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1. Introduction

Machine learning and statistics are one and the same drsgiplith different communities of re-
searchers attacking essentially the same fundamentdepnslirom different perspectives. In this
note we briefly describe some current challenges in the fiektadistical machine learning that
cut across the communities. We focus on areas where actwatopenent of learning techniques
demonstrates promising performance, but with significapsgn the theoretical foundations; fill-
ing the gaps will help to explain and improve upon this perfance. The themes are high di-
mensional data, sparsity, semi-supervised learningglaéon between computation and risk, and
structured prediction. Our selection of these themes islfigiased (and therefore has high risk),
but we believe that these challenges can benefit from a catiamof the statistics and computer
science perspectives on learning from data.

2. Sparse Learning in High Dimensions

Most statistical theory is based on asymptotic approxiomatithat allow the sample sizeto
grow large. When the number of variablésn the model is large, however, this theory can be
misleading. One important challenge in statistical maghgarning is to develop relevant theory
and methods when the dimension of the data grows with the auofldata points. Such a theory
should yield insights for real data sets with moderate sarsizies but large dimensions. Sparsity
clearly has to play a central role in this emerging theory.

In the standard statistical prediction problem, we obsempairs of datd X, Y1), ..., (X,, Ys)
whereX; = (X;i, ..., X;y)! is ad-dimensional vector of covariates akigis a response. The goal
is to predictY” from X. The usual regression model¥s = m(X;) + ¢, i = 1,...,n, where
m : R? — R is the unknown regression function ands a mean 0 noise variable. Estimating
nonparametrically is hopelessdfis large, unless we add extra assumptions. For example, it is
well known that

lim inf n 9 inf sup R(m,,m) > 0

n—0oo Mn meM
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where R(m,,,m) = E,, [(m,(z) — m(x))?dz is therisk of the estimaten,, constructed on a
sample of sizer and M is the Sobolev space of order two. This implies that the lastaf con-
vergence ig:~*/(“+9 which in turn implies that the sample sizeneeds to grow exponentially
with dimensiond to keep the risk small. This is the statisticalrse of dimensionalityThe com-
putational burden also increases exponentially with dsren This is the computational curse
of dimensionality. It is worth pointing out that even the a@etric, linear model is difficult both
statistically and computationally if is very large.

For some applications it is reasonable to expectiha sparsen some sense. In such cases it
may be possible to “beat” the computational and statistinedes of dimensionality using various
greedy algorithms, but little theoretical support is cathe available for such techniques. In the
linear case, it might be reasonable to assumelftiigt = >, | 5;| is small, which implies that many
of the 8;’s are close to zero. Alternatively, one might assume that) actually only depends on
a small number of the covariates so that(z) = >_ . 8;z; whereR has cardinality-. Such
sparsity assumptions play a critical role in many new meghodhigh-dimensional problems. The
lasso estimator (Tibshirani, 1996) 6fin the linear modeh(z) = 273 is

3= argmin, (Z(YZ - BT X)* + >\||ﬁ||1).
=1
The same estimator was proposed in signal processing umel@ame basis pursuit (Chen et al.,
1998). Since the optimization problem is convex, the edtimean be found efficiently, in prin-
ciple. Justification for the estimator, recently providgddnnoho (2004) in the signal processing
context, hinges on sparsity; related recent work is Fu andh€r§2000) and Fan and Peng (2004).
For nonparametric problems Zhang et al. (2005) use likelihmasis pursuit, essentially the lasso
adapted to the spline setting.

An alternative method i, boosting, closely related to forward stepwise regressioimaatch-
ing pursuit. For standardized variables (zero mean, umianee), thel, boosting algorithm for
estimatingn(z) = z” 3 can be expressed as the iteratibn— m + yﬁjxj wherez; is the vari-
able most correlated with the current residuﬁysi,s the corresponding least squares estimate and
v > 0. Buhlmann (2006) showed the following remarkable resultt the number of variables
d(n) increase agd = O(exp(Cn?)) for somey > 0 andC > 0. Assuming the sparsity condition
lim sup,,_ Z?(:"f |8;] < oo as well as some mild technical conditiotis, boosting is consistent:
E|m(X) — m(X)]? = o(1) asn — oc.

