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Abstract. Smartphones represent powerful mobile computing devices
enabling a wide variety of new applications and opportunities for human
interaction, sensing and communications. Because smartphones come
with front-facing cameras, it is now possible for users to interact and
drive applications based on their facial responses to enable participatory
and opportunistic face-aware applications. This paper presents the de-
sign, implementation and evaluation of a robust, real-time face interpre-
tation engine for smartphones, called Visage, that enables a new class of
face-aware applications for smartphones. Visage fuses data streams from
the phone’s front-facing camera and built-in motion sensors to infer, in
an energy-e�cient manner, the user’s 3D head poses (i.e., the pitch, roll
and yaw of user’s heads with respect to the phone) and facial expres-
sions (e.g., happy, sad, angry, etc.). Visage supports a set of novel sens-
ing, tracking, and machine learning algorithms on the phone, which are
specifically designed to deal with challenges presented by user mobility,
varying phone contexts, and resource limitations. Results demonstrate
that Visage is e↵ective in di↵erent real-world scenarios. Furthermore, we
developed two distinct proof-of-concept applications, Streetview+ and
Mood Profiler driven by Visage.
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1 Introduction

Smartphones come with an increasing number of embedded sensors (e.g., mi-
crophone, accelerometer, gyroscope, etc.) that are enabling a new generation of
sensing applications on the phones, such as, understanding user behaviors [21],
life patterns, wellness, and environmental impact [22]. Similar to the microphone
[17], the phone camera is also a ubiquitous sensor, which is typically used for
recreational purposes such as taking pictures and videos. To date, the camera
has not been exploited as a powerful sensing modality in its own right. This
is about to change for the following three reasons. First, mobile phones have
increasing sensing, computing, storage and communication capabilities. Next,
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mobile phones have evolved into a multimedia platform capable of downloading
a wide variety of applications from Google Play and the App Store. As a result,
the way in which users interact with their phones has drastically changed over
the past several years; that is, users are increasingly interacting with mobile
applications (e.g., tweeting, web surfing, texting) directly through their phones’
touch screens. Third, front-facing cameras are becoming a standard feature of
new smartphones, allowing for new forms of interactions between the user and
the phone, for example, the phone is capable of observing users as they interact
with di↵erent mobile applications in everyday uses. A key contribution of Visage
is that it supports a set of sensing, tracking and machine learning algorithms on
smartphones, which are specifically designed to deal with the di�cult challenges
presented by user mobility, varying phone contexts and resource-limited phones
(e.g., limited battery lifetime, computational resources).

Traditional human-computer interactions rely on buttons and clicks, which
emphasize the explicit communication but neglect the implicit reactions from
users. In the 1970s, Ekman [11] found that human emotions express distinc-
tive content together with a unique facial expression. He found that there are
6 prototypical emotion categories that are universal across human ethnicities
and cultures, namely happiness, sadness, fear, disgust, surprise and anger. To
enable natural ways to interact with applications, previous researchers [30] fo-
cus on vision techniques that use fixed cameras (e.g., desktop cameras). While
there is a considerable amount of work in computer vision on topics such as face
tracking and expression classification, there has been very little work done on
solving these problems on mobile phones. On the contrary, shifting from fixed
indoor settings to mobile environments, our proposed system specifically deals
with varying phone context and unpredictable phone movement. Since mobile
phones (equipped with sophisticated sensing, computing, and communication
capabilities) have become an indispensable part of our everyday lives, this cre-
ates an opportunity to develop a face interpretation engine that senses users’
visual feedback and utilizes their face responses to develop new intuitive ways to
interact with applications on mobile phones. For example, a user’s head rotation
angle can be used to infer what the user is paying attention to, such as, points
of interest in the real world. The rotation angle information, for example, can
be used to drive exploration of 360-degree Google StreetView panoramas.

Most smartphones are equipped with a front-facing camera, which is capable
of capturing users’ faces and expressions while they are interacting with their
phones. In this paper, we present Visage, a robust, real-time face interpretation
engine for smartphones that enables a new class of face-aware applications on
the phone. Visage fuses data streams from the phone’s front-facing camera and
built-in motion sensors to infer, in an energy-e�cient manner, the users’ 3D
head poses (i.e., the angle of pitch, roll and yaw of the user’s head with respect
to the phone’s orientation) and facial expressions (e.g., happy, sad, angry, etc.).
We explore how to make use of this new channel of information in a ubiquitous
and nonintrusive way through the implementation of two proof-of-concept face-
aware applications based on the Visage engine: 1) StreetView+, which exploits
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user’s head angle to drive exploration of 360-degree StreetView panoramas from
the existing Google Map service; and 2) MoodProfiler, which opportunistically
senses users’ expressions and provides visualized summary of their moods as
they use specific applications (e.g., email client and YouTube viewer) in their
daily lives.

The contributions of this paper are three-fold:

· Context-aware system framework : We design new sensing, preprocessing,
tracking and learning algorithms for e�cient inference of users’ facial expres-
sions under varying mobility conditions. The Visage face detection algorithm
uses gravity estimation provided by the built-in motion sensors to compensate
misalignment of the phone’s camera and user’s face. The system detects phone
shakiness to reduce noise and accumulated error to improve head tracking ro-
bustness. The Visage preprocessing algorithm uses the light information of
the face region to automatically adjust the camera’s exposure level to ensure
su�cient image quality for tracking and inference algorithms.

