
CS 106: Homework 2

April 9, 2004

Page 24, problem 1

SupposeW is an arbitrary nonsingular matrix and define||x||W as||W x|| for some norm|| · ||. Prove that
|| · ||W is a norm.

To prove that|| · ||W is a norm, we need to show that it satisfies three properties.

(1) ||x||W ≥ 0 and||x||W if and only if x = 0.

Let b = W x. SinceW is nonsingular,b = 0 if and only if x = 0. Since|| · || is a norm,||b|| = 0 if
and only ifb = 0. Therefore,||b|| = 0 if and only if x = 0. Forb 6= 0, ||b|| > 0. We have just shown
that||W x|| ≥ 0 and||W x|| = 0 if and only if x = 0.

(2) ||x + y||W ≤ ||x||W + ||y||W

We use the linearity of the norm|| · || and the linearity ofW, as follows.

||x + y||W = ||W(x + y)|| = ||W x+ W y|| ≤ ||W x|| + ||W y|| = ||x||W + ||y||W .

(3) ||αx||W ≤ |α| ||x||W

Again, we use the linearity of the norm|| · || and the linearity ofW.

||αx||W = ||W(αx)|| = ||αW x|| ≤ |α| ||W x|| = |α| ||x||W .
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Let || · || be any norm onCm and also the induced matrix norm onCm×m.
SupposeA ∈ Cm×m andλ is the largest eigenvalue ofA. Let x ∈ Cm be the corresponding eigenvector

such thatAx = λx. Then taking the norm and using linearity,||Ax|| = ||λx|| = |λ| ||x||, so

|λ| =
||Ax||

||x||
.

The induced matrix norm||A|| is the supremum, or least upper bound, of the set{
||Ax||

||x||

∣∣ x ∈ Cm andx 6= 0

}
,

so it is greater than or equal to every element in the set. Since|λ| is in the set,|λ| ≤ ||A|| and|λ| = ρ(A)

becauseλ is the largest eigenvalue ofA. Therefore,

ρ(A) ≤ ||A|| .
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The approach to finding the SVD of a matrixA follows four steps: (1) find the eigenvectors and eigenvalues
of AAT and AT A, (2) form matrix6 from the square roots of the eigenvalues, (3) form matricesU andV
from the eigenvectors, and (4) adjust the signs of the eigenvectors as necessary. In the solutions below, the
SVD shown is the full SVD.

(a) Let A =

[
3 0
0 −2

]
. ThenAAT

= AT A =

[
9 0
0 4

]
. The eigenvalues ofAAT are 9 and 4 so the diagonal

matrix of singular values is6 =

[
3 0
0 2

]
. The eigenvectors ofAAT are

[
1
0

]
and

[
0
1

]
, so the SVD

of A is

A =

[
1 0
0 1

] [
3 0
0 2

] [
1 0
0 −1

]
after adjusting the sign.

(b) Let A =

[
2 0
0 3

]
. ThenAAT

= AT A =

[
4 0
0 9

]
. The eigenvalues ofAAT are 9 and 4 so the diagonal

matrix of singular values is6 =

[
3 0
0 2

]
. The eigenvectors ofAAT are

[
1
0

]
and

[
0
1

]
, so the SVD

of A is

A =

[
0 1
1 0

] [
3 0
0 2

] [
0 1
1 0

]
.

Note that the arrangement of the eigenvectors ofAAT in U corresponds with the arrangement of their
associated singular values in6.

(c) Let A =

0 2
0 0
0 0

. ThenAAT
=

4 0 0
0 0 0
0 0 0

 and AT A =

[
0 0
0 4

]
. The nonzero eigenvalue ofAAT

and AT A is 4, so the diagonal matrix of singular values is6 =

2 0
0 0
0 0

. The nonzero eigenvector

of AAT is

1
0
0

 and the nonzero eigenvector ofAT A is

[
0
1

]
, so the SVD ofA is

A =

1 0 0
0 0 0
0 0 0

 2 0
0 0
0 0

 [
0 1
1 0

]
.

Note that the vector

[
1
0

]
was added toV instead of the zero vector to makeV orthogonal.

(d) Let A =

[
1 1
0 0

]
. Then AAT

=

[
2 0
0 0

]
and AT A =

[
1 1
1 1

]
. The nonzero eigenvalue ofAAT

and AT A is 2, so the diagonal matrix of singular values is6 =

[√
2 0

0 0

]
. The nonzero eigenvector
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of AAT is

[
1
0

]
and the nonzero eigenvector ofAT A is

[√
2/2

√
2/2

]
, so the SVD ofA is

A =

[
1 0
0 1

] [√
2 0

0 0

] [√
2/2

√
2/2

√
2/2 −

√
2/2

]
.

Note that the vectors corresponding to the zero singular value were added toU andV to make them
orthogonal.

(e) Let A =

[
1 1
1 1

]
. ThenAAT

= AT A =

[
2 2
2 2

]
. The nonzero eigenvalue ofAAT and AT A is 4, so

the diagonal matrix of singular values is6 =

[
2 0
0 0

]
. The nonzero eigenvector ofAAT and AT A is[√

2/2
√

2/2

]
, so the SVD ofA is

A =

[√
2/2

√
2/2

√
2/2 −

√
2/2

] [√
2 0

0 0

] [√
2/2

√
2/2

√
2/2 −

√
2/2

]
.

Page 30, problem 4

Both directions are not true. Clearly, ifA = QBQ∗ and the SVD forB is B = U6V∗, then

A = QBQ∗
= QU6V∗Q∗

= (QU)6(QV)∗

is a factorization ofA using the singular values ofB. The factorization is an SVD forA because the matrices
QU andQV are unitary. So we have shown one direction: unitarily equivalent implies same singular values.

The other direction is not true. As a counterexample, letB be a non-square matrix, such as the matrix
from problem 1 part c. In the reduced SVD ofB, the singular values are in a square diagonal matrix6̂. We
can construct a square matrixA with the same singular values asB by multiplying 6̂ by unitaryU andV .
Clearly, no unitaryQ exists such thatA = QBQ∗ becauseA andQ are square andB is not square.
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