In the nonparametric setting, recent work of Lafferty ands%¢éaman (2005) has developed the
rodeq which stands for “regularization of derivative expeaatoperator.” It is based on fitting a
local linear regression with large bandwidths, and theneimentally reducing the bandwidths in
small, greedy steps. The decision of whether or not to charndwidth is based on a statistical
test on the size of the derivative. Assuming sparsity, laffend Wasserman (2005) show that the
resulting estimator has nearly optimal rates of convergénicSobolev classes in high dimensions,
as if the relevant variables were isolated and known in ackvan
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But a convergence rate suchsas’“+") for a function depending onrelevant variables id
dimensions may still not be strong enough to explain the @sgive performance seen by many
heuristic machine learning algorithms empirically. Retggemudibert and Tysbakov (2005) have
proposed a framework under whishiperlinearrates of convergence can be obtained for plug-in
classifiers, that is, classification rules of the form

m(z) =1 (ﬁn(x) > %)

wheren,, is an estimate of the regression functigiX’) = P(Y = 1| X) for a binary classification
problemY € {0, 1}. In particular, it is shown that the optimal rate satisfies

sup {EP(, #7) —inf P(m(X) £Y)} = 0 (n° ‘Z&ii‘;))

whereP is a probability distribution or{X,Y"), m,, is the plug-in classification rule for a local
polynomial estimator on a sample of sizg( is the Holder exponent of the regression function
P(Y | X), anda is the exponent in theargin assumption

P0<|nX)—34]<t)<Ct*, VE>0

(The relation between the margin condition and variancesm®unds is discussed in Shen and
Wang (2006).) However, to beat the statistical curse, snealyais requires thata = O(d). With

the dimensioni growing with sample size, this may not be realistic, since it may require the
margin to be too large, or the decision boundary to be too $#mddoreover, the method assumes
that the bandwidth is selected As= n~'/(2%+4) which, apart from not being data-dependent,
does not allow for sparsity and does not address the conmmaatcurse. But these impressive
results suggest that significant advances are being madedawrealistic theory for learning in
high dimensions.

3. Semi-Supervised L earning

In a typical machine learning problem, labeled examplesiare consuming and expensive to ob-
tain relative to raw data, since the labeling may requireeespve experiments, clinical trials, or the
efforts of human experts who must often be quite skilledebd] if it were otherwise, the machine
learning problem would probably not be of significant ingtr@ the first place. For example, it
is easy to collect acoustic speech by pointing a micropht@aeld/ or radio, but accurately tran-
scribing the speech requires significant time and effore diallenge o$emi-supervised learning
is to somehow leverage large amounts of unlabeled data &r éedmprove upon a learning al-
gorithm that uses only labeled data. Interestingly, whilis problem has attracted significant
attention recently in the machine learning community, ehisrlittle work in this direction in the
more traditional statistics literature.



Several novel approaches to this problem have been propesewtly, with results that suggest
significant improvements may be obtainable by combininglidwith unlabeled data. However,
from a theoretical standpoint the problem is wide open. Agtbese recent methods is a promising
family of techniques that exploit the “manifold structui@’the data. Such methods are generally
based upon an assumption that similar unlabeled exampbesddhe given the same classification.
The learning methods have intimate connections with randatks, electric networks and spectral
graph theory, heat kernels and normalized cuts used in ip@PEssing.