· Resource-aware management : We study and identify the optimal resolution of
the video stream from the front-facing camera to reduce the computation load
on the phone while maintaining acceptable real-time inference accuracy. We
adaptively tune workflow parameters and workflow depth for typical phone
usage patterns to avoid unnecessary computational load.

· Enabling face-aware applications: We propose two proof-of-concept applica-
tions built on top of the Visage system: 1) StreetView+, which makes use
of the head pose inference from the Visage pipeline and provides user navi-
gation on-the-go; and 2) MoodProfiler, which opportunistically senses users’
expressions and provides visualized summaries while users are interacting with
specific applications (e.g., email client and YouTube viewer) in their daily lives.

The rest of this paper is structured as follows. Section 2 describes the design
considerations for the Visage system. Section 3 introduces an overview of the
system architecture, followed by a detailed description of the Visage sensing,
preprocessing, tracking and inference algorithms. Section 4 presents the imple-
mentation of the Visage system, while Section 5 summarizes the evaluation and
benchmark results of the system. Section 6 applies the Visage engine to build
two proposed face-aware applications. Section 7 reviews related work. Section 8
o↵ers concluding remarks.

2 Design Considerations

2.1 User Mobility

Mobile users hold and interact with their phones in an uncontrolled manner and
often in totally unexpected ways, such as, holding their phones at di↵erent angles
or moving them around while doing various activities. These are new challenges
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not addressed by the computer vision community when designing face detection
and tracking algorithms [26] or computing the facial expressions of users [20].
Existing algorithms [2, 24] are designed and optimized for laboratory settings,
where the camera is mounted and stable, with an angle that does not change
over time. Because the front camera on the phone is subject to all degrees of
freedom, we design Visage to make no assumptions about the camera motion,
tilt and rotation relative to the user’s face. The movement of the phone causes
the image quality to drop in comparison to a mounted camera. Poor image
quality will hurt all stages of the vision processing pipeline. Rather than adopting
more sophisticated image processing techniques to address this problem (which
would be inappropriate for resource-limited mobile phones), we propose taking
advantage of accelerometer and gyroscope sensors to detect the tilt and motion
of the phone. This design approach is computationally light in terms of resource
consumption particularly in comparison to adopting more heavy duty signal
processing techniques. As discussed in Section 5.3, Visage uses an opportunistic
reinitialization scheme based on multimodal sensing for tracking that reduces
the error to acceptable levels.

Furthermore, people take their phones wherever they go, ranging from bright
outdoor areas through dark clubs and restaurants. Typically, computer vision
based tracking algorithms assume consistent lighting conditions [26]. However,
the lighting conditions in mobile environments change. To address this issue,
Visage analyzes the exposure level of the local face region in the image rather
than considering the entire image as default. Visage adaptively controls the front
camera on the phone by maintaining a good exposure level in the face region of
the image.

2.2 Limited Phone Resources

Video processing pipelines are computationally costly in general. The front-
facing camera will produce 800 times and 50 times more data than those pro-
duced by the accelerometer and the microphone, respectively, in terms of the
unit-time size of the raw data stream on an iPhone 4 mobile phone. One possi-
ble solution might be to o↵-load the interpretation pipeline to the cloud [29] and
send inference results back to the phone. However, this leads to transmission
energy consumption costs and variable delays in processing that complicates the
development of continuous real time face-aware applications. In addition, users
would have significant privacy concerns o↵-loading live videos containing their
faces to the network or the cloud. To address the privacy issues and commu-
nication costs, Visage exploits a phone-based approach which processes video
streams in a real-time manner (i.e., videos are neither o↵-loaded to the cloud
nor stored on the phone). Although the processor speed and memory size found
on the latest smartphones are increasing rapidly, they are still considerably lim-
ited in comparison to desktop or laptop computers. Importantly, phones are
energy constrained (compared to a desktop), and video processing is the most
computationally intensive task on the phone. Computer vision researchers focus
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Fig. 1. Visage System Architecture

on the development of algorithms [23] that deal with time varying high dimen-
sional image data with little energy, processor and memory constraints. Visage
is designed to operate in real-time while also addressing these constraints.

3 System Architecture Overview and Design

The Visage system architecture shown in Fig. 1 comprises sensing, preprocessing,
tracking and inference stages. The sensing stage captures the video stream from
the phone’s front-facing camera and raw motion data from accelerometer and
gyro sensors on the phone. The preprocessing stage comprises of three compo-
nents: (1) phone posture, (2) face detection, (3) adaptive exposure components.
By adaptively correcting the shaky/tilted frames (based on orientation and shak-
iness given by the phone posture component) and adjusting the image exposure
setting (based on the illumination of face region given by the adaptive exposure
component), the face detection component locates the user’s face in the view.
Given a face detected in the preprocessing stage, the tracking stage initializes
a cylinder head model and continuously tracks individual feature points within
the detected face region in all frames. If excessive motion is detected, Visage
reinitializes the tracking module. By tracking relative locations of the feature
points marked on the face, the user’s 3D head pose can be inferred. Finally, in
the inference stage, a shape and appearance fitting method is used to extract
the face texture and structure features for facial expression classification.

