesting 
systems. We also need to develop hardware/software building blocks that allow researchers 
to quickly prototype power harvesting applications. Many of the interesting insights will 
come from actual deployments and the use of the technology. In addition, algorithm 
developers will need platforms to conduct their research. These platforms could come in the 
form of hardware modules or development kits. 
 
5. Educating the next generation of CS/EE researchers and engineers: From an education 
perspective, a crucial requirement is to teach students to consider energy availability as a first 
class design metric and citizen, along with other metrics such as computation cycles or 
memory. As one of the participants in the breakout session at the workshop succinctly put it, 
we need to train the next generation of students to also consider and deal with “energy 
underflow” along with “stack or buffer overflow.” We are not proposing a radical new 
curriculum or new classes, but rather infusing these concepts in the existing classes. 
  
Summary 
 
It is expected that significant advances in the research directions described above will allow 
us to fully realize the potential of micro-scale energy harvesting and greatly reduce the 
reliance on traditional batteries in next-generation pervasive computing systems, removing 
one of the biggest showstoppers to their large-scale adoption. Successful completion of the 
proposed research vision will also achieve significant environmental impact by greatly 
reducing the large number of batteries that are discarded every year. In addition, the inherent 
optimization innovation required for this form of computing will provide significant insights 
into other areas of computing and electrical engineering. 
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Breakout Session Report: 
Intelligent Transportation / Vehicular Networks / Aerial Networks 

 
Liviu Iftode and Mohan Trivedi 

 

Participants: Mohan Kumar, Thomas Little, Vassilis Kostakos, Vinod Namboodiri, Doug Terry, 
Mads Haahr, Wang-Chien Lee, Kishore Ramachandran, Roy Campbell, Niklas Elmqvist, Joshua 
Smith, Mohan Trivedi, Pei Zhang 

Introduction 

Intelligent transportation, vehicular and aerial networks are defining components of the pervasive 
computing vision. Research in these fields is driven by five factors: mobility, safety, 
environments, infotainment and convenience.   Vehicular networks have the potential to become 
the 2nd largest pervasive computing sector after the smartphones. Intelligent transportation cannot 
fulfill its potential without ubiquitous vehicular networks. Aerial networks are also emerging as 
very dynamic mobile ad-hoc networks with specific challenges and opportunities. 

State of the Art and Existing Conceptual Gaps 

Vehicular networks 

Significant amounts of research have been conducted so far, mostly from a networking 
perspective. Less covered are aspects situated at the border with other fields such as computer 
vision, human factor, privacy and social aspects.  Research has been dominated by industry, 
which shares little with academia because of the fierce technological competition. Academic 
research must identify its strengths and define its research agenda accordingly in order to stay 
relevant. Research in Europe and Asia is ahead. V2V, V2I and cellular are the major 
communication models in vehicular networking. Wireless networking covers both inter-vehicle 
as well as for intra-vehicle communication. 

Intelligent transportation 

Intelligent transportation aims at reducing congestion, fuel consumption and, to a much limited 
extend so far, the emissions. Multi-modal transportation models are emerging. Economics can 
provide powerful methods to understand a driver’s behavior. So far, the human aspects have not 
been sufficiently addressed. 

Aerial networks 

Research in miniaturization of sensors, micro-aerial vehicle flight, novel computation platforms 
and high-density power sources are enabling the design of micro-aerial vehicle swarms, at 
unprecedented size and scale. They will enable new classes of applications including commercial 
pollination, search and rescue, surveillance, environmental monitoring etc. 
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Challenges and Approaches  

Human-centric vehicular computing 

Pervasive computing technologies hold major promise to enhance automotive safety by 
introducing a new range of “human-centered” driver assistance systems. Human centric, 
pervasive computing environments with integrated sensing, processing, networking, and displays 
provide an appropriate framework to develop effective driver assistance systems.  

One of the key requirements in the design of an active safety system is the ability to accurately, 
reliably and very quickly identify the conditions that would lead to an accident and to induce 
corrective actions so that the accident can be prevented.  Therefore, research in human factors is 
crucial.  

Opportunity to study pervasive computing at scale 

Vehicular networks have the potential to become a real-world pervasive computing testbed at 
very-large scale, allowing research to investigate interesting human and social aspects related to 
the adoption of pervasive computing. Including smartphones in the vehicular networking and 
intelligent transportation infrastructure can accelerate the penetration of the latter, and reduce the 
dependence of the research on the automakers.  Intelligent driver support systems may provide 
an ideal application domain for addressing some of the challenging multidisciplinary research 
problems in pervasive computing. 

Closing the loop between sensing and control 

A long term vision is to use modern wireless technology, environment monitoring, and urban 
traffic management to “close the loop” between urban sensing and vehicle route control with the 
aim of simultaneously reducing congestion, pollution, and traveler delays. A systematic approach 
to traffic management requires a solution that must rely on real-time collection of traffic density 
and air pollution data, and it must feature real-time communication mechanisms for fine-grained 
traffic. 

Today, there is a broad spectrum of largely disconnected solutions to alleviate traffic congestion. 
For instance, traffic lights, on-board navigators, and city traffic center do not talk to each other. 
The challenge is to connect existing solutions via state-of-the-art communications and 
networking to provide efficient, coordinated real-time traffic and air quality control. The closing 
of the loop between traffic and air quality data sensing and vehicle routing will enable an urban 
traffic management that can adjust to the rapidly changing traffic and air quality conditions 
typical of large cities. 

To realize these goals, effective and efficient techniques for gathering data from the 
transportation system needs to be developed allowing anywhere, anytime use, and fusing it into 
usable information for pedestrians, vehicles and drivers.. The collection and processing of 
ubiquitous traffic information is essential for implementing proactive control strategies and 
getting feedback on their effect. This vision raises multiple challenges in the areas of urban 
sensing, emission models, traffic and pollution simulation, traffic management, control and 
enforcement, wireless networking, usability and human-computer interfaces, and security and 
privacy. 
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Data driven research 

As in other pervasive computing domains, there is a need to shift from computing to data driven 
research. Sensing traffic, air quality and driver’s behavior produces huge data-sets, which must 
be scientifically analyzed and aggregated in order to be meaningfully and usefully presented to 
the driver, and to the traffic control systems. Systematic efforts are required to understand and 
characterize driver behavior, situation criticalities, interactivity patterns from real-world, 
distributed, and multi-modal massive sensory datasets. Learning, classification and prediction 
can be applied to driver behavior, activity and intentions as well as for vehicle-human 
interactivity and vehicle trajectory patterns.  At the same time, gathering correlated traffic, driver 
and environment datasets, along with their processing may enable informed formulation of new 
traffic management policies and regulations for the era of vehicular networking and intelligent 
transportation. 