To illustrate, we briefly mention the approach of Zhu et abQ2) based on Gaussian random
fields and harmonic functions defined with respect to disckaplace operators. Standard kernel
regression corresponds to the locally constant estimator

Mny(r) = argmin ZKh(Xi,l’)(Yi—m(x))Q

Z?:l Kh(Xiv I) Yl
Z?:l Kh(Xiv l’)

where K, is a symmetric kernel depending on bandwidth paramétens the semi-supervised
approach of Zhu et al. (2003), the locally constant estimate) is formed using not only the
labeled data, but also using the estimates abther unlabeled points. Suppose that the fitst
data point§ X1,Y}), ..., (Xy, Yr) are labeled, and the nexipoints are unlabeledy,, 1, ..., X¢iq.
The semi-supervised regression estimate is then

M, = argmin D) KX, X;) (m(X,) — m(X;))?
i=1 j=1
where the minimization is carried out subject to the comstra(X;) = Y;, i = 1,...,¢. Thus,
the estimates are coupled. The local linear version woulgesbe least squares problem

m, = argmin >N KX X;) (Bo(X0) — (X0 — X)) B(X))?
i=1 j=1
with the estimatofm,,(X;) = Go(X;)forj =(+1,.... 0 + u.

This estimator can be viewed in several different ways. Kamgple, it is the posterior of a
Gaussian random field, corresponding to the configuratidhefield with smallest total energy,
subject to boundary conditions specified by the labeledtppthus solving a graphical Dirichlet
problem (Doyle and Snell, 1984). In contrast, for multidbdliscreterandom fields, computing the
lowest energy configuration is typically NP-hard, and agpmation algorithms or other heuristics
must be used, as have been extensively developed in the temvion literature (Boykov et al.,
2001). Another view is to note that the estimator can be &mith closed form as

M= ALALY = GY
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whereA,,, andA,; denote appropriate blocks of the combinatorial Laplaciathe data graph,
T/T\L = (m(Xerl)a S 7m<X€+u))T

is the vector of estimates over the unlabeled test pointsYaa (Yi,...,Y;)? is vector of labeled
values. This expresses taffective kernels in terms of the “data manifold,” which can be thought
of in terms of heat kernels for the discrete diffusion equati(Smola and Kondor, 2003). Related
work in semi-supervised learning by Chapelle et al. (2002swsgenvalues of the Laplacian to
create various kernels, and an approach of Belkin and Niy2@f)Z) regularizes functions on the
data graph by selecting the tgpnormalized eigenvectors of the Laplacian correspondiritpeo
smallest eigenvalues.

While this preliminary work has been promising, with sempaivised learning often dramat-
ically outperforming conventional approaches, many inggrquestions remain unresolved. For
example, it is unknown how to handle noise in these methaus$ haw to construct the under-
lying graphs automatically from data, which encodes tha dadnifold. This latter problem can
be viewed as equivalent to bandwidth selection, for whichhmogs based on the rodeo may be
applicable. Virtually nothing is known about minimax thedor such problems.

In the analysis of traditional approaches to kernel regoass is well known that the actual
kernel used is not as important as the choice of bandwidthgaiticular, in one dimension the
risk of the locally-constant (Nadaraya-Watson) estimator

R(fn,m) — h{( / 22K (z) dm) / <m”<x>+2m'(a;)f;/g)>>2dx

o? [ K*(x)dx 1 . .
+ 7 /f(x) dx 4+ o(nh™") + o(h?)

whereh — 0 andnh — oo. The multi-dimensional version is part of the analysis giv®y
Ruppert and Wand (1994). The teﬂm’(x)fjﬁg)) involving the first derivative of the regression
function and the derivative of the logarithm of the samplitemsity f is called thedesign biasit
involves the distribution of the covariates. When usingéaaghounts of unlabeled data, it can be
assumed that the design bias is known. An analysis of sepa@rgised regression and classification
must somehow incorporate more global information abous#repling density—that is, the data
manifold—and the smoothness of the regression functioh ke$pect to this manifold. It should
be possible to establish rates that are faster than thosénetitusing only labeled data, under

appropriate assumptions.

