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Abstract

A Kalman filter is a stochastic, recursive estimator, which estimates the state of a system based on
the knowledge of the system input, the measurement of the system output, and a model of the relation
between input and output. The Kalman filter equations are well known, but often little effort is spent to
explain or understand how the Kalman filter really works, and what its assets and limitations are.

This paper introduces the Kalman filter in a very intuitive way, and looks at its properties: what
information can be extracted from it, and what are its limitations. This intuitive understanding should
help to develop successful practical applications. The paper also points at further reading.

1 Introduction

The purpose of this tutorial is to provide a very intuitive introduction to Kalman filters (KFs). KFs are used
to estimate the state of a system or part of it, based on the measurement of the system inputs and outputs,
and based on a model of the relation between them. Many textbooks treat KFs in a very concise and formal
way, concentrating on the mathematical derivation. When lacking an intuitive understanding, students often
have difficulty in applying KFs to practical situations, and they are unable to take full advantage of them.
Similarly, practising engineers may be reluctant to apply KFs to their practical problem at hand, because the
lack of intuitive understanding makes them feel unconfident.

This tutorial tries to respond to the need for a more intuitive treatment of KF's. First, later in this Section,
we briefly introduce a KF in general terms as a tool to fuse all kinds of information in order to obtain the most
accurate estimate of the state of a system. Sections 2, 3 and 5 formulate the estimation problem and provide
its solution for systems with increasing complexity: first static systems (Section 2), then dynamic systems
(Section 3), and finally extensions to nonlinear systems and to systems with constrained state variables.
(Section 5). Section 4 shows how the convergence of the KF can be monitored and how the KF can be used
to test hypotheses about the nature of the system. Section 6 describes a practical application with particular
emphagsis on the interpretation of the results. Section 7 briefly introduces the analogy between a KF and a
system of springs. For some readers, this might further develop the intuitive understanding. Finally, Section 8
points at further reading.

*Tine Lefebvre is a Doctoral Research Fellow with the Fund for Scientific Research-Flanders.
tHerman Bruyninckx is a Postdoctoral Research Fellow with the Fund for Scientific Research-Flanders.



The Kalman filter

A Kalman filter is a linear, model based, stochastic, recursive, weighted, least squares estimator. Estimator: As
stated above, the KF estimates the state of a system, or part of it, based on the knowledge (measurement) of
the system inputs and outputs. Model based € linear: The KF is based on a system model consisting of a state
equation and an output (measurement) equation, which are all linear. Least squares: Usually the estimation
process is overdetermined, i.e. it is not possible to produce an estimate that is perfectly consistent with all
collected information about the system (measurements). Noise is one important source of error. The KF then
provides the estimate that tries to minimize the inconsistencies with all pieces of information in the least
squares sense. In this respect, the KF is an optimal estimator. Weighted: When minimizing the sum of their
least squares, the inconsistencies with the different pieces of information are weighted with a measure of the
certainty of the information. Uncertain information is given low weight, whereas highly certain information is
given a very high weight. Recursive: When all information is available at once, it can be processed in batch,
as a classical weighted least squares problem. If, however, the information becomes available incrementally, as
is the case for an on-line estimator, a recursive formulation of the estimation process is necessary. The KF
does nothing more than that. Stochastic: The confidence about pieces of information is expressed in terms
of probability distributions. The KF works with Gaussian distributions for both measurements and state
estimates.

An intuitive example

As introduced above, the KF is a tool for stochastic data fusion. This is illustrated with the following exam-
ple. Consider a quantity (z), for example a length, that is measured twice with the same or with different
measurement equipment, for example a mechanical ruler and a laser system. The two measurements are noted
z1 and x2; they are characterised by Gaussian probability distributions with means Z; and Z, and standard
deviations o1 and o9:

) = e [— (%)] (i=1,2). 1)

The standard deviations are interpreted as a measure of uncertainty. The two measurements are combined to
give an estimate of the length:

Z=wr1+ (1 —w)xs, (2)
where (7) means estimate, and w is a weight which is still to be determined. Because z; and z2 have Gaussian
distributions, & has also a Gaussian distribution with standard deviation & given by:

6% = w’o} + (1 —w)’03 . (3)

The weight that minimizes the uncertainty, expressed by 4, is found as (put -2 = 0):
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The estimate & minimizes the sum of the distances to z; and z2, weighted by the respective standard deviations:

% = arg rr;in l(wla; w>2+ (w20;w>2] . (7)

This is again shown by putting % =0.