3.1 Preprocessing Stage

Phone Posture Component The preprocessing component identifies frames
which contain the user’s face, and monitors the phone posture (i.e., the tilt and
motion status of the phone). Visage face detection and tracking are augmented
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Fig. 2. Early termination scan scheme

with phone posture information to compensate the impact of the phone mobility.
This module takes raw readings of accelerometer and gyroscope sensors and
estimates the direction of gravity and the intensity of motion from the variance
of those two sensor readings, respectively. The system calculates the mean and
variance on each direction at the same frequency as the video frame rate. The
mean of accelerometer data provides a smoothed estimate of gravity direction.
The variances of accelerometer and gyroscope data indicate the phone’s motion
intensity. They are used by the face detection and tracking modules to ensure
system robustness.

Face Detection with Tilt Compensation The process starts with locating
the user’s face in the first frame. This information is critical to the tracking
task in consecutive frames. We use AdaBoost object detector [27] with tilt cor-
rection to make it robust to phone orientation changes, and to optimize the
face-searching task by incorporating prior knowledge of the range of typical fa-
cial regions in images captured on mobile phones. The AdaBoost object detector
operates by scanning the image using a large (e.g. 200 ⇥ 200 pixels) moving win-
dow. If no face is detected from a round of scans, the window size scales down by
a constant factor of 1.2. The process terminates when a face is located, or scan-
ning reaches the minimum window size. The algorithm normally starts from the
largest possible detection window and scales down at each round by a constant
factor to the smallest detection window, e.g. 20 pixels. In this paper, however,
window sizes that are too small were omitted because the distance between the
phone and the user’s face is normally constrained by the user’s arm length dur-
ing mobile phone usage. This provides an estimate of the lower bound of the size
of the user’s face in the image, enabling us to prune scans with windows sizes
that are too small. In our experiments, this resulted in an early termination scan
scheme and higher system responsiveness. As illustrated in Fig. 2, on a 320⇥240
image, a 128⇥ 128 window size lower bound results in a detection time of about
80 ms, which gives more than 10 frames per second.

The standard AdaBoost object detector algorithm assumes that faces in the
images are in an upright position, which is not necessarily true for phone cam-
eras when a user holds the phone in a non-upright way. To work with possibly
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Fig. 3. Top: underexposed image, face region, and regional histogram; bottom: the
image after adaptive exposure adjustment, face region, and regional histogram

tilted faces, two techniques are normally used: i) designing a set of classifiers
handling each specific angle of tilted faces, or ii) using upright face detector on
every possible angles. However, detectors trained for tilted faces are generally
not as discriminative as the ones trained specifically for upright faces, and mul-
tiple detections incur more computational overhead. Thus neither technique is
viable on mobile phones. Our solution leverages multi-modality sensing. With
the input of accelerometer, Visage infers how the phone is tilted by estimating
the gravity direction. The phone posture component calculates the gravity di-
rection projected onto the coordinate system of the camera and feeds it to the
face detection component. It is derived from smoothed accelerometer samples
(i.e., ax and ay) of x and y axis on the phone by:

✓g =
180

⇡
arctan

ax
ay

(1)

Then the image is rotated by:

Ir =


cos ✓g � sin ✓g
sin ✓g cos ✓g

�
Ii (2)

where Ii and Ir are the matrices of original and corrected images, respectively.
First, the tilt of the camera is compensated by the correction rotation. Then, the
AdaBoost object detector is applied on the rotated image. The estimated gravity
vector may include noise introduced by the user’s movement. The AdaBoost
object detector algorithm, however, has a tolerance window from about �15 to
15 degrees. It tolerates the rotation noise caused by the error of the estimated
gravity direction.
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Adaptive Exposure Component In mobile environments, illumination is not
always guaranteed and varies frequently. A clear face region is critical for tracking
and inference. Proper exposures under dynamic illumination conditions play a
key role. The default automatic exposure adjustment balances the exposure of
the entire image, which results in underexposed faces in the captured images, as
demonstrated in Fig. 3. When underexposed, certain details in the face region
are lost, making the head pose tracking and facial expression classification more
di�cult. To address this issue, Visage uses the local lighting information within
the detected face region to correct the camera hardware exposure level. After a
face is detected, we calculate the local histogram Hface of the face window, and
then determine its exposure level by computing the centroid of Hface:

CHface =

P255
i=0 iHface(i)P255

i=0 i
(3)

where i is the intensity bins of the histogram. CHface lying in the lower or
higher ends of Hface would indicate the face being under- or over-exposed. This
information is sent to the sensing module to adjust the camera exposure setting
iteratively, until CHface is in the center area of the histogram. After this step,
the tracking and inference start.