4. Computation and Risk

Statistical methods are usually aimed at finding procedilmasmake the mean prediction error,
or risk, small. But these measures of risk ignore computatest. It is important to develop new
theoretical frameworks that combine statistical predicgrror with computational complexity.
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Computational learning theory has developed the PAC modigavhing as a framework for
studying the complexity of discrete classification probddivialiant, 1984; Pitt and Valiant, 1988).
Several significant advances have resulted directly frankiihg about the computational and al-
gorithmic aspects of machine learning within this framewdtxamples include boosting (Freund
and Schapire, 1996), exponentiated gradient algorithm®méne learning (Kivinen and War-
muth, 1997; Kivinen et al., 1997), and Fourier based metfi@dBoolean problems (Kushilevitz
and Mansour, 1993; Linial et al., 1993). More recent work s@asglied learning in the context
of approximation algorithms (Alekhnovich et al., 2004). édmportant computational learning
problem, which is closely related to the the sparse regregsioblem discussed above, is the task
of learning a %-junta,” that is, a Boolean function that depends on dntf d Boolean variables,
with d — co. The brute force approach requir@éd”*) examples to learn the function exactly. In
the noise-free case an algorithm with time-complex@(ylwk*f1 ) = O(d"™) was recently given by
Elchanan et al. (2004), whete < 2.37 is the exponent of matrix multiplication. However, the
problem becomes computationally intractable in the presefnoise, within the statistical query
model (Kearns, 1998).

Overall, the PAC model’s focus on the traditional complgsthieoretic dividing line of poly-
nomial versus exponential time or space has resulted irhé@y being largely built up around
negative examples. This suggests that the underlying etieal framework may be too rigid. It
would be very interesting to develop new theoretical frawrw based on theadeoff between
computation and risk that is important in practice; thisl&aff appears to have largely been ignored
in both statistical theory and computational learning tiieo

The computation-risk tradeoff for learning is perhaps ek to the classical theory of nu-
merical optimization than it is to classical complexitydimgeand NP-completeness. In considering
basic line search or trust region methods for unconstraspéchization, for example, one can con-
sider a (locally) quadratically convergent Newton’s algon, which may require)(d?) flops in
each iteration, or a superlinearly convergent quasi-Newtgorithm that will require only)(d?)
flops in each iteration, or a linearly convergent gradiestdat algorithm that may cost(d) flops.
Similarly, preconditioning methods for solving a lineas®m Az = y with conjugate gradient
use a sparse matri® to approximated, and solveB~!Ax = B~'b. The timeT'(A) required for
ane-approximate solution is then

T(4) = \/5(A, B) (m + T(B)) log (%)
wherem is the number of nonzero entries iy x(A, B) is the condition number, measuring the
quality of approximation, and’( B) is the time required to solvBy = c. In each case, one can
trade off computation for the rate of numerical convergdndée solution.

Analogously, in nonparametric learning we expect to be ableade off the amount of com-
putation invested to search over a set of smoothing parasnatminst the rate of minimax con-
vergence, or the richness of the function space that theadethn learn at a given rate. A search
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procedure over subsets of sizeequiresO(d") time, and as dimension grows, this cost for large
may be charged against the gains in statistical risk condparthn a search over smaller sets of
variables.

A classical minimax rate,, ; for n examples inl dimensions satisfies

liminf inf sup p,q R(My, m) >0
n—oo Mn€H meF
for a hypothesis clas® and function spacé. It would be interesting to investigate new frame-
works where the computational cost, for estimating a function on examples inl dimensions
is taken into account. In this setting, one could look for pomational minimax rates satisfying
liminf inf sup U(knd, pna) R(My, m) >0
n—00 Mmn€H meF

wherel{ plays the role of a utility function. If computational costnot taken into account in the
utility function, the classical minimax theory is recovere