Suppose the two measurements become available sequentially. At time step 1 measurement z; becomes
available. Since this is the only information, the state estimate and its variance are & = z1; 67 = o7 (the
subscripts refer to the time step). Then, at time step 2, measurement x> becomes available, and the estimate
is now taken as in eq. (5), which is rewritten in recursive form:
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T9 — I represents the new information received at time step 2, and is called the innovation. Furthermore,
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o
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is called the update gain. Hence egs. (8), (9) become:
Iy = .’il‘}‘K(.’EQ—.@l) ; (].].)
63 = (1-K)éi. (12)

The structure of egs. (11),(12) reappears in later sections, where a similar problem is solved for more complex
systems. Notice that, in the sequential case, the subscripts of z and Z refer to the time step at which the
measurement is taken or the estimate is computed.

2 Static systems
A linear static system has a constant state vector  of dimension n and a linear output (measurement) equation:

where z is an [-dimensional measurement vector. p,, represents Gaussian measurement uncertainty with zero
mean (p,, = 0) and covariance matrix R = E |(pm — pm) (Pm — ﬁm)T], where E[.] means expected value.

Hence, compared to the example in Section 1, we do not measure the state variables directly, but only linear
combinations, as expressed by eq. (13). Suppose N measurements zj are available. Each measurement may
have its own measurement relation Hy and covariance matrix Ry. Then, the state estimate Z that minimizes
the weighted least squares distance between the measurements z;, and the expected measurement, Z, = HyZ,
is given by:

N
2 =arg minz (21 — Hkx)TR,Zl (2x — Hyx) . (14)
x
k=1

In the example of Section 1 the measurement space coincides with the state space. Hence, eq. (7), follows from
eq. (14) by: 1) replacing measurements zp, by zj, and 2) putting Hy, = 1.



Initial information about the state vector and its covariance matrix, #, and Py can be added to eq. (14)
by treating it as a first measurement at time step 0, i.e. z9 = &9, Ho = I and Ry = Fy):

N
& = arg min l(:ﬁo —) Byt (B0 —7) + D (2 — Hyw) T Ry (21 — ka)] : (15)
k=1

If the measurements become available sequentially, and at each time instant £ we add the new information
to obtain a new estimate Z; and corresponding covariance matrix Py, then eq. (15) is rewritten in recursive
form:

5 = arg min [(;i:k_l — )" P (31 — @) + (2 — Hy) T R (2 — Hka:)] . (16)

The solution of this minimization problem is called static Kalman filter. It computes the new estimate &5 and
its covariance matrix Py from Zy_1, P,_1, 2z and Rj. (Section 3 finds this solution as a special case of the
dynamic Kalman filter.)

3 Dynamic systems
Suppose the state of the system evolves according to the linear state equation:
zp = Axp—1 + Bug—1+ pp , (17)

where A is the state matrix, B the input matrix, ur_; is the input vector of dimension r at time step k — 1,
and p, represents the process uncertainty, with covariance matrix @ (or Qr—1 if the process uncertainty is
time variant).

The state vector evolves between time instants £ — 1 and k. Hence, the first term in eq. (16) has to be
changed, based on a prediction of this evolution. The state prediction %y follows from the state equation (17):

&, = A#p_1 + Bug_1 (18)
If the input uy, is perfectly known, then the prediction error is found by subtracting egs. (18) and (17):
Zp —xf = A(Tp—1 — Tp—1) — Pp- (19)
Hence the covariance matrix of Zy is:
Py = AP, 1 AT + Qp_1 . (20)

Substituting #; and P, for 2;_; and P,_; in eq. (16) yields:

i = arg min [(jk —2)T P (@ — ) + (2% — Hyw)T Ry (2 — Hyw)| (21)

The minimum is again found by putting the partial derivative with respect to = equal to zero. This yields:!

