

Ecological Network Structure

Jennifer A. Dunne

Visiting Professor, Santa Fe Institute

Assistant Director Pacific Ecoinformatics & Computational Ecology Lab

Life emerged from the burrow and fissures. Soon, the desert was filled with the buzz and click and screech of creatures which, lacking mankind's superior brainpower, did not concern themselves with finding someone to blame and instead tried to find someone to eat.

Jingo, Terry Pratchett, p.372

Part 1: Ecological Network Structure Intro Part 2: Models of Food-Web Structure Part 3: Food-Web Robustness Part 4: Ancient Food Webs

Part 1: Ecological Network Structure Intro

Technological networks

11 2222 4450 12 2223 4450 13 2222 4450 14 2223 4450 14 2223 4450 15 2500 Canada De Los Alémos * El Dorado At Santa Fe 233 0 234 El Dorado At Santa Fe 233 0 234 Canada De Los Alémos * El Dorado At Santa Fe 233 0 234 Canada De Los Alémos * El Dorado At Santa Fe

Road Maps

Internet Connectivity

Circuit Boards

Social networks

The Kevin Bacon Game

Biological networks

Protein Networks

Neural Networks

Support Network for a Homeless Woman Nodes/Vertices = Species (usually)

Edges = Trophic (Feeding) Links/Interactions Types of links: herbivory, predation, parasitism, cannibalism Links are directed in terms of feeding relationships (Consumer → Resource) Links are undirected in terms of changes to population and evolutionary dynamics

"Original Species Webs" versus "Trophic Species Webs"

Little Rock Lake Food Web 92 Trophic Species with 997 Feeding Links

Diversity & complexity in food webs

Trophic Species Richness (S)

- Functionally distinct taxa
- Share the same set of predators & prey
- Reduces methodological bias
- Largest S thus far: 346

Connectance (Links/Species²)

- Potential feeding links that are realized
- Theoretically varies from 0 to 1
- Empirically varies from ~0.01 to 0.3
- C varies independently of S
- Power-law relationship: $L = 0.1S^2$

50 pelagic lake food webs

Data: Havens 1992 Science, analysis: Martinez 1993 Science

3 model food webs with S = 50

Low connectance webs, C < 0.10

Waide & Reagan 1996

Townsend et al. 1998

Townsend et al. 1998

Middle & high connectance webs, $C \ge 0.10$

St. Marks Seagrass

C = 0.10, S = 48, L/S = 4.6Christian & Luczkovich 1999

St. Martin Island

C = 0.12, S = 42, L/S = 4.9Goldwasser & Roughgarden 1993

Little Rock Lake

C = 0.12, S = 92, L/S = 10.8 Martinez 1991

Lake Tahoe

C = 0.13, S = 172, L/S = 22.6Martinez unpublished data

Mirror Lake

C = 0.15, S = 172, L/S = 25.1Martinez unpublished data

Bridge Brook Lake

C = 0.17, S = 25, L/S = 4.3 Havens 1992

Coachella Valley

C = 0.31, S = 29, L/S = 9.0 Polis 1991

Skipwith Pond

C = 0.32, S = 25, L/S = 7.9 Warren 1989

Three recent marine food webs (C = 0.22 to 0.24)

Structure of 'real-world' networks

"Why is network anatomy so important to characterize? Because structure always affects function." (Strogatz 2001)

Small-world topology

Watts, D.J. and Strogatz, S.H. 1998. Collective dynamics of 'small-world' networks. Nature 393:440-442.

- Short path lengths
 - average shortest distance between pairs of nodes
 - short compared to regular network
- High clustering
 - proportion of nodes linked to a node that are also linked
 - high compared to random network

Scale-free degree distribution

Albert, R., Jeong, H., and Barabási, A.-L. 1999 The diameter of the world-wide web. Nature 401:130-131.

- Power-law link distribution
 - most most nodes have few links
 - a few nodes have many links ('hubs')

Regular Network

Random Network

Small-World, Scale-Free Network

Are food webs small worlds? Nope.

Path lengths are small (~2 degrees of separation)

BUT

Clustering is low (few food webs have high clustering)

Path lengths of 7 empirical food webs

Clustering of many empirical networks

Networks above dashed line have at least 2X random clustering

Are food webs scale-free? Nope.

Webs shown in order of increasing connectance.

Exponential distribution indicated by straight line on log-linear graph.

Most food webs display single-scale distributions (exponential or uniform).

Only two very low C webs display power-law distributions.

of trophic links

Fig. 2. Linear-log plots of the cumulative distributions of links per species (both predator and prey links) in 16 food webs. Webs are ordered by increasing connectance (see Table 1). Lines and r^2 values show the fit to the data of the best of three simple models: power-law distribution (upward curved line), exponential decay (straight line), or uniform distribution (downward curved line). No food web is well fit by a Poissonian or Gaussian distribution.