As an example, the rodeo method (Lafferty and Wassermai®)28€@reedy in that it only tests
the current fit against the next smallest bandwidth. A monsisige test was used in Lepski et al.
(1997), Lepski and Spokoiny (1997) and in the multivariagesion in Kerkyacharian et al. (2001),
the idea being to use the largest bandwilltrom a grid of bandwidth$<,, such thatm,, is not
significantly different from anyn,, wheren varies over all bandwidths i#,, that are more refined
thanh. In contrast, the rodeo tests, only against the set of bandwidths just smaller thaiThe
distinction is exhaustive search versus greedy search.eXhaustive method yields estimators
that are adaptively minimax fok, loss over a large scale of Besov spaces and losses, namely,
S=1{B,,: 1 <pq<oos>(1/p—1/q)}, while the rodeo achieves optimal rates only
over B3, andr = 2. But the rodeo involves much less computation. Thus, theaed@nputation-
adaptation tradeoff A compromise between these two extremes is to restrictetbts to a set of
bandwidthsG(h) of varying polynomial size. Largé&' gives full adaptivity while smaltz saves
computation. It should be possible to quantify the compartaadaptation tradeoff by finding the
adaptivity scaleS as a function of the size of the testing &t

A related tradeoff is present in hierarchical regressiah@dassification schemes such as dyadic
decision trees, which were recently shown by Scott and Nq2@86) to have nearly optimal rates
of convergence, giving theoretical support to a family aht@ques that have been popular for
decades. Scott and Nowak (2006) prove that if one alldivs= O(logn) dyadic splits in each
of d covariates, and if the tree is chosen to minimize a penalctassification error, then the
resulting classifier has adaptive minimax properties. Foalsdimensions the@ptimal tree, as
determined by the penalized empirical risk, can be foundgudiynamic programming. But the
search over all such trees is computationally intractaiméairged; thus the statistical curse is in
principle addressed, but only by ignoring the computaticnase. It may be possible to quantify
the tradeoff between adaptivity of the classifier and commportal complexity as measured by the
maximum depth of the search tree.



5. Structured Prediction

Structured predictioms a term used in the machine learning community for a clasgiéin or re-
gression problem with non-iid data, where typically the elggencies are encoded in a graphical
model. This topic has seen a good deal of activity in receatgjeprompted by both technical
advances and important applications. Problems such aslspegognition, image denoising, ob-
ject recognition, natural language parsing, informatigtmaestion, handwriting recognition, gene
prediction, machine translation and many others can beraibticast as structured prediction
problems. While many of the problems themselves are not hewrderlying methods are recent
developments that have come on the heels of advances in keetieods, approximate inference
in graphical models, and large margin techniques for diaasion, including support vector ma-
chines. Anincomplete sample of recent work on methods aplicagions of structured prediction
includes (Lafferty et al., 2001; Collins, 2002; Pinto et &003; McCallum, 2003; Kumar and
Hebert, 2003; Sha and Pereira, 2003; Taskar et al., 2008n A&lt al., 2004; Tsochantaridis et al.,
2005).

Formally, a structured prediction problem can be thoughasof multi-class problem with a
large number of class labels, typically exponential in thenber of variables. But in order to de-
velop estimators and efficient algorithms, the structurgnefproblem must be taken into account.
In the simplest case, the structure is a linear chain, as iddeh Markov model. But when condi-
tional models are used, complicated features of the emjngtisequence can be incorporated. The
number of parameters increases rapidly, so that regulenizand sparsity become essential.

The maximum margin Markov networlframework of Taskar et al. (2003) is based on the use
of loss functions that can be decomposed into a linear caatibim of losses associated with the
cliques in a graphical model. Taskar et al. (2003) proposen&i@lization of the SVM hinge loss
for structured problems, and show that the resulting ogtton problem can be solved with the
same techniques used for inference in undirected grapimodkels. The optimization algorithm
is efficient if the underlying graph has low tree width. Clgsedlated methods are developed by
Tsochantaridis et al. (2005).

In some cases, covering number or support vector basedajiegation error bounds for struc-
tured prediction have been developed (Collins, 2002; Taskat., 2003); but little is currently
known about convergence rates or minimax theory for theskl@ms. The analysis will be com-
plicated by the fact that the methods are often used in cotipmwith approximate inference
techniques for graphical models, for example, variationathods or relaxations of integer linear
or quadratic programs. These methods themselves are naivaerstood statistically; for exam-
ple, there is currently no reasonable analysis of the bidsvariance properties of mean-field or
structured variational approximations (Wainwright anddam, 2003), although such techniques
are widely used in machine learning.