B = Fp+ Ky (21 — Hpdy) ; (22)
P, = (I-KyH)P;; (23)
with
Ky, = BH{S;"; (24)
Sy = Ry+H,PHT . (25)
'To prove this result we need to apply the matrix inversion lemma, given by: (A+BCBT)‘1 = A°' -

A'B(BTA'B4+C 1) ' BTA L,



Egs. (18),(20), (22)-(25) are called the dynamic Kalman filter. vy, = 2, — Hy &}, is the new information at
time step k and is called the innovation. It is the difference between the real and the predicted measurements.
Sk is its covariance matrix. Ky is called the Kalman gain.

The static KF in Section 2 follows as a special case, by putting A = I, B =0 and @ = 0 in egs. (18),(20).

The similarity with eqgs. (10)-(12) is revealed by substituting in eqgs. (22)-(25): & < &2, Tx « %1, K + K,
2 <@g, Hy 1, Py < 62,1« 1, Py + 62, Ry, + 02.

4 Convergence and consistency

Convergence monitoring
The covariance matrix Py is a measure for the uncertainty of state estimate Zj. The uncertainty in different

state space directions is graphically represented by the ellipsoid (z — i"k)Tlsk_ Yo — i) = 1, figure 1. Due
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Figure 1: The uncertainty ellipsoid (z — ﬁik)TPk_ Y@ — ) = 1 in a 2D state space. s; and s, are the singular
values of the matrix P.

to process uncertainty, the state estimate becomes more uncertain over time. This is reflected by a growing
uncertainty ellipsoid. On the other hand, measurements reduce the uncertainty of the state estimate, hence
the ellipsoid shrinks.

The axes of the ellipsoid are oriented along the singular directions of P, These are found by performing a
singular value decomposition:

P, =UzVT, (26)

where ¥ is a diagonal matrix which contains the singular values. V' = U because Py is a symmetric matrix.
The columns of U are the singular directions. Small singular values correspond to directions in state space with
little uncertainty, while large singular values correspond to directions with large uncertainty. Convergence of
the estimate means that the ellipsoid shrinks in all directions.

Warning. The state covariance matrix shows whether the Kalman filter converges or not, not whether the
Kalman filter converges to the correct value: the state covariance matrix is determined solely by the system
state model (4, B, @), the measurement models (Hy, Ry), and the initial state covariance Py, not by the
measurement values z; and the initial estimate % themselves. If the system model or one of the measurement
models is not correct, the calculated state covariance is not correct. Hence, one should be very critical about



any conclusion on the accuracy of the state estimate that is drawn solely from the state covariance matrix.
It is essential to verify the correctness of the calculated state covariance matrix using the consistency checks
listed in the next Subsection.

Active sensing. The convergence process is influenced by the system input sequence uy in eq. (17) and by
the measurement relations Hj,. Convergence is accelerated or made selective in some state space direction 1)
by designing an appropriate input sequence ug, or 2) by proper placement of the sensors and hence choosing
proper measurement equations. Such procedures are called experiment design or active sensing.

Consistency checking

The KF strongly relies on a model of the system. This model consists of: the state equation (17), the mea-
surement equation (13), the measurement and process covariance matrices Ry and @, and the initial state
estimate, o, with its covariance matrix, Py. Wrong models result in estimation errors and innovations that
cannot be explained statistically.

Estimation errors. The Normalised Estimation Error Squared NEES;, = (% — a‘:)TPk_l(ﬁ:k — Z), where %
is the true value of z, is a measure to verify if the estimation errors are consistent with the model. The NEES
is x2-distributed with n DOF (degrees of freedom), n being the dimension of the state vector. Of course, the
NEES can only be calculated when z is known, e.g. in simulations.