Multidisciplinary approach 

Research in vehicular/transportation/ aerial networks is particularly inter-disciplinary within the 
field of computer science as well as multi-disciplinary. Within the computer science, future 
vehicular computing and intelligent transportation solutions will require knowledge and research 
in networking, data processing, real-time distributed computing, security and machine learning. 
Multiple disciplines other than computer science, such as psychology, cognitive sciences, 
transportation research, atmospheric sciences, social sciences and economics, can contribute to 
the complex understanding of the transportation problems and solution space.  Covering all these 
aspects require large collaborative efforts, which are difficult to assembly, manage and fund. 
Education and the job market do not sufficiently address and value multi-disciplinarily skills. 

Pollution modeling 

Pollution modeling is a major challenge. Pollution is non-uniformly distributed, being on average 
higher in close proximity to roadways, but vary widely on time scales of hours, which can 
change exposure levels dramatically. Pollution levels near roadways depend on traffic density, 
vehicle speeds, congestion, and local wind speeds and direction. More precisely, air pollution 
can vary on length scales of tens of meters for some pollutants, but the distribution of pollutants 
on this scale is poorly characterized due to lack of spatially resolved measurements. The spatial 
heterogeneity arises from the interplay between the complex topography, the variable 
atmospheric mixing and the highly non-homogeneous emissions. Thus, the potential for mapping 
of pollutants with high spatial resolution via sensors integrated into a smart traffic sensing 
system is largely untapped, and will likely produce insights beyond those currently available. 
This will require developing more accurate models, which will be simulated in real time to 
provide input for traffic control. 

Multi-modal transportation  

Complex transportation problems cannot be solved within the isolation of a single transportation 
mean. Urban transportation is essentially multi-modal and future intelligent transportation 
solutions must address traffic and pollution issues assuming multiple cooperative and 
competitive transportation means. Lack of access to data in particular of synchronized data 
across multiple transportation platforms, is a serious obstacle for academic research. Sustainable 
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metropolitan transportation is one of the stringent goals of multi-modal transportation 
exploration. 

Social aspects  

As long as humans are still in control of their own transportation decisions, any relevant research 
in intelligent transportation must include human and social aspects and must identify the right 
methods to advance research in these directions. Smartphones might be the right interface to 
capture human-to-human interaction and influence with respect to transportation. Vehicular 
social networks will likely emerge as ad-hoc communities of regular participants and can benefit 
from information sharing.  

Smarter roads and active highways 

“Smarter” connected cars alone are not sufficient for realizing the grant vision of \ intelligent 
transportation. The roads (i.e., transportation infrastructure) also need to become smarter by 
equipping themselves with timely pervasive transportation, gathering information from smart 
cars and their occupants.. For instance, given the knowledge of an on-going congestion up front 
on its route to the destination, a smart car, enabled by the en-route driver information service, 
may inform its driver about the situation and recommend her to make a detour. 

A long-term, highway concept will evolve from a transportation infrastructure to a cyber-
physical system that will shift from global traffic management to individual vehicle routing, 
similar to air traffic control. In this sense, highways will become active managers of their own 
traffic similar to air traffic control. Future highways and future vehicles will communicate with 
one another, making the highway system aware of the drivers’ travel plans and allowing it to 
cooperate with, and actively instruct, the driver to achieve them. In particular, active highways 
may allow drivers to reserve slots in special high-priority intelligent lanes. This fine-grained 
traffic management model will guarantee travel time bounds, handle exceptions and enforce 
global community and environmental policies using real-time information from vehicle- and 
infrastructure-based sensors. 

Research in active highways will be helped by autonomous vehicles, too. To this end, research 
must also include architectures for cooperative active safety systems utilizing vehicle-to-vehicle, 
and vehicle-to-infrastructure communication channels which can support large scale real world 
traffic conditions.  

Participatory sensing for pervasive transportation services 

Efficient collection of fresh and timely pervasive transportation heartbeats, transforming them 
into useful information that reflects the real-time road conditions will be very important. 
Roadside sensors, and probing vehicles, are two different approaches typically adopted for 
collecting data. With recent development of participatory sensing activities, participatory sensing 
via volunteered probe vehicles has a great potential to provide complementary coverage to the 
roadside sensor approach. Research effort is needed to incorporate participatory vehicle sensing, 
and address various technical issues that arise. We envisage the need for developing a pervasive 
transportation services framework, which consists of three components corresponding to data 
collection, data processing/mining, and data dissemination. 
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Aerial networks challenges 

Aerial networks present distinct challenges in computing at scale. Unlike traditional sensor 
networks, such swarms not only collect data but need to have the ability to make decisions using 
the data collected in real time. Network connectivity is much more dynamic making sharing data 
harder. Actuation (flight) is much more expensive in terms of energy requiring a rethinking of 
trade-offs to be made in terms of using communication to make better actuation decisions. 
Actuation also causes a lot more uncertainty than sensing, requiring design of robust algorithms 
that work both at scale and uncertainty. Lastly, some of the classic sensor network problems still 
persist like tasking a set of nodes to perform a given task. 

Unique research directions that need to be addressed for this field: 

1. Revisiting the energy tradeoff: Conventional sensor networks research has assumed that 
communication is the bottleneck for energy efficient operation. This has led to design of 
mac/routing protocols that minimize communication overhead. However, in such systems, 
actuation is an order of magnitude more expensive than communication. Therefore, it might be 
more beneficial to communicate more information in the hope of making better actuation 
decisions. 

2. Information dissemination: Most applications that utlizesuch systems are in space. Most 
applications either have a map of this space or explore the space to discover features of interest 
and work on these features of interest. Given this paradigm, it is evident that such discovered 
information needs to be rapidly shared among the swarm for efficient operation. However, given 
the unreliable nature of communication between aerial vehicles, it is very important to determine 
the information that is useful before dissemination along with intelligent aggregation. Research 
in multi-robot systems has mostly used probabilistic frameworks, and formal methods, to 
fuse/propagate information. We need research to make such algorithms work at scale. 

3. Collaborative sensing. Aerial networks are essentially a collaborative sensing and distributed 
control problem applied to an ultra-light, miniature flying sensor network. Given the cost and 
energy constraints, truly lightweight distributed protocols must be designed. This vision explores 
the new dimensions of collaborative-mobility, multi- level distributed processing, and 
collaborative sensing with minimal sensor capabilities. An in-depth investigation into limited 
capability mobile sensors is necessary, and will have a lasting impact that extends beyond 
today’s sensor systems. 

Mechanisms to Improve Data Availability for Experimental Research 

Large-scale testbeds, simulators and relevant datasets are critical for influential research in 
intelligent transportation.  Smartphones, that already have considerable market penetration can 
be used as a stop-gap platform to create large-scale vehicular networks. Crowdsourcing may also 
serve as a palliative method of research for data collection. 

