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ABSTRACT
Components of commodity OS kernels typically execute at
the same privilege level. Consequently, the compromise of
even a single component undermines the trustworthiness of
the entire kernel and its ability to enforce separation be-
tween user-level processes. Reliably containing the extent of
a compromised kernel component is a problem to which few
practical solutions exist.

While many approaches have been proposed to reduce the
need to trust large portions of the kernel, most of these
approaches represent exotic reorganizations of the hardware
or OS kernel that are either not applicable to commodity
systems or are relatively complex and difficult to debug in
their own right (e.g., microkernels).

We propose simple, natural modifications to commodity—
x86—hardware that enable vertical isolation down through
the kernel without the use of virtualization or major OS
rewrites; specifically, extending and reinterpreting the x86

segmentation mechanism, extending the existing Current
Privilege Level and Descriptor Privilege Level fields. We be-
lieve our proposal is a compelling alternative to traditional
virtualization because the hardware virtualizes permissions,
not I/O.

Categories and Subject Descriptors
C.5.0 [Computer Systems Organization]: Computer Sys-
tem ImplementationGeneral; B.7.1 [Hardware]: Types and
Design Styles-Gate Arrays

1. INTRODUCTION
Commodity operating systems typically provide isolation

between user-level processes by placing each into a separate
virtual memory context, between which the kernel enforces
IPC and file system access restrictions. Mechanisms such as
Linux Vservers, Solaris Zones, and BSD jails take this a step
further to separate groups of processes from one another. In
these systems, the kernel data structures that describe a
process (e.g., Linux’s task_struct or Solaris’ proc_t) and
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the various objects it creates are extended with a context
label; the kernel consults rules governing these labels before
performing system calls.

This approach to isolation appears to work well for user-

level process separation , but it does not provide any degree
of kernel-level separation in case of a kernel compromise.
Once malcode gains access to kernel privileges (such as the
ability to read and write raw kernel memory), the kernel can
no longer guarantee correct operation. Although kernels can
be hardened with various monitoring and protection mech-
anisms, the problem of “protecting ring zero from ring zero”
is notoriously hard.

A recently re-popularized approach to achieving kernel-
level separation utilizes a hypervisor: a reference monitor
executing beneath the OS kernel to intercept and govern I/O-
related operations [8, 9]. Widely considered more trustwor-
thy than general-purpose OS kernels due to their smaller size
and limited functionality, hypervisors arguably just push the
problem of separating data between compartments lower,
albeit into a smaller TCB [14]. Unfortunately, hypervisors
have grown into sizable beasts themselves, where security is
less easy to verify. In addition, hypervisors introduce an-
other layer of protection and policy that is less intuitive to
programmers.

Taking the idea of data protection and isolation a step
further, neither hypervisors nor the traditional UNIX pro-
tection model allow a process to protect user data from code
executing within the same process context. Under the tradi-
tional model, from the point of view of integrity protection,
all user data is created equal: no user-level data structure
can be protected more than another. Unfortunately, there
is no generic mechanism for relegating the security of user
data (e.g., for cryptographic keys, linker tables, etc.) to the
kernel; those requiring such security are welcome to write
their own kernel modules and define their own APIs.

We see these two areas—intra- and inter-process isolation—
as related, despite the fact that they do not appear to be
treated as such by existing systems. In light of this obser-
vation, we propose a simple hardware solution to maintain
separation between processes, kernel components, and even
compartments within a single process, even if one of those

compartments is compromised. Our design extends and rein-
terprets the Current Privilege Level (CPL) and Descriptor
Privilege Level (DPL) bits in the x86 segmentation mecha-
nism, which have long been part of 32-bit x86 architecture
(since at least i386), and should therefore be familiar to pro-
cessor designers and straightforward for them to implement.