Innovations. The Normalised Innovation Squared NIS, = V{S;lyk is a measure that indicates whether
the innovations are consistent with the model. The NIS is y2-distibuted with Iy DOF, [; being the number of
statistically independent measurements in z;. Another measure is the SNIS (Summed NIS) which is the sum
of the M latest NIS values:
k
SNIS, = > v/ S8;'y;. (27)
j=k—M+1

The SNIS is x?-distributed with 3°7_, /., I; DOF.

Testing for consistency is possible by checking whether the NEES, NIS or SNIS are within a given confidence
interval. If the initial state estimate and all covariance matrices are sufficiently accurate, then any inconsistency
detected by the NIS or SNIS is due to erroneous system or measurement equations. Hence, in this case the
NIS and SNIS can be used to detect sudden changes in the nature of the system.

5 Extended Kalman Filter

Nonlinear systems

Measurement equation (13) and state equation (17) calculate respectively the measurement and the predicted
state as a linear function of the state x. Unfortunately, in practice these functions are often nonlinear:

z = hz)+pm, (28)
oy = f(@r—1,ur-1)+pp, (29)

where p,,, and p, are as defined in the previous sections.
In order to apply the KF, these equations are linearised in the most recent estimate: eq. (28) is linearised
in &y, yielding
- oh -
z = h(Zk) + 5T (@ = Tk) + pm (30)

Tk



while eq. (29) is linearised in &;_1, yielding

. ) R
zy = f(Zp—1,up—1) + é (Tp—1 — Tp—1) + pp - (31)
Tr—1

The so called Extended Kalman Filter (EKF) is then obtained by

e Calculating #, with the nonlinear state equation:
Te = f(@r1,ur1); (32)

e Predicting the measurement with the nonlinear measurement equation, such that eq. (22) becomes:

T =T + Kk(zk - h(i’k)) ; (33)
o Substituting in eqgs. (23)- (25): Hy, « §[, ;
e Substituting in eq. (20): A + % .
Thk—1

Convergence. The linearized state and measurement models are only approximations of the true models,
which invalidates all properties of optimality and convergence of the KF (Denham and Pines 1966), (Sorenson
1985). The correct convergence of an EKF depends on several factors, such as the initial estimate, the nonlin-
earity of the equations, the order in which the measurements are processed, and the measurements themselves.
Hence, no formal proof of convergence exists; only consistency checks during Monte Carlo simulations can
assess the performance of the filter.

Implicit measurement equation

Measurement equation (28) cannot always be made explicit in the measurement z, i.e., when only an implicit
measurement equation is available:

Mz, 2) + pm = ¢, (34)
where ¢ is a vector of constants. For this case, the EKF equations are adapted as follows:
e eq. (33) becomes:
& = T + Kp(c — Tk, 2k)) 5 (35)
T
e Substitute in eq. (25): Ry + (% ik,zk) Ry, (% ik,zk) ;

e Substitute in eqs. (23)- (25): Hy « %4

0T | Fp 25

Constraint equations

Sometimes the system equations are much simpler when expressed in terms of a nonminimal state vector. The
cost for this simpler expression is an additional set of algebraic equations which express relations between the
state variables. These relations are called constraints. Since they are not influenced by measurements, they are
just a special case of the previous case, i.e.:

h(z)=c. (36)

In this case R corresponds to the covariance matrix of the constants c. If these constants are not uncertain,
then R = 0.



6 Example: a mobile robot with ultrasonic sensor

A mobile robot navigates freely in a planar world. It uses an ultrasonic sensor in order to locate itself on a
world map. Beside the ultrasonic sensor, the robot is equipped with so called internal sensors: encoders at the
driving wheels and a gyroscope. These internal sensors are used to calculate the tangential velocity v and the
angular velocity w of the robot. v and w are supposed to be perfectly known (ideal encoders and gyroscope,
no wheel slip, ... ).