Are food webs scale-free? Nope.

Overlay of Link Distribution Data from 16 Food Webs

(power law would display straight line on log-log plot)

- Evidence for a unified functional form for food-web link distributions?
- The relatively high *C* and low *S* of food webs limits potential heterogeneity of feeding link distribution.
- When might power-laws occur?
 Cross habitat boundaries
 Systems dominated by specialists
 Snapshot vs. integrative data

Limitations of small-world, scale-free analyses

Only 3 aspects of topology typically considered:

- 1) Characteristic Path Length
- 2) Clustering Coefficient
- 3) Link Distribution

These properties give a sense of coarse structure. What about more system-specific, fine-grain structure?

Other aspects of network structure

Compartmentalization

Densely connected subgroups

(Girvan & Newman PNAS 2002, Krause et al. Nature 2003, Melián & Bascompte Ecology 2005)

Disassortative Mixing

Low degree species tend to link to high degree species

(Newman Phys. Rev. E 2003)

Simple Patterns

Universal scaling of minimum structure

(Garlaschelli et al. Nature 2003, but see Camacho & Arenas Nature 2005)

Repeating simple motifs

(Milo et al. Science 2002)

Possible configurations: 13 3-node, 199 4-node

Gene Regulation (2) Neurons (3, 1 shared w/ food webs) Food Webs (2) Electronic Circuits 1 (3, 1 shared w/ food webs) Electronic Circuits 2 (3) World Wide Web (3)

Properties Specific to Food-Webs

Basic Properties: S (# species), L (# links), L/S (links per species), C (connectance = L/S^2)

Types of Taxa

% Top

% Basal

Overall Network Structure

Generality SD (var. of links to resources) (out degree) % Intermediate Vulnerability SD (var. of # links from consumers) (in degree) Link SD (var. of total links) (degree) % Cannibals Maximum Trophic Similarity Mean (max. diet overlap) % Omnivores Chain Length Mean % Herbivores Chain Length SD Log Chain Number % Spp. in Loops Mean Trophic Level $(A \rightarrow B \rightarrow C \rightarrow A)$

Links per Species

Percent Omnivores

Red = Lowest Value Green = Highest Value

%Can

66

%Omn

76

Some properties of diverse food webs

Taxa

30

Coachella Valley

S

29

C

0.31

L/S

9.0

Ch len

6.7

Path len

1.4

%T

0

%I

90

%B

10

Terrestrial

Pond/Lake

St. Martin Island 42 0.12 4.9 17 14 44 5.2 1.9 69 0 60 UK Grassland 75 61 0.03 1.6 3.2 31 56 13 21 3.7 0 **Skipwith Pond** 35 25 0.32 7.9 6.2 1.3 92 32 4 4 60 75 32 Bridge Brook Lake 25 0.17 4.3 4.0 1.9 0 68 12 40 86 Little Rock Lake 182 0.12 92 49 73 19 13 38 1 14 Canton Creek 108 102 0.07 6.8 3.2 2.3 25 22 53 8 1 Stony Stream 109 0.07 7.6 3.1 2.3 17 27 56 2 10 112 2.2 Chesapeake Bay 33 31 0.07 4.0 2.7 32 52 16 3 52 St. Marks Estuary 48 48 0.10 4.6 17 12 6.6 2.0 69 6 71 Ythan Estuary 92 83 0.06 4.8 5.9 37 54 9 2.2 4 54 Benguela 29 0.24 93 7 29 7.0 6.4 1.6 0 24 76 Caribbean Reef 50 0.22 11.1 9.8 6 50 16 0 94 42 86 94 NE US Shelf 81 79 0.24 17.8 15.3 1.6 3 32 78 4

Food-web properties are highly variable

Many food-web properties are "scale-dependent" with S and/or C.

As a result, direct comparison of web properties is problematic.

Path lengths of 7 empirical food webs

Structure Summary

- Ecological communities can be characterized as networks of interacting species. Trophic interactions, compiled into food webs, are a central concept for empirical and theoretical ecological research.
- Trophic links scale as a power-law with number of species, such that $L = 0.1S^2$, or about 10% of possible trophic links in a community are actually realized (Connectance = $L/S^2 = 0.1$). Early studies suggested linear scaling (constant links/species), other studies suggest an exponent between 1 and 2.
- Most food webs are not small-world or scale-free, and thus have a different topology than most other types of real-world networks.
- Food-web structure analysis considers a wide range of topological properties. Those properties vary widely across food webs, and are typically scaledependent on S and/or C.