 

Educational Opportunities and Challenges 
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Intelligent transportation is an opportunity for inter-disciplinary education, which has not been 
sufficiently encouraged. Addressing job opportunities in order to make the field attractive to 
students is essential. 

Recommendations to NSF 

Three major recommendations to the NSF have been made: 

1. A cross-cutting program in vehicular/intelligent transportation issues 

2. Facilitate collaboration with industry, as well as international collaboration 

3. Coordinate with other national research programs, such as the Transportation Research Board 
of the National Academies, Strategic Highway Research Program (SHRP 2), the Research and 
Innovative Technology Administration of the U.S. Department of Transportation, and the U. S. 
Department of Transportation Intelligent Transportation Systems, Joint Program Office. 
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Breakout Session Report: 
Smart Health 

 
Diane Cook and Santosh Kumar 

 
Participants: Michael Anderson, Oliver Brdiczka, Andrew Campbell, David Chu, Sajal Das, 
James Fogarty, Mario De Francesco, Ahmed Helmy, Christine Julien, David Kotz, Narayanan 
Krishnan, James Landay, Mirco Musolesi, Wendi Nilsen, Vijay Raghunathan, James Rehg, 
Mahadev Satyanarayanan, Andreas Savvides, Mario Sznaier, Roy Want, David Wentzloff, and 
Feng Zhao 
 
Introduction 
As acknowledged in the “Smart Health and Wellbeing (SHB)” cross-cutting program at NSF, 
information and communication technologies are poised to transform our access to health 
information and participation in our own healthcare and wellbeing. The long term vision is that 
smart health will simultaneously reduce the cost of health care, and improve our health by 
encouraging healthy behaviors, reducing susceptibility to diseases, cutting down visits to health 
care providers, and intervening in real-time as a result of mobile monitoring. 
 
Current Status 
Significant progress has been made in the last half decade in smart health. These advances 
include increasing adoption of electronic health records and personal health records; availability 
of web-based monitoring of personal health; commercial availability of wearable sensors and 
their integration with smart phones; monitoring and management of physical activity in the 
mobile environment; and increasing support for aging in place, to name a few. These initiatives 
have fostered new collaboration among the computing, medical science, behavioral and social 
sciences, and healthcare provider communities. These encouraging developments, however, 
constitute only a modest start, with much more remaining to be done. The positive news is that 
there is wide-ranging interest and enthusiasm in all relevant scientific communities, and among 
healthcare provider and patients, all of which is accelerated by support and encouragement 
directly from the President of the U.S. 
 
Vision and Challenges 
Smart health can help improve the health and wellbeing of society in several meaningful ways. 
Some specific vision ideas are listed below together with a discussion of the challenges that need 
to be overcome in realizing these visions. 
 
1. Ubiquitous accessibility to caregiver and availability of health information. Health 
information today is scattered across various clinics and hospitals. Similarly, in-office access to 
providers involves significant overhead and delays that can prevent timely delivery of care. We 
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envision a future where individual health information is readily available to that person (or their 
designee) anytime and anywhere, and which can be readily shared with a provider who may be 
located anywhere. Electronic health record (EHR) and personal health record (PHR) are enabling 
technologies for such a vision, but several major challenges such as security, privacy, 
standardization of interfaces, data processing and visualization, etc. others need to be addressed 
to realize this vision.  
 
2. Attention to mental health. There is now a growing awareness about prevalence of mental 
health issues in our society. These issues include depression, autism, post traumatic stress 
disorder (PTSD), chronic stress, and cognitive decline, to name a few. Smart health technologies 
can enable screening and treatment for mental health problems. For example, self-care methods 
that can be delivered privately to individuals without hospital visits may reduce the social stigma 
that is usually associated with mental health. Major challenges in realizing this vision include 
development of sensors, algorithms, models, and user interfaces for screening of mental health 
issues, preserving the privacy of participants during treatment, and evaluating the efficacy of 
treatments. 
 
3. Delivering timely intervention. Smart health offers a unique opportunity to deliver intervention 
when and where it is needed, especially if it can be delivered via a cell phone. In addition, the 
need for intervention may also be detected automatically using smart health technologies. 
Further, technology can be used to monitor and encourage physical activity, which may help 
reduce the trend toward obesity in this country. In the future, self-monitoring and real-time  
intervention can be developed to help people to reduce stress, address addictive behavior, 
depression, social anxiety, cognitive declines, autism, and PTSD, among others. Addressing each 
of these health issues will require the development of much needed sensors, algorithms, models, 
and user interfaces. 
 
4. Predictive assessment and prevention. A new direction that can be pursued is to not only 
provide assessment of an individual’s current well being, but also to perform longitudinal studies 
that support predictive analysis of well being, and the course of disease. Knowledge of how and 
when symptoms become disease, is crucial to appropriate intervention and prevention. Predictive 
analysis can also facilitate research to prevent disease morbidity and mortality. 
 
5. Post-Disaster support. Smart health could also be applied to provide timely support to victims 
of a disaster. This may include on-the-spot training and instruction to willing volunteers to turn 
them into caregivers, and monitoring of vital signs using readily available technologies 
embedded in smart phones (e.g., camera), etc. 
 
In summary, we envision a future where smart health technologies embed themselves in the 
infrastructure, in our environment, in the fabrics we wear, and in mobile devices we carry, thus 
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becoming so pervasive that they essentially disappear from our explicit cognition. At the same 
time that we become less aware of them, they become more attentive to our health needs anytime 
and anywhere. 
 
Recommendations to NSF 
There are two unique aspects of smart health that distinguish it from other technologies - every 
person needs health care irrespective of their educational background, and it directly affects our 
health. The recommendations we make in the following section are designed to support the 
realization of the vision outlined above while being cognizant of the unique role smart health 
plays in human society. 
 
Research Support 
1. Scaling of smart health technology. Smart health technology needs to scale so it can be 
adopted widely by both general public and by scientists in scientific studies of health issues. 
Doing so requires supporting research that will reduce the cost, minimize user burden, improve 
usability, extend energy efficiency, and improve robustness for more reliable measurements in 
the noisy mobile environment.  
 
2. Validation of smart health tools. Since smart health tools affect our health, it is critical that 
they do not provide erroneous information that could lead to faulty diagnosis or treatment. 
Therefore, it is critical to support research that seeks to not only develop smart health tools but 
also establish their validity in a variety of real-life environments, and on diverse groups of 
people.  
 
3. Behavior modification. Since smart health offers an opportunity to deliver interventions in real 
time on cellular phones, new research needs to be supported to develop, evaluate, and validate 
novel behavioral interventions to a range of health challenges and conditions, such as stress, 
depression, obesity, social anxiety, addictive behavior, and other health issues. 
 