3.2 Tracking Stage

Feature Points Tracking Component After locating the bounding box of
the user’s face and setting the proper exposure level, this component initiates
face-tracking algorithms using inter-frame information and estimates the 3D pose
of the head. Feature Points Tracking Component first selects candidate feature
points in the facial region from the first frame, and then tracks their locations
in subsequent frames. Feature points represent landmarks on the facial object.
Their spatial relationship to each other on the face is used to estimate the rota-
tion of the user’s head. Selecting proper feature points to track is the first step.
Compared to points in textureless patches, points on object corners and edges
(e.g., eye corners and edges of mouths) are normally selected as feature points
because their salient visual features are stable across frames, and therefore, use-
ful for tracking tasks. The level of textureness of a point is associated with the
2 ⇥ 2 autocorrelation matrix H of the second derivative image over a neigh-
borhood W . If we let Ix and Iy be the gradients of the vertical and horizontal
directions, respectively, then we have

H =
X

(x,y)2W

!x,y


I2x IxIy
IxIy I2y

�
(4)

where !x,y is a Gaussian weighting term.
The smallest eigenvalues of H are sorted; the largest of these smallest eigen-

values correspond to feature points on corners and edges that can be tracked
easily. We used the Lucas-Kanade method [3] (LK) to track the movement of
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Fig. 4. (a) Cylinder model and (b) Tracking with pose estimation.

the selected points in successive frames. LK assumes brightness constancy, that
is, pixels in a tracking patch look the same over time.

I(x(t), t) = I(x(t+ dt), t+ dt) (5)

where I is an image, t is time variable, and x is the pixel location. Assuming
that a pixel’s neighborhood has the same motion vector as the pixel itself, this
vector (i.e., [u v]T ) can be expressed as:

X

(x,y)2W


I2x IxIy
IxIy I2y

� 
u
v

�
=

X

(x,y)2W


IxIt
IyIt

�
(6)

where It is the derivative between images over time. Fitting the neighborhood
to a least square estimator solves the motion vector ([u v]T ). In practice, a mul-
tilevel adaptive scheme is used to incorporate large motions between frames [3].
Feature points tracking provides precise details on the motion of the face, but
the error of individual tracking points accumulates over time. This is a common
problem of the LK method. Therefore, by using a more robust blob-tracking
algorithm called CAMSHIFT [6], the tracking points are corrected if the phone
motion is larger than the existing threshold. In CAMSHIFT, after the facial
region in the bounding box is transformed from RGB space to HSV space, a
histogram of the hue channel is calculated as a template. In the incoming video
frames, a probability of face blob is calculated at every pixel by examining the
counts in the histogram template at the location of the pixel’s hue. The algorithm
estimates the new location of the face by searching the region with maxima on
the face probability image, and shifts the tracking blob to that location.

Pose Estimation Component The Pose from Orthography and Scaling with
ITerations (POSIT) algorithm [10] is used to estimate the 3D pose of the user’s
head. If an object’s exact dimensions are known, POSIT is able to recover the
six degrees of freedom movement of the object, with coordinates of at least four
non-coplanar points on its 2D surface image and corresponding points describing
its 3D structure.

To reconstruct the 3D pose, the algorithm requires the location of the 2D
feature points on the image and their corresponding positions on the 3D head. It
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is infeasible to pinpoint the 3D locations of the feature points on the user’s face;
thus, the human head is simplified to a rigid cylinder, as shown in Fig. 4. The
diameter of the cylinder was set to the unit length. It is then straightforward to
determine the 3D coordinates (X, Y , Z) of a 2D image point (x, y) on the initial
frame. Because the initial frame contains a front face, coordinates in horizontal
and vertical directions X and Y can be estimated directly by scaling image
coordinates x and y, respectively; depth Z is obtained from the shape of the
cylinder.

Z =
p
r2 � (X � r)2 (7)

After initialization, the 3D geometry of the points on the cylinder model is
obtained. As the head moves in successive frames, the 2D feature points are
tracked by LK. Using a rotation matrix and a translation vector to match the
3D cylinder points to the 2D image points, POSIT determines the directions for
rotating the cylinder. Thus, the 3D pose of the cylinder is recovered, and the
head pose is determined. POSIT requires at least four non-coplanar points; our
study generated at least eight points.

The simplified cylinder face model introduces modeling errors because the
surface of a face is di↵erent from that of a cylinder. Visage compensates for the
modeling errors by a linear regression-based model calibration on all three rota-
tion angles. On a given rotation angle, the calibration parameter is determined
by

Pcalib = (⇥T
raw⇥raw)

�1⇥gt (8)

where ⇥raw is a vector of raw output rotation angles, and ⇥gt is the correspond-
ing ground truth angle. With calibration, the output angle in the inference step
becomes:

✓calib = Pcalib

⇥
✓raw 1

⇤T
(9)

The inferred head pose can be used independently for subsequent components
(or applications such as Streetview+) to detect when to trigger the eye region
detection component.

3.3 Inference Stage

Active Appearance Model To save computation, the following steps happen
only when face orientation is determined as near frontal. The face features for
classification in the system are representing both structure and texture of the
user’s face. They are obtained by Active Appearance Models [19] (AAM), a sta-
tistical method which incorporates texture and shape variations into the model
to improve the accuracy. It describes the shape of a 2-dimensional image by a
triangular mesh consisting of a set of landmark points. Active Appearance Mod-
els require a set of training images with a set of predefined shape-critical feature
points. In particular, human facial expression recognition requires accurate fea-
ture points on human faces, such as edges and contours of eyes and the mouth.
The shape of these feature points is the major component of facial expression.
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The texture model captures pixel color intensities to enhance the accuracy of
model fitting.