These extensions are a novel hardware feature we be-



lieve would significantly improve isolation support in com-
modity systems at a comparatively small OS software (re-
)engineering cost. We stress that, in itself, this proposal
does not suggest a new operating system design paradigm
in the spirit of microkernels, capabilities, or hypervirtual-
ization. Rather, it is an attempt to find a “hardware game-
changer”that poses only reasonable OS software engineering
challenges — that is to say, challenges which we know can
be solved in practice without sacrificing too much perfor-
mance or undertaking extensive changes in the kernel code
base. Even though we cannot comprehensively review them
within the scope of this paper, we acknowledge many recent
advances in securing operating systems as a motivation, and
we review some of the most related work (e.g., Nooks) in
Section 6.

2. X86 SEGMENTATION
Operating system security in UNIX is, historically, closely

tied to the kernel’s ability to keep processes separate, and
the inability of processes to breach the user/kernel barrier
outside controlled and well-defined interfaces. The former
is achieved by placing process context structures under the
kernel control and the latter is enforced by limiting ingress
points to code running with kernel privileges (i.e., call gates).
In an ideal world, these together ensure that no process can
act on another process’ data except via mediation by trusted
code.

The x86 architecture provides so-called privilege“rings”to
achieve this protection model, the enforcement of which is
at the level of memory “segments”. A description of the x86
segmentation mechanism and associated protections follows.

In x86 protected mode, all memory references are subject
to a two-step conversion: from “logical” address within a
segment to “linear” address within the process’ virtual ad-
dress space, then from linear to physical address via the page
table system. Each segment is described by a segment de-

scriptor, which includes a two-bit descriptor privilege level

(DPL). On all memory references, the DPL is compared to
the two-bit current privilege level (CPL); if CPL > DPL,
the reference causes a general protection fault, disallowing
access. CPL and DPL values are directly analogous to the
four x86 rings.

Segment descriptors are stored in two types of tables: the
global descriptor table (GDT) or one of many local descrip-
tor tables (LDTs), both of which have DPL=0, thereby pre-
venting user processes (CPL=3) from manipulating descrip-
tor privilege levels. (Each local descriptor table has the dis-
tinction of being described as a segment unto itself.) In-
structions generally run at a CPL matching the DPL of the
code segment; the CPL can only be changed when program
control is transferred to a different segment (e.g., software
interrupt, or CALL or JMP using a far pointer), which re-
sults in a kernel trap and is therefore subject to operating
system mediation. To create the user-level process context,
the kernel populates a set of segment registers (CS, DS, ES,
FS, and SS) with segment selectors that point to segment
descriptors with DPL=3, thus ensuring that user process
code runs with CPL=3 which disallows access to kernel data
(DPL=0).

We visualize the separation achieved by x86 segmenta-
tion as a two-layer cake sandwiching the system of call gates
(Figure 1). The top layer is the user level, with processes
separated by (kernel-enforced) vertical cuts stopping at the

Figure 1: Cake visualization of existing x86 segmen-

tation mechanism: malware crossing the barrier into

the kernel is able to affect other processes.

layer boundary. Malware infecting a “slice” of this cake can-
not access data or interact with code across cuts. If, how-
ever, the malware manages to cross from the top later to
the bottom (the kernel), it is free to burrow as it pleases.
We note that mechanisms like SELinux, Linux Vservers, and
Solaris Zones do not provide a game-changer in this respect,
either.

X86 segmentation provides a horizontal separation be-
tween user processes and the kernel—traversed via closely-
guarded call gates—and the kernel is depended upon to en-
force separation between user processes and to provide data
integrity guarantees. Unfortunately, this horizontal separa-
tion is insufficient if a user process gains supervisor privi-
leges (i.e., CPL=0), either through a direct kernel barrier
breach or via other mechanisms such as by sending a mal-
formed network frame that exploits a vulnerability in the
kernel network stack, allowing it to modify both kernel and
user data willy-nilly. While we would like to believe that
the user-kernel barrier is solid, experience teaches us to not
depend on it.