Infrastructure Support 
Research on smart health is expensive because it has to be applicable and validated for real-life 
adoption, while ensuring it does not affect health adversely. Infrastructures need to be developed 
to foster research on smart health from the technology community. We recommend support for 
the following three types of infrastructures.   
 
1. Open extensible platforms for smart health. The sensor network community greatly benefited 
from the open hardware mote platforms and the associated TinyOS platform. These platforms 
made it possible to experiment with new sensors and test various innovations in real-world 
conditions, sometimes even to learn more about the real-world conditions. Smart health needs 
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similar open and extensible platforms for both wearable sensors, and a mobile phone software 
framework, that is affordable and accessible to the larger scientific community. 
 
2. Testbed - A cohort of subjects. A testbed for smart health cannot simply be a collection of 
devices, as is the case for contemporary computing test-beds such as Planet Lab. Smart health is 
about data collection on large groups of people to study individual differences within 
populations. Any experiment with human subjects requires the time, effort, and expense 
associated with IRB approval and the consent process. This is a significant roadblock to 
development of smart health technologies. We recommend that cohort of subjects be established 
to address these issues. A cohort is a proven method for large scale experimentation with human 
subjects in behavioral and medical disciplines where various issues for recruitment, retention, 
and management of cohorts have been worked out over the past several decades. Usually a board 
is formed to approve any requests for access to a study cohort. There are numerous benefits to 
having a cohort, such as reduced cost of additional studies, availability of rich history of subjects 
in the cohort, and subjects are known to be compliant. 
 
We acknowledge in this discussion that some fairly established smart home and sensor-rich test-
beds do exist.  These include the Georgia Tech Aware Home, the Gator Tech Smart Home, the 
MavHome, the CASAS test-beds, and the iDorm.  A few of these do make datasets available to 
the public but a much larger set, and diversity of test sets, is needed. 
 
3. Access to health datasets. Datasets on real people (such as the MIT arrythmia dataset and the 
PhysioNet dataset) are critical to the development and evaluation of various algorithms and 
models in smart health. We believe that access to collections of data sets on smart health –
 available to researchers while preserving the privacy of data contributors – is critical to 
advancing the field of smart health. Hence, we recommend supporting collection, hosting, and 
management of such data sets. 
 
Educational Opportunities 
Smart health offers us a new opportunity to transform health education. The technologies that 
already exist, and those that will be developed, can be used to make health education more 
accessible and hands-on in K-12+ educational settings. We recommend supporting such 
educational endeavors. 
 
Smart health research is encouraging collaboration among multiple new disciplines, but we lack 
a common vocabulary. Supporting multidisciplinary courses that orient practitioners, domain 
scientists, and engineers to work together and develop a common vocabulary will facilitate the 
work of the next generation. 
 
Joint Programs with NIH 
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Supporting health care research has traditionally been the domain of NIH. However, smart health 
falls on the boundary of basic research and its application to health care. NIH usually supports 
use of technologies that have been validated for use in applied research, but has not been 
receptive, traditionally, to the development of technology itself. An exception to this is the Genes 
Environment Initiative (GEI) program, which was a time-limited technology development 
program. This creates a gap between technology development and its eventual adoption for 
health care research and practice. We recommend development of joint programs between NIH 
and NSF to help support the development and validation of smart health technology so it can 
readily be transitioned to large scale adoption in health care research and practice. Validation of 
health technologies is usually expensive due to human subject involvement, and hence we 
believe there is a need to pool resources across both agencies to support this critical stage in the 
advancement of smart health. 
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Breakout Session Report: 
Sustainability and Energy Management 

 
Vincent Wong and Brian Kelley 

 

Participants: Geoffrey Challen, Prabal Dutta, David Liu, Jie Liu, Klara Nahrstedt, Vinod Namboodiri, 
and Hari Sundaram 

Introduction 

The research in the area of sustainability and energy management aims to reduce the energy 
usage and to improve the energy efficiency of the system by monitoring and control.  Continuous 
monitoring often occurs remotely, far from the central facilities, via networks of low power 
sensors, advanced metering infrastructure (AMI) that interacts with smart appliances and home 
area networks (HANs), and integrated wireless communication infrastructure and services.  
Sustainable systems typically rely upon heavy penetrations of renewable energy sources with 
intermittent power generation characteristics. It is an inter-disciplinary area and covers different 
topics including home area networks, smart grids, vehicle electrification, and low power wireless 
sensor networks. In addition, some complex problems only emerge at scale, with emulation test 
benches.   

State of the Art and Existing Conceptual Gaps 

We classify the state of the art into the following complementary areas: 

Wireless Sensor Networks 

Over the past decade, there have been significant advances in our understanding of wireless 
sensor networks.  This includes the design and implementation of operating systems, data 
aggregation techniques, and scheduling algorithms.  One of the challenges is to make use of the 
results of wireless sensor networks for energy management.  In addition, the waking-up from 
sleep mode, and scanning for signals, is effectively reducing the need for sensor device power 
consumption.  

Home Area Networks 

A home area network enables different devices and appliances to communicate with each other.  
Various standards (e.g., Zigbee) have also been approved. For energy management, there are also 
different products available in the market which allows home users to monitor their electrical 
usage. With the use of AMI, there is ample opportunity for autonomous closed-loop demand-
response systems. 

Metropolitan Area Smart Grid Systems 

The development of the smart grid is still in an early phase. A variety of technological 
innovations from different fields and disciplines such as pervasive computing, power 
engineering, system control, and communications are required to enable the smart grid. Future 
smart grids will continuously monitor aggregated streams of power information, along with 
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dynamic load profiles; and manage vehicle electrification and battery systems, monitoring 
several generations of renewable energy sources at multiple sensor scales (macrocells, 
microcells, and picocells); and control power flows from increasingly distributed renewable 
energy sources.  Future smart grids will also directly and indirectly control loads in homes, 
buildings, and across metropolitan areas via closed-loop demand-response mechanisms. Finally, 
the integration of large wireless sensor networks in closed-loop demand-response systems will 
require new wireless sensor network control models in order to scale.  

Data Centre 

The energy cost of a data centre is much higher than the energy cost of a typical commercial 
building.  Thus, it is important to design energy efficient components and systems for a data 
centre (e.g., with better cooling systems, less energy consuming processors). Data Center 
themselves will also host future pervasive energy services, new management protocols, and will 
offer enhanced energy optimization services.  

Challenges and Approaches  

In this section, we outline the major challenges of developing protocols and algorithms for 
effective energy management. 