A more basic statistical challenge associated with thetmtques has to do with consistency—

IMarkov network is the Al terminology for a random field or uretited graphical model.
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the convergence of the excess risk to zero as the sampleeside to infinity. While consistency
for large margin binary classifiers is now well understoodr{B# et al., 2006), the consistency
problem for multi-class problems is not fully resolved.diiéws from the work of Lee et al. (2004)
and more recently Tewari and Bartlett (2005) that the maxgmaviarkov network generalization
of the SVM hinge loss is inconsistent. The only known comsisimethods for structured pre-
diction problems in this class are based on conditionalihked, where the consistency follows
from standard theory. The traditional statistical thirtkimhich often demands consistency before
anything else, perhaps deserves to be reconsidered irptisxt.

References

M. Alekhnovich, M. Braverman, V. Feldman, A. Klivans, and TtaBsi. Learnability and automa-
tizability. In Proceedings of the 45th Foundations of Computer Science (f;Q084.

Y. Altun, T. Hofmann, and A. J. Smola. Gaussian process ifiegson for segmenting and anno-
tating sequences. ICML-04, 21sth International Conference on Machine Learn2@04.

J.-Y. Audibert and A. B. Tysbakov. Fast learning rates forggiu classifiers under the margin
condition. Technical report, PMA-998, Laboratoire de Riobtés Paris 6 and 7, December
2005. arXiv:math.ST/0507180.

P. Bartlett, M. Jordan, and J. McAuliffe. Convexity, classtion, and risk boundslournal of the
American Statistical Associatipi01(473):138-156, March 2006.

M. Belkin and P. Niyogi. Semi-supervised learning on mauwi$ol Technical Report TR-2002-12,
University of Chicago, 2002.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energymization via graph cutdEEE
Trans. on Pattern Analysis and Machine Intelligen28(11), November 2001.

P. Buhlmann. Boosting for high-dimensional linear mod&lse Annals of Statistic84(2), 2006.

O. Chapelle, J. Weston, and B. Scholkopf. Cluster kernels foii-sapervised learning. 1Ad-
vances in Neural Information Processing Systemsyakhime 15, 2002.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decompasity basis pursuitSIAM
Journal on Scientific and Statistical Computjr§:33—61, 1998.

M. Collins. Discriminative training methods for hidden Makkmodels: Theory and experiments
with perceptron algorithms. IRroceedings of Empirical Methods in Natural Language Pro-
cessing (EMNLP)2002.



D. Donoho. For most large underdetermined systems of eapsatthe minima¥!-norm near-
solution approximates the sparest near-soluti@thnical report, Stanford2004.

P. Doyle and J. SnellRandom Walks and Electric Networkslathematical Assoc. of America,
1984.

M. Elchanan, R. O’'Donnell, and R. Servedio. Learning fundiaf k& relevant variables.J.
Comput. System Sc69(3):421-434, 2004.

J. Fan and H. Peng. Nonconcave penalized likelihood witherging number of parametershe
Annals of Statistics32:928-961, 2004.

Y. Freund and R. E. Schapire. Experiments with a new boostgayithm. InMachine Learning:
Proceedings of the Thirteenth International Conferemzges 148-156, 1996.

W. Fu and K. Knight. Asymptotics for lasso type estimatoffie Annals of Statistic28:1356—
1378, 2000.

M. Kearns. Efficient noise-tolerant learning from statiatiqueries.Journal of the ACM45(6):
983-1006, 1998.

G. Kerkyacharian, O. Lepski, and D. Picard. Nonlinear estiom in anisitropic multi-index de-
noising. Probability Theory and Related Field$21:137-170, 2001.

J. Kivinen and M. Warmuth. Additive versus exponentiateatdggnt updates for linear prediction.
Journal of Information and Computatiph32(1):1-64, 1997.

J. Kivinen, M. Warmuth, and P. Auer. The perceptron algaomitts. winnow: Linear vs. logarithmic
mistake bounds when few input variables are relevamtificial Intelligence on Relevanc®7
(1-2):325-343, 1997.