By simultaneously considering the shape (x) and texture (g) of users’ faces,
an active appearance model can be synthetically determined with a combination
of shape and texture models:

x = x0 +Qgc

g = g0 +Qsc
(10)

where x0 is the mean shape, g0 is the mean texture, and Qs and Qg are variation
matrices of shape and texture models, respectively. Instead of separating shape
parameters from texture parameters, the combined model has a synthesized
parameter (i.e., c) to describe the appearance of a human face. The training
and fitting process is described as follows: (1) face images with predefined 20
landmarks are loaded from the face database to construct shape and texture
vectors accordingly. (2) Principal Component Analysis (PCA) is then performed
on normalized shape vectors and texture vectors.

Expression Classification Visage uses both geometric and appearance fea-
tures for facial expression classification as shown in Fig. 5. The combination of
these two features makes Visage more robust to complex mobile environments.
Visage recognizes seven expression classes: angry, disgust, fear, happy, neutral,
sad, and surprise.

The face feature vector is constructed from the relative location of the 20
landmarks and the texture intensity within the tracking rectangle. We use a facial
analysis technique called Fisher Linear Discriminant Analysis (Fisherface) [5] for
the classification task. Fisherface seeks a projection direction (P ) that maximizes
the determinant of the between-class scatter matrix and minimizes that of the
within-class scatter matrix:

Popt = argmax
P

|PTSBP |
|PTSWP | (11)

where SB is the between-class scatter matrix, and SW is the within-class scatter
matrix, respectively. SB captures the variations between di↵erent facial expres-
sion classes, while SW represents the variance within a given expression class,
including di↵erent person identities, various lighting conditions, etc. The prob-
lems could be solved by a generalized eigenvalue solver.

SBP = �SWP (12)

where P is the projection matrix. All face feature vectors (i.e., Iface) are pro-
jected to this expression-specific subspace (i.e., vexp) by

vexp = PIface (13)

Given the predefined 7 classes of facial expressions, the size of the feature vector
is reduced to 6 by the projection. The projected feature vectors are fed to a SVM
classifier trained by LibSVM [8] in nu-SVC mode, with a RBF kernel and the
nu parameter set to be 0.4.
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Fig. 5. Visage expression classification on the iPhone 4

4 Implementation

We prototyped the Visage architecture and algorithms on an Apple iPhone 4.
Objective C is used to handle the GUI and hardware API. The core processing
and inference routines are implemented in C. The OpenCV library [28] is ported
to iOS as a static library, on top of which we built the Visage pipelines. The
AAM fitting algorithm is ported and modified from VOSM [14] projects.

Standard picture resolutions (e.g., VGA (640 ⇥ 480) or higher resolutions)
can be easily handled by desktop computers in real-time, but not mobile phones.
Image size is an important factor impacting the overall computational cost, as
demonstrated in Table 1. For phone-based systems, downsampling images to a
lower resolution and skipping frames are inevitable. In theory, information loss
caused by downsampling would degrade the performance. However, in practice, a
phone’s front-facing camera is usually positioned close to the user’s face. There-
fore, the size of the face regions captured by the phone’s camera is much larger
than those captured by distant cameras used in the surveillance or desktop cases.
Therefore, downsampling introduces a much smaller performance penalty in our
case. Studies show that face images smaller than 64⇥64 [9] lead to noticeable per-
formance drops for expression classification tasks. To balance the computational
load and the performance, Visage uses 192 ⇥ 144 as the operating resolution,
which normally contains faces of size around 64⇥ 64. At the same time, Visage

Resolution Time (ms)
640⇥ 480 4090
480⇥ 360 2123
320⇥ 240 868
192⇥ 144 298
160⇥ 120 203
96⇥ 72 68
80⇥ 60 53

Table 1. Computational cost of face detection operations under di↵erent input image
resolutions
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Tasks Avg. CPU usage Avg. memory usage
GUI only < 1% 3.18MB

Pose estimation 58% 6.07MB
Expression inference 29% 4.57MB

Pose estimation
& expression inference 68% 6.28MB

Table 2. CPU and memory usage under various task benchmarks

also uses a frame skipping scheme where if the processing cannot keep up with
the incoming frame rate, oldest unprocessed frames will be dropped. By doing
this, the inference output is alway synchronized with the latest scene in the view
range of the camera.

5 Evaluation

5.1 CPU and Memory Benchmarks

We evaluate the Visage system on the Apple iPhone 4 and present the detailed
performance of each component of the multi-stage inference process.

Table 2 presents results of the CPU and memory usage under di↵erent face
analysis tasks (i.e., benchmarks), while Table 3 shows the processing time of
all Visage pipeline components. The face detection module is computationally
expensive. But, after the first frame containing a face is identified by the detec-
tion module, Visage will track the detected face in consecutive frames without
performing detection operations. When both detection and tracking modules are
enabled, it takes approximately 53 ms to detect and track the face in a frame on
average. The CPU usage for the iPhone 4 is about 68%, when the full pipeline
is engaged.