Energy and Power Consumption of a City 

For energy management, one of the challenges is the use of pervasive computing and handheld 
devices to measure and monitor the power consumption (e.g., carbon footprint) of an individual 
as they move and interact with the environment. This is particularly true of environments where 
groups of individuals inherently share energy resources. This usage should be combined with the 
individual’s home usage as measured by AMI. A proper metric is required to provide a 
meaningful quantitative comparison.  By applying statistical techniques (e.g., sampling/polling 
techniques), one can then infer the power consumption of the population in a city.  If the data of 
the power consumption of an individual is available to his/her friends (e.g., through a social 
network such as Facebook), it may provide an incentive for people to reduce their own power 
consumption.  If the data of the power consumption of similar or neighboring cities is also 
available, the results can provide recommendations  for adopting techniques to reduce  energy 
usage. Human adaptation based upon recommendations is likely to lead to altered human 
behaviors, which may not be easy to capture in models. 
 
Closed-Loop Demand-Response Management 
With the use of an AMI meter, demand response management enables individual users to control 
and schedule their devices and appliances based on real-time pricing and forecast. This allows 
the users to shift high-load delay-tolerant applications (e.g., charging an electric vehicle) to off-
peak hours in order to reduce the peak-to-average ratio load demand.  A grand challenge posed 
by this breakout group is to monitor and control the closed loop demand response of an entire 
city to within 5% of a target reference power with significant dynamic power variability due to 
high penetration rates of renewable sources.  
 
Reuse of Surplus Energy 
Some households have begun to deploy renewable energy sources (e.g., solar panels).  By 
installing an array of wind turbines, a community can also set up a power microgrid. Various 
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microgrids can be connected to each other, or via the smart grid.  Pervasive computing and smart 
grid can be used to propagate the signaling information and allow users to aggregate the load, 
and to trade or transfer power between each other.  
 
Aggregation of Vehicles’ Batteries at Scale 
It is envisioned that the penetration of electric vehicles will be increased in future.  During the 
daytime, when there is a large number of electric vehicles parked, their combined battery power 
can become a time-varying energy source. With proper control and pricing mechanism, this 
energy source can support frequency regulation in the electric grid by providing a regulation 
service, up or down,  to meet the demand. A challenge here is to develop a pervasive computing 
systems that can aggregate and control electric car battery storage, and other customer or utility 
storage systems over a metropolitan area, to behave as a large virtual electricity storage device 
for  the future smart grid.   
 
Microgrid Systems 
It is desirable to achieve a local power generation capability and services which are detachable 
and independent from power tied to the grid..  Microgrids can act as an island with a set of loads, 
energy storage, and dynamic adjustable capability, which can follow the intermittent power 
profile constraints of local renewable energy sources. The challenge includes sensor monitoring 
and autonomous control of distributed clusters of microgrids. Future smart grids will consist of 
many distributed microgrid systems, each containing a significant component of renewable 
energy, electricity storage, sensors, and AMI meters attached to each building. Grid-tied power 
conduits should be minimized.   

Wireless Network Control of Metropolitan Area Power 

Macro-cell area dynamic monitoring, and optimization of smart grid power, can be based upon 
large distributed sensor network load measurements. When very high penetration rates of 
renewable energy systems create sizable fluctuations of bus power, or transmission line failures 
occur, pervasive computing systems can be used to determine the optimum network control in 
order to alter dynamic power flows across spatially large distribution systems. ata from multiple 
sensor points can usefully be gathered to control these systems even when power distribution is 
connected in complex topologies , and each microgrid resulting in variable dynamic power 
generation. The goals include dynamic stabilization of the smart grid, peak power shifting, power 
cost minimization, and carbon based metric optimizations.  

Mechanisms to Improve Data Availability for Experimental Research 

Large-scale Testbed: It would be beneficial for the researchers if NSF can collaborate with 
power utility companies to create a large-scale national testbed (e.g., interconnection of 
microgrids).  The scale can be similar to the PlanetLab project. 

Simulation Model: Although there are simulators available for different disciplines (e.g., 
networking, power systems), there is no simulator that can simulate the behavior in both the 
transmission lines and communications infrastructure. 

Analytical Model: Besides simulation models, stochastic models with standard performance 
metrics, and standard sets of profiles for energy efficiency are also crucial for performance 
evaluation and comparison. 
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Centers of Excellence Involving Utility-University Partnership: Utilities would partner with one 
or more university partners to form Centers of excellence in energy management for sustainable 
energy technology, aggregated HANs, power information systems, sensors, and dynamic control 
for energy management.     

 

Educational Opportunities and Challenges 

New course in “Sustainable Power Networks”:  Currently, most of the undergraduate students 
who are in computer science, electrical engineering, or computer engineering do not need to take 
courses in power systems (and vice versa).  It is important to design a new undergraduate course, 
which covers the fundamentals in power systems, communications, protocols, security, wireless 
networks, and energy efficient smart grid design principles.  This will allow the future system 
developers to understand, consider, and apply power and energy behavior in the design of the 
power/communications system. 

Increase the Breadth in a Different Area: Researchers and graduate students with a background 
in computer science and computer engineering should either attend courses in power systems or 
work closely with power engineers so that they can acquire a better understanding of the 
requirements in power systems. 

Recommendations to NSF 

Partnership with Utilities to Enable a Large-scale Testbed: NSF can actively collaborate with 
utility companies to create a large-scale national test-bed (e.g., interconnection of microgrids) 
and Utility-University combined Centers of Excellence.  

Access to data from utility companies: NSF can discuss with Utility companies and Utility-
University Centers of Excellence group terms for generating anonymous data on pricing 
information, load demand curve, etc.  The data is important to evaluate the practicality of 
different demand response algorithms. 

Workshops: NSF can organize an exchange program, or workshop, between academics and 
engineers working in power utility industries.  This will provide an opportunity to exchange 
ideas and increase collaboration. 
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Breakout Session Report: 
Theoretical Foundations 

 
Justin Shi and Gil Zussman 

 
Participants:  Ioannis Stavrakakis, Gustavo de Veciana, Svetha Venkatesh, Bill Schilit, Gang 
Zhou 
 
Introduction 
 
This breakout session focuses on theoretical foundations for pervasive computing at scale. 

 
 

State of the Art  

The session attendees agreed that Pervasive Computing at Scale (PeCS) is not yet a mature 
theoretical field and that at this stage there is no strong theoretical foundation for PeCS.1 
Namely, there are almost no specific metrics (e.g., similar to scaling of network capacity in 
networking) or analytical tools that are tailored for PeCS and that can effectively deal with the 
scalability issues. Moreover, existing theoretical elements in related areas have not yet been 
adapted for Pervasive Computing (e.g., Fitt’s law, used in UI design, is a type of analysis that 
does not easily carry over to mobile devices and new interfaces). In general, PeCS theory builds 
on theoretical contributions in other areas such as HCI, networking, machine learning, control 
theory, mobile computing, and social networks, but has yet to be solidified into a unified theory.  