3. VERTICAL ISOLATION
We begin by proposing that the CPL and DPL check-and-

trap condition should verify equality, instead of the implied
ordering of levels that exists currently. This reinterpretation
would create 4 sibling isolated security contexts rather than
the 4 security levels that the current x86 measurement logic
(i.e., total order on the 2-bit values) provides. In fact, by
imposing partial orders we could create and enforce more
complex relationships between contexts (such as those of
lattice-based Bell-Lapadula and Biba models). Of course,
providing only 4 security contexts is limiting, therefore in
addition to reinterpretation, we also propose extending the
width of these fields. This is by no means a revolutionary
idea, it is true, but we believe it is simple enough—to both
hardware and software engineers—and provides sufficiently
tangible benefits to justify itself. For backward compatibil-
ity, two of these extended bits will continue serving kernel-
user context separation and call-gates.

We call the contexts created by our proposed extension
of the CPL/DPL mechanism vertical segments. To return
to the cake analogy, we can visualize the additional slices as
now running through the kernel, as well (Figure 2). Concep-
tually, this means CPL and DPL can be thought of instead
as code privilege label and data privilege label, allowing the
creation of many labeled code/data contexts. That is, the
context identifier of the code (CPL) determines which data



Figure 2: Cake visualization of our proposed modi-

fication to x86 segmentation: malware crossing the

barrier into the kernel is unable to affect other con-

texts due to differing labels.

it is allowed to access, and the context identifier of the data
(DPL) determines which code is allowed to access it.

Regarding specifics of implementation, the extended CPL
bits would be best accommodated in a separate processor
register, rather than as a subfield of the status register; the
extended DPL may remain a part of the segment tables, and
will require hidden latch registers for efficiency.

These alterations require changes to both the processor
hardware and operating system software, but as we will
argue shortly, they are minimal compared to the isolation
gains.

4. A COMPELLING ALTERNATIVE

Contract-based Compartment Isolation.
In evaluating our proposal, we find it instructive to ex-

amine systems with similar goals. In particular, consider
Linux Vservers and Solaris Zones, which achieve context
separation (i.e., process hierarchies roughly corresponding
to separate physical machines with separate root contexts)
by applying distinguishing labels to kernel data structures of
processes belonging to different contexts. System calls and
other IPC code executing on behalf of contexts with differing
labels are therefore prevented from reporting on or affecting
the context in question. Such isolation is enforced by the
kernel-level implementation of, e.g., Vservers and Zones.

The underlying philosophy of existing designs can be summed
up as “A context cannot access what is explicitly la-

beled as off-limits to it or to which it lacks pointers”.
In other words, labelling and linking is just for well-behaved
kernel code to observe the internal contract that data does
not flow between contexts. This is all well and good, assum-
ing the arbiter of contracts is trusted, but hypervisors and
similar systems have grown beyond the point of practical
security audit. We note that the many flavors of capabil-

ities-based systems (e.g., [15]), unless such capabilities are
enforced by hardware, rely on the same isolation philosophy.

The attacker community, however, has long established1

that scanning raw memory to recover pointers to critical
data structures can be done very efficiently. Such scanning
methods can be quite sophisticated, avoiding causing mem-
ory faults on intentionally unmapped address ranges and
other defensive hacks.

1Relevant techniques have been published as early as Phrack
58 (2001).

Therefore, to break contract-based isolation, the attacker
need only introduce code into the kernel that ignores the
contract. This fragility demonstrates that such isolation
mechanisms are inadequate for extending context separation
into the kernel.

Contract to Enforcement.
Our proposal embodies a switch from voluntary or ad-

visory contracts within the kernel to memory trap-based
enforcement. Instead of storing context labels inside data
structures, we advocate creating data structures in separate
“vertical segments” of virtual memory, and enforcing access
restrictions as part of the segment address translation phase.

Projects such as Linux Vserver do, however, provide broad
shoulders upon which our proposal stands, by having al-
ready identified locations within kernel code where contract-
affected data structures are created and must be shared. We
note that the necessary changes to memory allocation code
appear lightweight when compared to those needed for full
virtualization. Specifics will be presented in section 5.