Component Average processing time(ms)
Face detection 53

Feature points tracking 32
AAM fitting 92

Facial expression classification 3

Table 3. Processing time benchmarks

5.2 Tilted Face Detection

To test the e↵ectiveness of the accelerometer-augmented phone posture correc-
tion, we conduct the following experiment. Let the user hold the phone in his/her
hand and rotate it during the face detection algorithms running on the phone.
Images are captured when the phone is tilted by di↵erent degrees, as illustrated in
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Fig. 6. The experimental results from two schemes (i.e., the default AdaBoost al-
gorithm and proposed Visage’s Face Detection with Tilt Compensation scheme)
are reported with the rotation angles ranging from �90� ⇠ 90�, separated by
an angle of 10� degrees. Detected faces are marked by red bounding boxes. The
default algorithm fails to locate the user’s face when the tilted angle is beyond
the [�15�, 15�] range. The proposed scheme is robust to the various degrees of
tilted angles, far beyond the [�15�, 15�] tolerance range of the default scheme.

5.3 Motion Based Reinitialization

The performance of feature points tracking is sensitive to camera movement.
To test the benefit of our proposed motion based reinitialization, we conduct a
field study and monitor the cumulative head tracking error of the feature points
tracking with and without motion based reinitialization. In this experiment, we
focus on the error caused by phone movements, therefore we keep the head still
in an initial pose, in which case the ground truth is zero for all three rotation
angles (i.e., yaw, roll and pitch). The estimated rotation angles of the head pose
are recorded as well as the phone’s motion intensity represented by normalized
variance of accelerometer readings. Experimental results are shown in Fig. 7.
Without motion-based reinitialization, after the phone stops moving, the head
pose estimation drifts on all three rotation angles, and the estimation error accu-
mulates over successive movements. With Visage’s opportunistic reinitialization,
the system automatically corrects the feature points tracking and cylinder model
reconstruction errors whenever motion of the phone is detected. The tracking
error is thus suppressed and does not accumulate over time.

5.4 Accuracy of Head Pose Estimation

In this first experiment, several evenly-spaced markers are placed along a cir-
cle of one-meter radius. Three volunteers participate in this experiment. Each
of them is asked to stand at the origin of the circle and look at each of the
markers. Ground-truth head rotation angles are measured by a protractor at
the origin of the circle. Each participant contributes 5 samples for every marker.
The head pose estimations without model calibration, calibrated readings with

Fig. 6. Images captured by the front-facing camera assuming varying phone tilted
angles from -90 ⇠ 90 degrees, separated by an angle of 15 degrees. The red boxes
indicate the detection results. The first row is detected by the standard Adaboost face
detector. The second row is detected by Visage’s detector.
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Fig. 7. Phone motion and head pose estimation errors (a) without motion-based reini-
tialization, and (b) with motion-based reinitialization

model calibration, and the ground truth are shown in Fig. 8. With model cali-
bration, the value of the mean absolute error drops by 60%, from 14.48� ± 2.67�

to 5.51� ± 1.99�.

5.5 Accuracy of Facial Expression Classification

To evaluate the accuracy of facial expression classification, we test Visage on two
facial expression datasets (i.e., a public facial expression dataset and the other
dataset collected by ourselves). In this experiment, five volunteers participate.
Each one is asked to perform a list of predefined expressions. We capture 100

Fig. 8. Head pose estimation error
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Expressions Anger Disgust Fear Happy Neutral Sadness Surprise
Accuracy(%) 82.16 79.68 83.57 90.30 89.93 73.24 87.52

Table 4. Facial expression classification accuracy using the JAFFE dataset

consecutive frames of each expression and use 5-fold cross validation. This ex-
periment assumes that the facial expression on a mobile phone is personalized to
its owner. So, for each user, the model is trained and tested by using the user’s
own training data. Table 4 shows the average expression recognition accuracy,
with an overall accuracy of 83.78%.

To verify our method in more general cases, we test Visage’s algorithm on
the JAFFE [18] public expression dataset. JAFFE contains 10 subjects with 7
di↵erent expressions as in Table 5. Each subject contributes 3 ⇠ 4 examples
per expression. We carry out 10-fold cross validation on the entire dataset. The
evaluation is repeated 10 times. Table 5 shows the confusion matrix of the classi-
fication results. The overall classification accuracy is 84.6%, which is comparable
to 81% reported in [25] and 85.6% in [15]. Note that our framework automatically
detects faces, whereas [25, 15] used manually labeled face images.

6 Visage applications

6.1 Streetview+

Streetview+ is a demo application built using the underlying Visage software
engine. In this application, the user’s head rotation with respect to the screen is
tracked and used as an input source for users. Given the user’s current location
(i.e., longitude and latitude) obtained from the GPS sensor, the application
shows the 360-degree panorama view with respect to that location from Google
Streetview. The user’s 3D head rotation is then used to change the viewing angle
of the panorama as showed in Fig. 9. In practice, Visage achieves a tracking rate
of around 12 ⇠ 15 frames per second. Streetview+ provides an intuitive and
realistic viewing experience in the virtual world, and the user can navigate the
Google Streetview smoothly with continuous head movements.