Conceptual Gaps 

Several gaps have been identified, including:  

• In relation to the state of the art mentioned above, lack of a unifying theory has been 
identified. Such a theory should be able to deal with scalability to very large numbers and 
to a variety of devices, applications, and interaction methods (as a few examples). In 
particular, since PeCS necessarily exacerbates the current scalability challenges in system 
architectures, there is a need for insights regarding the scalability as a function of the 
number of nodes, number of users, and the amount of data. Moreover, performance 
measures other than speed should be considered. 

• Related to the item above, the lack of theory supporting power consumption optimization 
and energy efficient operation has been identified as a significant gap. It has been stated 

                                                            
1  A  specific  example  that  demonstrates  that  the  field  is  relatively  application‐oriented  is  that while  IEEE  has 
transactions and magazines on various topics (networking, wireless communications, control, etc.), there  is only 
one magazine for Pervasive Computing. 
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that having a measure for power consumption similar to the complexity measures (e.g 

order, O()) would be useful and can provide directives to efficient power aware 
programming. 

• There is a need for better understanding of interactions among components, resources, 
and humans. Namely, there is a need for theory that would support the understanding of 
emergent behavior. Since the human interactions with the devices are interleaved with 
interactions among the devices and among humans, there is a need for theoretical tools 
that will take the users, and their interactions, into account. 

• There is a need for new adaptable machine learning techniques that can operate on large 
datasets without supervision.  The underlying theory for real-time useful information 
collection is yet to be developed. Moreover, tools to exploit temporal dimensions for 
controlling noise and unnecessary data acquistion (without relevance) are needed. 

• There is still a need to understand the motivational forces for PeCS (health, economics, 
politics, religion, personal preference, etc.). In particular, it was mentioned that there are 
probably larger forces than Mark Weiser’s vision. There is a need to understand what 
these forces are.  

• There is a need for measures of Mark Weiser’s “disappearing effect”.  

• There is a need for extensions of Fitt’s Law for Pervasive Computing environments and 
emerging interfaces.  

Potential Collaboration 

The natural collaborations are among the disciplines of computer science, engineering, and the 
physical sciences. The session participants emphasized the two latter disciplines, since many of 
the technological innovations that require the development of new theoretical foundations stem 
from research performed outside the computer science community (e.g., the development of 
touch screens, advanced wireless communication techniques, advanced sensing techniques, and 
battery and energy consumption optimization techniques). Within the computer science field it 
has been emphasized that attention should be given to issues such as privacy and security, due to 
the ubiquity of the devices. The aspects of privacy and security should probably be studied from 
a legal point of view. 

In addition, collaborations with social science disciplines such as psychology, sociology, 
anthropology, and economics should be encouraged, since, as mentioned above, the users and 
their interactions have to be taken into account in the development of appropriate theory. The 
session participants felt that social scientists can help the community to ask the right questions 
that would lead to important theoretical contributions. 



 

  64

To conclude, the session participants believe that PeCS has an inherent broad appeal. Therefore, 
wide collaborations (consortium-like) engaging computer scientists and engineers as well as 
social scientists, legal professionals, regulatory bodies, and government agencies would help to 
bring together concepts and ideas, and to identify the important theoretical concepts. 

Educational Activities 

Along with the development of PeCS theory, there will be a need to enable the students to 
understand the motivational forces beyond the technical developments. This can lead to changes 
from “teaching” to “facilitation” such that the students will not only learn how to do things but 
also understand the underlying theory. In particular, foundational content in the area of PeCS 
could be “engineered” into introductory courses, especially in mobile application programming, 
sensor programming, networking, and system design.  

Recommendations to NSF: 

The attendees suggested the following: 

• Foster collaborative relationships between multiple mature theoretical areas that provide 
the basis for PeCS theory (e.g., HCI, networking, and machine learning). This may 
require programs that cross NSF divisional structure (CISE, Engineering, Social 
Sciences, etc.). It was noted that the Current NSF divisional structure encourages “depth-
first” thinking, and that the cross-cutting programs may not cut deep enough to expose 
fundamental research issues. 

• More emphasis should be put on research focused on theoretical foundation and 
collaborations between foundational projects and systems/experimental projects. 

• The use and dissemination of tools built on sound theoretical foundations should be 
encouraged. 

It was also noted that PeCS broad nature calls for cross-agency collaborations, especially with 
legal, financial and legislative branches. 
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Breakout Session Report: 

Clouds and Crowds 
 

Klara Nahrstedt, Jim Kurose, and Deepak Ganesan 

 

The Need for Metrics  

A key component of Mark Weiser’s vision was to minimize the human distraction of technology 
with ubiquitous computing. However, there are no clear metrics to measure distraction.  The 
group discussed the challenges in identifying such metrics. New metrics need to be considered. 
Unless we can measure distraction, we are not going to improve the pervasive systems. A 
number of approaches could be considered – throughput vs utility functions vs MOS for user 
experience.  Possible metrics could consider ‘easy of use’ measurements, but might need some 
utility metrics for ‘distraction’ and ‘invisibility’ as mentioned in Weiser’s vision. It is also not 
clear what distraction is – it has a personal aspect that may be age specific. 

Distraction could be measured with respect to tasks. For example: when children multi-task, 
what do they give up?  In case of fighter pilots, multi-tasking is an illusion since pilots do certain 
tasks in certain order (multiplexing between different tasks). Degradation of tasks should be 
quantified. We need to conduct user studies, observe users and measure difficulty of tasks. 
Another concept that needs to be measured is attention to tasks.  Measurement of tasks in the 
field – consider a phone that asks if a user pays attention to the give task. We need to identify 
protocols that can evaluate tasks and hence how much attention a user pays to specific tasks. 

As a result there is a need to study and identify a common framework for measurements of 
pervasive computing at scale (PeCS). Such a framework could explore machine learning and 
take data-driven approaches and benchmarks.  

Benchmarking  

Many other areas have benchmarks (high performance computing, databases, economics). We 
discussed the need for benchmarking which raised a number of challenges. What are the 
benchmarks to compare pervasive systems? How do we show that one system is better integrated 
than the other? What benchmark numbers do we need to show? (e.g., in computer architecture a 
benchmark is the performance of sorting algorithms on certain datasets).  Is usability testing the 
response to the benchmarking?  
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Common Data Sets 

The breakout also discussed the need for empirical datasets to help evaluate pervasive systems 
possibly gained from individual test-beds. It is important for the community to agree upon 
metadata for experimental datasets. 