Application Security Policy.
We have thus far discussed vertical isolation as a means

of separating context within the kernel, but it also corre-
sponds to a broader concept intuitive to application develop-
ers: that of a particular segment of code “owning” a specific
set of data, confident that the data’s integrity is protected
by only allowing access to trusted, owning code.

This approach to improving code trustworthiness is demon-
strated firstly by compiler scoping rules such as static file-
scope variables in C, which are loosely enforced at the com-
piler level. Additionally, the object-oriented programming
paradigm introduces the concept of encapsulation, which
could be thought of as object-level isolation. However, this
isolation verification ends as soon as the compiler termi-
nates; in short, application developers cannot translate knowl-
edge about memory objects into policy regarding their pro-
tection.

Since few data access-related facts are as intuitively clear
and relevant to a program’s expected behavior as the code-
data ownership relations, we believe developers will appre-
ciate a programming primitive to express them. This prim-
itive would help separate code and data into slices and sup-
port trapping execution when developers’ expectations are
violated by cross-slice accesses.

One way to implement this capability is to extend the
compiler such that code is subdivided into .text subseg-
ments and data into .data subsegments, labeled with our
extended CPL/DPL bits, with data only accessible to code
with a matching label. Internally, labels would be assigned
to individual vertical segments and the resulting binary loaded
and memory-mapped accordingly. The inspiring flexibility
of the ELF format makes describing such mappings straight-
forward.

Limiting cross-thread data sharing abuse.
Threads allow different code segments to share data with-

out the overhead of IPC. Although threads provide a power-
ful advancement in programming language semantics, they
encourage oversharing, i.e., reads and writes far beyond the
programmer’s intentions, where sharing is neither needed
nor wanted. This is due to the fact that address space shar-
ing between threads has no granularity: threads share the



entire address space. Our vertical segment mechanism in-
troduces support for increased protection granularity within

a threaded process, far more effectively than, e.g., compiler-
based object-oriented encapsulation.

Eliminating policy “hooks”.
Taking another angle on application-level protections, our

proposal frees the developer from having to align their ap-
plication’s security assertions with the operating system’s
system calls, as in FLASK-based systems such as SELinux.
Developers no longer require intimate OS-level knowledge,
nor are they limited to equating “trusted data”with “kernel-
held data”.

.
Thus our proposed modifications can be applied not just

to kernel-level contexts, but also within processes, which to
this point have been generally considered undividable con-
texts unto themselves, with a modest learning curve to de-
velopers. In fact, our design proceeds from the motivating
assumption that a policy mechanism requiring the policy au-
thors to understand its many measurement points is bound
to be a usability failure.

5. A PRACTICAL CONSIDERATION
We argue that hardware modifications to enable our pro-

posed reinterpretation and extension of the CPL and DPL
bits is minimal; how much software re-engineering effort is
then required? Although, at first blush, the answer ap-
pears to demand a non-trivial software re-design, we can
harness existing kernel-based process virtualization systems
to achieve our goals.

These systems, including VServer[17] and ZAP[13], have
already performed the steps necessary to provide separation
within the kernel: they maintain and manage the kernel no-
tion of a process “context” or “namespace” (e.g., VServer
adds the struct vx_info construct); extend some existing
data structures and system calls; and introduce into the ker-
nel a default context that accommodates the init process and
one or more management system calls. (In this paper, we
are not concerned with the necessary kernel modifications
required to enforce resource limitations.)

Container Arch. OpenVZ Linux VServer ZAP

Lines of code ∼92,000 ∼8,700 ∼27,000
New Files 80 50 86
Files touched 920 300 134
Size (Kb) 3,445 820 653

Table 1: Comparison of code modifications for some

process virtualization systems: OpenVZ for Linux

2.6.26; VServer vs2.2.0.7 for Linux 2.6.22.19; ZAP

version for Linux 2.4.

The size of the implementation, in terms of kernel mod-
ifications, indicates that the effort required to re-engineer
a system to enable process context separation is relatively
high. Table 1 shows a comparison of the patch sizes for
Linux kernel versions. The different technologies have dif-
ferent advantages in terms of performance and resource con-
trol the description of which goes beyond the scope of this
paper.