In all simulations the robot moves on a straight line with orientation 8 = —0.52 rad, and with velocity
v = 0.5 m/s. Since w = 0 rad/s, the state equations are:

X =Xp_1+vp_1 cos(6k,1)At; (37)
Yk = Yk*l + Vgp—1 sin(@k,l)At; (38)
Gk = Gk_l; (39)

where the state vector consists of X and Y, the robot coordinates in the world map, and 6y, the robot
orientation. At is the time step. In the first simulations the robot orientation is supposed to be perfectly
known. This reduces the state equations to eqs. (37),(38), linear functions of the state [Xj, Y3]T. Afterwards,
a more realistic simulation is given where 6§y, is also estimated.

Known orientation

Deadreckoning In the first simulation the robot does not use its ultrasonic sensor, only its internal sensors.
This is called deadreckoning. Figure 2 shows the real and the estimated trajectory of the robot (estimate 1).
The initial state is #o = [-1 m, 0 m]7, while the initial state estimate is o = [7 m, -5 m]7 with covariance:

B 100 m2 0 m?
71 0m2 100 m2

‘ ‘ ‘ ‘ ‘ . e ——
wall 95%
2r trajectory of 1 o 6
estimate 2 = 4
~ wn
or Tig—= 1 2f
\(a/ \'\\ O 77777 T— T E— — — E——
~. -p}  real trajectory | 0 5 H}eoasuremle% " 20 25
8 \ :
Ty 95%
-4 jjo [@p) 6F - e N
~ =
trajectory of > = 4
—6y estimate 1 . 2l
2 0z 46 8 1 T I T
X (m)
measurements
Figure 2: Known orientation. Estimated trajec- Figure 3: Known orientation. SNIS and NEES
tory during deadreckoning (estimate 1) and when consistency tests when observing a wall.

observing a wall (estimate 2).

Every 0.02 seconds, the robot updates its state corresponding to the only information it has: it is moving
on a straight line with v = 0.5 m/s. Hence, deadreckoning corresponds to applying state equations (37)-(38).
In the absence of process uncertainty, and since state matrix A = I, the uncertainty on the state does not
grow: ‘v’k,fjk = 150.



Measuring a wall To obtain a more precise estimate of its location, the robot observes a known wall
(y = az + b) with its ultrasonic sensor. The measurement value is twice the orthogonal distance between the
sensor and the wall. The measurement uncertainty is R = (0.03 m)?2, the sensor measurements are taken every
0.2 seconds. Hence, a linear measurement equation,

2a -2 2b
2 = (TH)Xk +( 1 l)Yk + NS + Pm, (40)

is applied after every ten deadreckoning steps. Zg, £ and 130 are the same as in previous simulation. The wall
is situated at y = 3 (a =0, b = 3).

Figure 2 shows the estimated trajectory (estimate 2). 19 is the result of ten deadreckoning steps starting
from Zg. The first measurement changes the estimate to Z19. The robot gives a high importance to this
measurement, because its uncertainty is much smaller than the state uncertainty.

The final covariance matrix after five seconds is:

Ao 100 m? 0 m?
B0 0m?2  9e— 06 m?

This means that the robot made a precise estimation of Y, while the uncertainty of X remains exactly the
same. This is obvious as the robot has no information about its position in the direction of the wall.

Figure 3 plots the SNIS and NEES consistency tests. The SNIS is summed over three NIS (M = 3). As
statistical tests, SNIS and NEES have a 10% chance not to be in the 5 to 95% confidence interval when the
model is perfect.

Measuring a table leg Next, the robot observes a point beacon, e.g. a table leg, with position (px,py) =
(3,0). The measurement value is twice the distance between robot and beacon, corresponding to measurement
equation

2 =2/ (Xy —px)? + (Vi —pv)> + pm- (41)

This is a nonlinear function of the state. Figure 4 shows the results for two different initial state estimates Zg:
[-0.5 m, -1.5 m]T and [1.5 m, 0.5 m]T. P, is as in previous simulations, Zo = [-1 m, -2 m]7.
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Figure 4: Estimated trajectory when observing a table leg. Left: first simulation. Right: second simulation.

After ten seconds, the covariance matrices are:
first simulation:

1.2e — 04 m? —5.5e — 05m?