Expressions Anger Disgust Fear Happy Neutral Sadness Surprise
Anger 93.33 6.67 0 0 0 0 0
Disgust 6.90 75.86 17.24 0 0 0 0
Fear 0 7.41 92.54 0 0 0 3.23
Happy 0 0 0 87.10 6.45 3.23 0
Neutral 0 0 0 0 90.00 10.00 0
Sadness 0 6.45 9.68 3.23 9.68 70.97 0
Surprise 0 0 3.33 3.33 0 0 93.33

Table 5. The confusion matrix of the facial expression classification based on the
JAFFE dataset
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(a) Streetview+ on the go (b) Head facing front

(c) Head facing left (d) Head facing right

Fig. 9. Steetview+ enhanced with awareness of user head rotation

6.2 Mood Profiler

The mood profiler application uses Visage to profile a user’s mood in the back-
ground as they interact with di↵erent applications on their phone. When a user
interacts with the phone, their realtime facial expression is monitored as well
as the name and type of the foreground application. To reduce the resource us-
age, the emotion classification is performed only once per second. Fig. 10 shows
the expression histograms of a single user using two di↵erent applications, the
YouTube mobile app and the Email client. The histogram shows the subject’s
mood when using these two applications. In the case of watching YouTube videos,
the subject manifests a wider range of expressions including happy, surprise, sad
and disgust, while in the case of reading emails, the neutral expression is the
dominant class.

(a) YouTube (b) Email

Fig. 10. Expression histogram when using (a) the YouTube mobile application and
(b) an email client.
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7 Related Work

There is a growing interest in applying computer vision algorithms in support
of mobile applications [7]. SenseCam [12] is a life logging application. It takes
pictures of the user’s everyday life. However, it involves very limited image pro-
cessing. MoVi [4] is a collaborative application where users collectively send
images to backend servers to mine common interests. On the mobile side, Rec-
ognizr [1] is an application using the back camera to recognize objects. It con-
nects the object’s real identity with its virtual identity on the web. Recently,
several content-based image retrieval mobile frameworks (e.g., Google Goggles)
emerged. They usually require the user to take a photo of an object and then
send the image or feature vector to a remote server for further processing. The
mobile phone is mainly used as a camera and the communication client with very
limited local image processing. In contrast to these approaches Visage processes
all the information locally on the phone - enabling, for example, head rotation
as a novel UI for mobile phones.

In the HCI domain there is research that integrates the user’s face into the
mobile UI. PEYE [13] performs simple tracking of 2D face representations from
the captured images; however, UI controls are limited to 2D directions (i.e., left,
right, up, down) on the phone screen. Visage is capable of tracking the user’s
3D head pose in a real-world coordinate system.

There is a considerable amount of research on head pose estimation [31] and
facial expression analysis [31]. However, this work does not addresses challenges
specific to mobile environments, e.g., camera motion, uncontrolled context, and
computation e�ciency. Much of the work achieved robustness by increasing the
feature vector dimensions, finding more complex features. These purely vision-
based approaches are typically computationally-demanding and not suitable for
mobile phone applications. Littlewort et al. [16] proposed an expression classifi-
cation algorithm for robots, however, the feature vector is based on pure texture
instead of structure.

8 Conclusion

In this paper, we propose Visage, a face analysis engine specifically designed for
resource limited mobile phones. Visage carries out all the sensing and classifi-
cation tasks directly on the mobile phone without the need for backend server
resources. In contrast to traditional mobile image analysis systems that rely on
remote servers, Visage performs online processing at a lower computational cost
but yields results that are comparable to existing o↵-line systems. Furthermore,
multi-modality sensing is used to boost the system robustness in mobile envi-
ronments. We present two proof-of-concept applications, and believe that the
flexibility and robustness of Visage make it suitable for a wide range of face-
aware applications.



Visage Face Interpretation Engine 19

References

[1] Recognizr, http://news.cnet.com/8301-137723-10458736-52.html
[2] Adiv, G.: Determining Three-dimensional Motion and Structure from Optical

Flow Generated by Several Moving Objects. In: Trans. Pattern Anal. Mach. Intell.,
7(4), pp. 384-401 (1985)

[3] Baker, S., Matthews, I.: Lucas-kanade 20 Years On: A Unifying Framework. In:
Int’l J. Comput. Vision, 56(3),pp. 221-255 (2004)

[4] Bao, X., Choudhury, R.R.: MoVi: Mobile Phone based Video Highlights via Col-
laborative Sensing. In: Proc. the 8th int’l conf. Mobile systems, applications, and
services, pp. 357-370. ACM, New York (2010)

[5] Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces:
Recognition using Class Specific Linear Projection. In: Trans. Pattern Anal. Mach.
Intell., 19(7), pp. 711-720 (1997)

[6] Bradski, G.R.: Real Time Face and Object Tracking as a Component of a Percep-
tual User Interface. In: Proc. the 4th IEEEWorkshop on Applications of Computer
Vision, pp. 214–219, IEEE Computer Society, Washington, DC (1998)

[7] Chai, S.: Mobile Challenges for Embedded Computer Vision. In: Embedded Com-
puter Vision, Advances in Pattern Recognition, pp. 219–235, Springer-Verlag Lon-
don (2009)