S. Kumar and M. Hebert. Discriminative fields for modelingsal dependencies in natural im-
ages. IMAdvances in Neural Information Processing System£2Q063.

E. Kushilevitz and Y. Mansour. Learning decision trees gsire Fourier spectrun8IAM Journal
on Computing22, 1993.

J. Lafferty and L. Wasserman. Rodeo: Sparse nonparamegies®on in high dimensions.
http://xxx.arxiv.org/pdf/math.ST/0506342005.

J. Lafferty, A. McCallum, and F. Pereira. Conditional randosids: Probabilistic models for
segmenting and labeling sequence dat@®rbyceedings of the 18th International Conference on
Machine Learningpages 282—-289, 2001.

10



Y. Lee, Y. Li, and G. Wahba. Multicategory support vector imaes: Theory and application to the
classification of microarray data and satellite radianda.diurnal of the American Statistical
Association99(465), 2004.

O. V. Lepski and V. G. Spokoiny. Optimal pointwise adaptivethods in nonparametric estima-
tion. Ann. Statist.25(6):2512—-2546, 1997.

O. V. Lepski, E. Mammen, and V. G. Spokoiny. Optimal spatidhgtation to inhomogeneous
smoothness: An approach based on kernel estimates withbladandwidth selectorsThe
Annals of Statistic25:929-947, 1997.

N. Linial, Y. Mansour, and N. Nisan. Constant depth circutisurier transform, and learnability.
Journal of the ACM40:607-620, 1993.

A. McCallum. Efficiently inducing features of conditionah@om fields. IfNineteenth Conference
on Uncertainty in Artificial Intelligence (UAIO3R003.

D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table extractiosilng conditional random
fields. InProceedings of the 26th Annual International ACM SIGIR crmnfee on Research
and Development in Informaion Retrieyphges 235-242. ACM Press, 2003.

L. Pitt and L. G. Valiant. Computational limitations on learg from examples.J. ACM 35(4):
965-984, 1988.

D. Ruppert and M. P. Wand. Multivariate locally weighted lestpuares regressioithe Annals of
Statistics 22:1346-1370, 1994.

C. Scott and R. Nowak. Minimax-optimal classification with digadecision treeslEEE Trans-
actions on Information Theor2006.

F. Sha and F. Pereira. Shallow parsing with conditional camdields. InProceedings of HLT-
NAACL Association for Computational Linguistics, 2003.

X. Shen and L. Wang. Discussion of 2004 IMS Medallion lectlu@gcal Rademacher complexities
and oracle inequalities in risk minimizatiomhe Annals of Statistic2006. To appear.

A. Smola and R. Kondor. Kernels and regularization on gralphSonference on Learning Theory,
COLT/KW 2003.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov netkgo In Advances in Neural
Information Processing Systems, P803.

A. Tewari and P. L. Bartlett. On the consistency of multiclaksssification methods. IRro-
ceedings of the 18th Annual Conference on Learning Theatyme 3559, pages 143-157.
Springer, 2005.

11



R. Tibshirani. Regression shrinkage and selection via tremla®urnal of the Royal Statistical
Society, Series B, Methodologic&B:267-288, 1996.

|. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.rdeamargin methods for structured
and interdependent output variabledournal of Machine Learning Researct:1453—-1484,
September 2005.

L. G. Valiant. A theory of the learnabl€€ommun. ACM27(11):1134-1142, 1984.

M. J. Wainwright and M. I. Jordan. Graphical models, expdiaéfamilies, and variational infer-
ence. Technical report, Number 649, Department of Stegistiniversity of California, Berke-
ley, 2003.

H. Zhang, G. Wahba, Y. Lin, M. Voelker, R. K. Ferris, and B. KleWariable selection and model
building via likelihood basis pursuitlournal of the American Statistical Associatji@®(467):
659-672, 2005.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervisedieg using Gaussian fields and har-
monic functions. INCML-03, 20th International Conference on Machine Learniag03.

12