Economic Models  

We discussed the issue of economics and business models for pervasive computing at scale. 
What are the economic models for deploying devices at scale?  Our research usually captures 
cost such as delay, message overhead, but we need to factor in the management cost to the 
research agenda. 

Cloud vs Crowd  

There was a discussion of the architectural tradeoff of the cloud and crowd. Metrics in cloud are 
better understood that crowd, for example, Google cloud measures the number of clicks to 
understand the demand of websites. The performance of cloud computing matters because the 
latency of the cloud and its response to mobile devices is critical.  

A major issue for the cloud in pervasive computing is locality of the cloud with respect to 
devices and the crowd. It could be that cloud is placed one hop away from devices via WiFi, or 
further away. One hop clouds represent “cloud-lets” around the network – a form of distributed 
clouds. Cloudlets could be efficient, supporting high-bandwidth communication because of their 
locality, and secure, leaving no state behind after their use. If cloudlets are close to devices and 
use generally available infrastructure (e.g., home computer, car computer, transition PC) then the 
economics of the cloudlet could be quite different from commercial cloud services today. There 
is a need to fully understand the role of clouds, their placement with respect to mobile phones. 
An example of smart rooms and smart offices was discussed. These are typically costly manage 
and require expertise significant expertise.. The development of cloudlets should attempt to 
avoid these problems, and be cost-effective.  

We discussed if the concept of crowd/could represent a cloud storing data for neighboring nodes. 
One can imagine a crowd as the mobile cloud where mobile devices are treated as first class 
entities. Considering crowd as a mobile cloud could be useful to solve the latency problem, since 
one could get information quickly from/to mobile devices also  accessing the cloud in aggregate.  

A number of issues were raised during the discussion: 

 The crowd could sense who is in the neighborhood. Are we heading towards 
SETI@mobile? The problem of using the crowd as a data cloud could impact energy 
mobile consumption. There are clear tradeoffs between computation and communication 
when considering the crowd as a cloud. If one does computing on the cloud (data 
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warehouse) versus on the cloud (as a set of phones), then the energy usage is much more 
efficient.  

 As we increase the scale of phones, and processing gets more distributed, there might be 
advantages to use phones as temporary clouds. The placement of cloud with respect to 
mobile phones is guided by economics. It is not clear what the business model is to have 
the cloud close or remote to mobile phones. Is this a question for NSF/academic 
community or industry?  

 Measuring the crowd’s means of organizing crowds and understanding what metrics 
matter.   The cloudlets, crowds as mobile clouds, or local phones themselves could help 
balance the dynamics between the peak and average case of computing on the cloud (as a 
data warehouse). Phones are getting computationally powerful with multi-core 
architectures. Using this type of load offloading represents an agile way to move between 
different modes of computation depending on the situation. The whole load balancing 
between local phones, neighboring crowds or cloud-lets and remote clouds will succeed 
when the user does not know or manage how this dynamic behaviour is happening. 

Crowd-sourcing  

Crowd-sourcing is an important concept in pervasive computing, and could be used to identify 
metrics. A number of issues were discussed. Can crowd-sourcing be used for user interface 
design?  It might be helpful to get feedback from the crowd to determine whether design of  the 
application UI is good or bad. Crowd-sourcing can be also used to identify traffic conditiond, 
and local hotspots. 

Test-beds 

We need test-beds to experimentally validate the various algorithms, protocols, metrics, as well 
as collect datasets and benchmark and compare various pervasive systems. It might be  difficult 
to setup a Planetlab-like uniform test-bed, rather there could be different forms of “testbeds” and 
sharing.  Several forms of “test-beds” and sharing were discussed: 

High-performance /supercomputing centers were mentioned as an example. It might be useful to 
establish a high-quality pervasive computing hardware environment, and then allow various 
researchers to conduct experiments. These specialized test-beds could have engineering staff to 
maintain the test-beds and work on tools to allow scientists to experiment with different 
pervasive hardware and software. This might be appropriate for environmental sensing, camera 
surveillance, etc. The advantage of this form of test-bed is that the engineers can worry about 
heterogeneity of devices, fast technological advances, deployment of devices and adjustment to 
the physical environment, etc.  

Another form of test-bed was discussed for mobile sensors and people. Researchers, who have 
test-beds in their institution, could develop software and make it available to the community. 
Open-source software could be installed, and instantiated at other campuses. Hardware 
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availability might be the barrier to this type of test-bed, butthis approach has proved to be 
successful in other disciplines.  

Distribution of software, devices and experiences can be successful where the community 
contributes new software and it can also lead to standardization of devices and software. For 
example, XScale was successful – there was a source website and then people contributed to the 
source. Other examples were discussed from other disciplines. For example, a network of nano-
technology was established at one university where researchers developed a software platform. 
The researchers publicized the software platform widely, and other institutions took the software 
platform for their nano-technology hardware platform.  

Another form of test-bed could be  based on a “collaborative exchange” of experiments. In this 
case, if a researcher runs an experiment on a testbed at his/her campus, he/she can run some 
additional experiments for another researcher. Then theseresearchers could run other 
experiments on the collaborationg campus collecting additional data, hence enhancing the scale 
of the experiment. This approach might fit nicely with an experimental test-bed of people.  
Humans are important part of pervasive computing   

Another form of test-bed is an educational test-bed in our universities. Issues mainly concern 
how to recruit people as part of the test-bed. IRB issues emerge in these types of human test-
beds. We should learn from social scientists, and other sciences that do experiments with human 
subjects.. 

Education Opportunities 

It will be important to teach students to work with pervasive computing hardware and software. 
Establishing a common platform in universities would make sense. We discussed the idea that if 
one capstone class develops software and applications, this could be distributed and used by 
other capstone classes. One would need a common curriculum and robust software for teaching.  

NSF Recommendations  

We discussed the role of NSF and our recommendations are as follows: 

 It is important that the academic community and NSF explore/fund disruptive 
technologies, what trends are coming, how technology scales, and changing use 
paradigms.  

 Assist in establishing test-beds, but these test-beds might look different for pervasive 
computing at scale:  

o NSF should fund research test-beds, but test-beds that help us validate what 
cannot be done today.  

o How large scale should the test-beds be? What scales do we care about?  
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o Examples of test-beds were discussed, such as the oceanography test-bed putting 
sensors on the floor of the ocean.  This kind of testbed should always be 
extensible. 

o NSF should also partner with industry to assist in building testbeds (e.g., Intel) 
o For test-beds to be successful, there is a need for support from engineers to 

maintain the core system. 

 There is a need to establish a national repository for data traces. NSF could help support this 
important task, ensuring the data is made available to the research community. 
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Appendix D - Plenary Session Report 

Facilitators:  Mahadev Satyanarayanan and Roy Want (Reported by Diane Cook) 

Theme:  Twenty Years after Mark Weiser’s Vision for Ubiquitous Computing – 
What’s Next? 