Psoo = | 556 —05m? 5.2e—05m? |’



second simulation:

5.1le — 05 m? —2.9¢ — 05 m?

Psoo = | _99e—05m? 5.4 — 05 m?

These covariance matrices illustrate that, although there is just one measurement equation available at
each time step, the whole 2D state space is observed (all singular values become smaller). This is due to the
fact that a different combination of states is measured at different time steps (different Hy).? .

Because of linearisation, Hy depends on the state estimate. This explains the different values of Psq¢ for
the two simulations.

Moreover, the higher order terms in the Taylor expansion of the measurement equation contain powers
of the uncertain state estimate, but these are not taken into account in the calculation of Pj. Consequently,
the calculated state uncertainty is always underestimated. Figure 5 shows the SNIS (M = 3) and NEES for
both simulations. A too small covariance matrix P leads to too high SNIS and NEES values. In the first
simulation linearisation errors are small thanks to a good initial estimate. But even in this case the covariances
are no good measures for the difference between real state and estimate! (All NEES values are around the 95%
boundary here). On the other hand, the bigger linearisation errors in the second simulation lead to very high
SNIS and NEES values, which indicate something is wrong with the model.

8r------- - A g 200
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6 . |
<21 95!
= 4 1 = 100 1
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Figure 5: SNIS and NEES consistency tests when observing a table leg. Left: first simulation. Right: second
simulation.

Unknown orientation

In a more realistic approach, the robot orientation 8y, is also estimated. The state of the robot at time step k
is now represented by [Xy, Y, 0x]%.

Deadreckoning Figure 6 shows the real and the estimated trajectory based only on deadreckoning (estimate
1). Zo = [-1 m, 0 m, -0.52 rad]%, %9 = [7 m, -5 m, 0 rad]?,

X 100 m? 0 m? 0m rad
Py=| 0m? 100 m®> 0 m rad
0mrad 0m rad 0.76 rad?

2From eqs. (37) and (38) it follows that the state matrix A = Iy 2. Furthermore, there is only one measurement equation, i.e.
the dimensions of H are 1 x 2. Hence, in order to have full observability, at least two different combinations of the states have to
be measured. Clearly, if A # I a time invariant measurement equation may be sufficient to guarantee observability.

10
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Figure 6: Unknown orientation. Estimated trajec- Figure 7: Unknown orientation. SNIS and NEES
tory during deadreckoning (estimate 1) and when consistency tests when observing a wall.
observing a wall (estimate 2).
After five seconds the state covariance matrix is:
R [100 0 0 ]
Puo=| 0 1048 1.90| =UZUT;
| 0 1.90 0.76]
[104.8 0 0 0 1 0
Y= 0 100 0 |; U=109998 0 -0.0183
| O 0 0.73] 0.0183 0 0.9998

The uncertainty on @ leads to 1) the estimate perpendicular to the estimated motion direction (Y) be-
coming more uncertain in time, as expressed by the second diagonal element of the covariance matrix, and 2)
correlations between that estimate and 6, as expressed by the off-diagonal elements.

Measuring a wall Z,, &, and 150 are the same as in the last experiment. Figure 6 shows the estimated
trajectory (estimate 2).
After five seconds the state estimate covariance matrix is:

[ 100 m? 0 m? 0m rad
Pyso=| 0m?2 34e—05m2 24e—05mrad| = USUT;
|10m rad 2.4e —05m rad 2.4e—05 rad?
(100 0 0 1 0 0
Y= 0 54e—-05 0 ; U= 1|0 078 0.63
| 0 0 3.9¢ — 06 0 063 -0.78

This means that the robot made a precise estimation of Y and 6, while X remains not observed.
Figure 7 plots the SNIS (M = 3) and NEES consistency tests.

7 Mechanical spring analogy

The KF can be represented by an analogous model consisting of a set of interconnected springs. The equilibrium
position of the interconnection point of the springs behaves in exactly the same way as the estimate of the

11



KF. This model is particularly instructive for engineers who like to reason about physical quantities like
deformations, forces and energy, rather than abstract concepts like states, covariances and SNIS.