[8] Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, (2011)

[9] Cunningham, D.W., Nusseck, M., Wallraven, C., Bultho↵, H.H.: The Role of Image
Size in the Recognition of Conversational Facial Expressions. Research Articles.
Comput. Animat. Virtual Worlds 15, 3-4, pp. 305–310 (2004)

[10] Dementhon, D.F., Davis, L.S.: Model-based Object Pose in 25 Lines of Code. In:
Int’l J. Comput. Vision 15, 1-2, pp. 123–141 (1995)

[11] Ekman, P., Friesen, W.V.: Constants Across Cultures in the Face and Emotion.
In: Journal of Personality and Social Psychology, 17(2), pp. 124-129 (1971)

[12] Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth,
G., Kapur, N., Wood, K.: SenseCam: A Retrospective Memory Aid. In: Proc. the
int’l conf. Ubiquitous Computing, pp. 177–193, Springer-Verlag, Berlin (2006)

[13] Hua, G., Yang, T., Vasireddy, S.: PEYE: Toward a Visual Motion Based Percep-
tual Interface for Mobile Devices. In: Proc. of the 2007 IEEE int’l conf. Human-
computer interaction, pp. 39–48, Springer-Verlag, Berlin (2007)

[14] Jia, P., Vision Open Statistical Models, http://sourceforge.net/projects/vosm
(2011)

[15] Liao, S., Fan, W., Chung, A., Yeung, D.-Y.: Facial Expression Recognition us-
ing Advanced Local Binary Patterns, Tsallis Entropies and Global Appearance
Features. In: IEEE Int’l Conf. Image Processing, pp. 665–668 (2006)

[16] Littlewort, G., Bartlett, M., Fasel, I., Chenu, J., Kanda, T., Ishiguro, H., Movellan,
J.: Towards Social Robots: Automatic Evaluation of Human-robot Interaction
by Face Detection and Expression Classification. Advances in neural information
processing systems, 16, pp. 1563–1570 (2004)

[17] Lu, H., Pan, W., Lane, N., Choudhury, T., Campbell, A.: SoundSense: Scalable
Sound Sensing for People-centric Applications on Mobile Phones. In: Proc. the 7th
int’l conf. Mobile systems, applications, and services, pp. 165-178, ACM (2009)

[18] Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding Facial Expressions
with Gabor Wavelets. In: Proc. 3rd IEEE Int’l Conf. Automatic Face and Gesture
Recognition, pp. 200-205, IEEE Computer Society, Washington, DC (1998)



20 Xiaochao Yang et al.

[19] Matthews, I., Baker, S.: Active Appearance Models Revisited. In: Int’l J. Comput.
Vision, 60(2), pp. 135-164 (2004)

[20] Michel, P., Kaliouby, R.E.: Real Time Facial Expression Recognition in Video
using Support Vector Machines. In: Proc. the 5th int’l conf. Multimodal interfaces,
pp. 258–264, ACM, New York (2003)

[21] Miluzzo, E., Lane, N., Eisenman, S., Campbell, A.: CenceMe: Injecting Sensing
Presence into Social Networking Applications. In: Proc. the 2nd European conf.
Smart sensing and context, pp. 1–28, Springer-Verlag, Berlin (2007)

[22] Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M.,
Howard, E., West, R., Boda, P.: Peir: The Personal Environmental Impact Report,
as a Platform for Participatory Sensing Systems Research. In: Proc. the 7th int’l
conf. Mobile systems, applications, and services, pp. 55-68, ACM, New York (2009)

[23] Radovanovic, M., Nanopoulos, A., Ivanovic, M.: On The Existence of Obstinate
Results in Vector Space Models. In: Proc. the 33rd int’l conf. Research and devel-
opment in information retrieval. pp. 186–193, ACM, New York (2010)

[24] Ristic, B., Arulampalam, S., Gordon N.: Beyond The Kalman Filter: Particle
Filters for Tracking Applications. Artech House Publishers (2004)

[25] Shan, C., Gong, S., McOwan, P.: Facial Expression Recognition based on Local
Binary Patterns: A Comprehensive Study. Image and Vision Computing, 27(6),
pp. 803-816 (2009)

[26] Szeliski, R.: Computer Vision: Algorithms and Applications, Microsoft Research
(2010)

[27] Viola, P., Jones, M.J.: Robust Real-time Face Detection. In: Int’l J. Comput.
Vision, 57, pp. 137-154 (2004)

[28] Willogarage, OpenCV, http://opencv.willowgarage.com/wiki (2010)
[29] Yan, T., Kumar, V., Ganesan, D.: CrowdSearch: Exploiting Crowds for Accurate

Real-time Image Search on Mobile Phones. In: Proc. the 8th int’l conf. Mobile
systems, applications, and services, pp. 77-90, ACM (2010)

[30] Yilmaz, A., Javed, O.,Shah, M.: Object Tracking: A Survey. ACM Comput. Surv.,
38 (2006)

[31] Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A Survey of A↵ect Recognition
Methods: Audio, Visual, and Spontaneous Expressions. In: IEEE Trans. Pattern
Anal. Mach. Intell., 31(1), pp. 39-58 (2008)