 

In this discussion Mark Weiser’s vision of the “disappearing computer” is revisited in this 
discussion.  Reviewing the history of the field over the last twenty years, we see that smaller 
mobile devices of all sizes and types are becoming increasingly prevalent.  The field has 
certainly changed over the last twenty years.  The following questions were thus posed to 
workshop attendees: 

 

1. Why is the vision so powerful?  

2. How might it be derailed? 

3. What things were not in the 
vision? 

 

 

Why is the vision so powerful? 

The vision is appealing in theory and has had an impact on the population in practice.  One 
possible reason why the vision is so powerful is that is reaches much larger masses than 
technology has in the past.  As was stated in the movie The Social Network, developing 
countries like Bosnia lack roads but “they have Facebook”.  Mobile phones are accessible and 
reach around the world.  Cost of the devices steadily decreases while access to the devices and 
software and diversity of the applications steadily increases. 

Another stated reason is that the technology appeals to the fundamental human trait of being 
lazy, in much the same way as Facebook appeals to a fundamental need to be social.  There was 
some disagreement of whether technology truly appeals to a sense of laziness or whether 
pervasive computing has simply lowered the barrier of entry. 

Current society exhibits an information-heavy lifestyle.  When technology disappears then it 
also has the effect of simplifying our lives.  Pervasive computing is not only technology that is 
easier to access, but it is also more mobile technology.  A computer can be frustrating because it 
is stuck in one place and users need to access it in one physical location and posture.  As a result, 
use of technology in that context is limited to the same position and posture and we tend to 
change our lives to use and accommodate these restrictions.  The vision frees us from some of 
these constraints – now users can share information in a device independent, place independent 
fashion. 
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Some argue that reality has moved in the opposite direction of the vision and become more 
difficult, not less.  However, this may be an issue of “fractal complexity”.  The technology at 
first appears hard then is simplified for ease of use.  A user looks closely at how it works and it 
once again appears hard. 

Finally, the question was raised of whether the vision claimed that technology will literally 
disappear, or whether it will become so natural that individuals do not think about it.  For 
example, a book read on a kindle is such a natural activity that while the technology has 
obviously not disappeared, the user does not view the technology any differently than viewing a 
written book.  In fact, perhaps one could say that the functionality of computational devices is 
growing while the devices themselves get simpler so the vision is not ever achieved; it just stays 
on a constant level of appearance.  

 

Things that might derail the vision.   

While the original goal for the field was quiet functionality, the reality of 
pervasive computing and associated costs (such as pop-up advertisements) 
are prohibitively noisy.  Is the example of information and advertisement 
bombardment found in the movie “Minority Report” an inescapable future 
for the field? 

One response to this concern is to push the field and its commercialization 
practices towards click-based ads rather than forced impressions.  One can 
also view this issue as a decision theory problem.  Developers need to make 
sure that the benefits of forced information / advertisements outweigh the 
problems.  We can view a mobile device as an auctioneer which is attempting to buy a user’s 
attention.  Google is an example of a company that is already adopting this click-based approach 
to directing a user’s attention toward advertisements. 

Another issue that has arisen is the failure to resolve the many conflicting standards that have 
emerged.  While the vision of pervasive computing seems to have become a reality, there are 
also now islands of connectivity.  In practice most devices are not able to communicate with 
each other because of this lack of compatibility. 

 The last issue that was discussed in this context was the threats that viruses, malware, and 
even legitimate uses of the technology pose to privacy and security.  An individual’s context-
aware data, which is captured in order to meet their daily needs, is also being sold all over the 
Internet.  Advertisers can thus “read your mind”, a state of technology which is eerie, annoying 
and unethical.  

Workshop attendees agree that people do not like the idea of “big brother” watching them, but 
recognize at the same time this is necessary for the technology to be effective.  However, the 
question was raised of whether this dislike of information sharing is a generational issue. 

The point was also raised that users do not necessarily understand the technology and how it 
works.  Most agree that technology designers and developers need to make the technology 
transparent enough so that users understand the true privacy risks.  There was also a concern 
expressed that we need to educate researchers, students, companies, and the general public about 
these possible concerns, about how technology works, about ourselves, and to try to understand 
why we like the technology so much. 
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Things that were not prophesied  

Although aspects of the original vision have 
become reality, there are certainly technologies, 
applications, and impacts emerging that were not 
foreseen.  Examples of these include the world-
wide web, crowd sourcing, and social networking.  
The question was raised of how the vision should 
be modulated to take these capabilities into 
account. 

The point was raised during this discussion that 
the vision of Charles Babbage does not align with 
the pervasive computing vision.  In pervasive computing we need to not just consider a single 
user and device, but also need to plan for and reason about communities, social networks, and 
networks of systems. 

There was a lengthy and controversial discussion of the immediacy of information through 
pervasive computing and the impact this has on humans.  Some in the group argue that pervasive 
computing has encouraged shorter attention spans and shallower thinking.  An analogy was made 
to the way in which humans transitioned from collecting information on printed paper to getting 
it from radio and television sets.  While the intent was to free our time to do more interesting 
things, one could argue that technology has done the opposite.  Because we are bombarded with 
information we do not spend time thinking through the information deeply. 

While many agreed with the fundamental issue that was raised, there was some discussion of 
whether this change was necessarily good or necessarily bad, or just change.  As was pointed 
out, the next generation may view spending hours reading a book as a bad use of time.  Spending 
large amount of time collecting and sifting through information may eventually become as 
archaic a way of life as riding horses and sword fighting is today.  As one person pointed out, 
deep thinking about one paper and point of view may not be needed because we can now quickly 
look at more than one thought, one argument, one paper, and can thus quickly generate a more 
comprehensive view. 

Workshop attendees agreed that methods of learning have changed.  Students do not learn 
primarily from a teacher anymore, nor primarily from a book.  Instead they are learning from 
collaboration.  We need to adapt to this not-prophesied change by adjust our methods of 
educating and communicating with students.  There was also a question raised of what the 
difference is between individual thought and distributed collaboration. 

The discussion raised a number of points regarding the history of the field, the future of the 
field, and the potential dangers.  The discussion concluded with the point that technology may 
not disappear because a generation gets used to a current look and feel.  There is no question, 
though, that the vision has had an impact on the research community and on the world’s 
population.  The group felt that these issues warranted further reflection as we shape new goals 
for the field. 
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Appendix E – Workshop Survey Results 
 
The complete set of survey responses is available at 
http://sensorlab.cs.dartmouth.edu/NSFPervasiveComputingAtScale/survey.html. 

 