An intuitive example

Consider again the simple example of Section 1: the state of the system is observed directly rather than through
a linear combination of the states, and the state x is one-dimensional, i.e. H = 1; the system is static and
there is no process uncertainty, i.e. A = 1 and @ = 0; there are two measurements available, ; and xs with
standard deviation o; and o3. For this case, the spring model consists of two springs, one with compliance?
02 and one with compliance o3. Both springs have rest length zero. They are connected together at one end,
and they are fixed to the environment with their other end, at the location z; and x5 respectively, see fig. 8.
Then:

Figure 8: The spring model of the Kalman filter: an intuitive example. The equilibrium position of the inter-
connection point of the two springs is equal to the KF estimate #; the compliance of the combination of the
two springs equals the variance 2.

1. The estimate Z of the Kalman filter is equal to the location of the interconnection point of the two
springs in equilibrium.
This is shown as follows. The total potential energy is equal to the sum of the potential energy in each of
the two springs. Since, in equilibrium, the potential energy in the spring system is minimal, the location
of the interconnection point # is given by eq. (7).

2. The variance 62 of & equals the compliance of the complete spring system.
This is shown as follows. Seen from the interconnection point z of the springs, both springs are connected
in parallel. The stiffness of a system of two parallel springs is equal to sum of the stiffness of the two
springs, yielding exactly eq. (6).

With these two properties, it is clear that at each time step, the set of two springs can be replaced by
2

one equivalent spring, anchored in Z, with rest length zero and compliance 6.

3. The NIS is equal to twice the energy needed to add to the spring system one extra spring corresponding
to a new measurement. Accordingly, the SNIS, eq. (27) with M = k, is equal to twice the total potential
energy present in the spring system.

4. The NEES is equal to twice the energy needed to move the interconnection point of all springs to the
true state value.

Generalisation

The equivalence of the spring model and the KF holds equally well for the most general case of a dynamic
system with a multi-dimensional state z and nonzero process uncertainty (i.e. A # I and @ # O), multi-
dimensional measurement vectors z, with different measurement space at each time step, i.e. Hy # H; # I for
k # 1. For proofs of these properties the reader is referred to (De Geeter 1998).

3Compliance is the inverse of stiffness.
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8 Further reading

(Sorenson 1985) contains an excellent collection of papers on the history of Kalman filtering. This book
includes the paper of Kalman (Kalman 1960), where he proves the optimality of a recursive filter that was
later named after him. Although Kalman’s solution to the recursive estimation problem is the best known,
several other authors have published similar results approximately simultaneously, see e.g. (Swerling 1959)%.
The introductory paper in this book by Sorenson is particularly helpful before reading and comparing the
papers in the collection.

Numerically reliable implementation of the KF (square root form) is addressed in (Kailath 1981).

A classical book is (Jazwinski 1970). It contains, among other things, a study of stability, sensitivity to
modelling errors for linear KF’s, and various approaches to nonlinear filtering.

Bar-Shalom and Li (1993) have written an excellent textbook on Kalman filtering for engineers. This book
contains many examples illustrating the usefulness of the consistency checks.

Linearisation errors are a terrible nuisance, especially when the measurement uncertainty is relatively small.
The effects of such errors are well described by Denham and Pines (1966). The linearisation errors of nonlinear
constraints have the most dramatic impact on the Kalman filter convergence, since there is no measurement
error at all. See (De Geeter 1998) or (De Geeter et al. 1997) for a detailed analysis of these errors, and an
algorithm to reduce their effect on the filter convergence.

A historical reference on optimal experiment design is the book by Fedorov (1972). More recent but not easy
to read is the book by Pukelsheim (1993). (De Geeter et al. 1998) contains an intuitive geometric comparison
of the most popular strategies for optimal experiment design.

Interpretation of the Kalman Filter from an information theory point of view can be found in (Meinhold
and Singpurwalla 1983) and (Zellner 1988).

More details on the spring model can be found in (De Geeter 1998).
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