CSSS 2006 Physical Complex Systems

Lecturer: Alfred Hubler



Resources (an evolving list):

Modeling, prediction, and control of chaos
  • A. Hubler, Adaptive Control of Chaotic Systems, Helv.Phys,Acta 62,343 (1989).
  • J. Breeden, A. Hubler, Reconstructing Equations of Motion from Experimental Data with Unobserved Variables, Phys.Rev. a 42, 5817-5826 (1990).
  • Chris Strelioff, Alfred HŸbler, Medium-Term Prediction of Chaos, Preprint 2005.

    Nonlinear resonances
  • B. Plapp, A. Hubler, Nonlinear Resonances and Suppression of Chaos in the rf-Biased Josephson Junction, Phys.Rev.Lett 65, 2303-2306 (1990).
  • J. Xu, A. Hubler, Enhanced Diffraction Pattern from a Fibonacci Chain, Physical Review B 67, 184202 (2003).

    Minimum dissipation patterns, self-assembling systems, hardware implementations of neural nets
  • M. Sperl, A Chang, N. Weber, A. Hubler, Hebbian Learning in the Agglomeration of Conducting Particles, Phys.Rev.E. 59, 3165-3168 (1999)
  • Joseph K. Jun and Alfred W. Hubler, Formation and structure of ramified charge transportation networks in an electromechanical system, PNAS 102, 536-540 (2005).

    Adaptation to the edge of chaos
  • P. Melby, J. Kaidel, N. Weber, A. Hubler, Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map, Phys.Rev.Lett 84 5991-5993 (2000).
  • P. Melby, N. Weber, A. Hubler, Robustness of Adaptation in Controlled Self-Adjusting Chaotic Systems, Phys. Fluctuation and Noise Lett. 2, L285-L292 (2002).
  • P. Melby, N. Weber, A. Hubler, Dynamics of Self-Adjusting System with Noise, CHAOS 15, 033902 (2005).

    The whole is more than the sum of the parts
  • Alfred W. Hubler, Predicting Complex Systems with a Holistic Approach, Complexity 10, 11-16 (2005).