For our purpose, we can peruse the existence of both con-
tainer labels and data structures to enforce policies using the
points in the kernel where objects are created via kmalloc;
the birth of these objects are under the control of a certain
“container”, and so their label is straightforward to derive.

6. RELATED WORK
Hardware tagging of memory has been around for decades,

but usually with the goal of supporting language constructs
(e.g., Lisp [12]) rather than security. The ill-fated Intel
iAPX-432 [4] implemented the concept of “roles” and “ob-
jects” at the hardware level and encouraged separation of
OS duties similar to our concept of vertical isolation, but
it never caught on. Burroughs 5000 machines [1] also em-
ployed a tagged architecture, but only used 3 bits for the tag
and explicitly defined the meaning of all values, disallowing
arbitrary semantics.

More recently, in the area of information flow control [5],
projects such as Asbestos [21] apply labels to processes and
use these labels to control read and write privileges to other
processes, though these controls do not extend below the
user-kernel barrier. HiStar [24] builds on Asbestos and ap-
plies the idea of tainting to trace and control information
flow; like Asbestos, this protection does not extend to kernel-
space. Loki [25] brings hardware support — in the form of
a modified SPARC architecture—to HiStar, implementing
labeling with a 32-bit tag on every 32-bit memory word.

TIARA [16] proposes an entirely new processor, operat-
ing system, and middleware architecture — including tagged
memory — that allows what the authors term a “zero-sized
kernel” in which individual kernel components (scheduler,
device drivers, etc.) are implemented and extended priv-
ileges separately. This design achieves an approximation
of vertical isolation at the expense of near-term, real-world
practicality.

Word-level memory isolation has been accomplished through
major x86 hardware modifications [22, 23] that extend pro-
cessor page tables, translation logic, CPU pipelines, and reg-
ister files. Such changes make these systems impractical for
immediate deployment.

Certain fault-tolerant systems [15, 21] and extensible op-
erating systems [2, 6] enforce module-level isolation, but
they require a major rewrite of the OS (or are full OSes
in their own right). In contrast, our approach is pragmatic
enough, both in terms of hardware and software, to warrant
attention from OS practitioners today.

User-level isolation and privilege separation is provided
by either OS-virtualizers [17, 11] that modify the kernel to
accommodate container labeling, or user-level monitors [3,
10, 7] that entail minimal kernel modifications. While the
former category of systems does not guarantee isolation at
the kernel level, the latter category does not enforce full

program separation.

Nooks..
The Nooks [19, 20] system, which uses virtual memory

techniques to isolate drivers for the sake of raising kernel
reliability, is closely related to our proposal. The Nooks de-
signers recognize that virtualizing physical devices by emu-
lating separate virtual instances of them is not conducive to
improving OS reliability, despite creating an illusion of isola-
tion. Instead, Nooks concentrates on separating drivers from
the main kernel by applying virtualization at their interface



points. Nooks’ success in isolating actual drivers shows that
such decomposition of kernel code and data can be realisti-
cally achieved even in driver programming, not just in the
general kernel contexts (as Linux Vserver and other work
suggests).

From the security perspective, we similarly eschew device
emulation as a productive isolation approach, and also pro-
pose to build better isolation on the virtual memory mech-
anism. However, there is an essential difference, which goes
back to the difference between the reliability vs. security
approaches.

In the case of Nooks and other reliability systems, the“ad-
versary” is bugs, and the associated threat can be modeled
by injecting random flaws. In the security domain, however,
the“adversary” is malicious code, specifically written to take
advantage of known opportunities to elevate its privileges.
To wit, one of Nooks’ authors notes: “Nooks protects

against bugs but not against malicious code” [18].
Thus, whereas for Nooks using x86 hardware features such

as rings and segmentation is undesirable due to reduced
portability, performance, and being parenthetical to achiev-
ing the primary goal of improving reliability in presence of
bugs, our attention is instead directed towards these protec-
tion mechanisms that would constrain malicious code from
purposefully subverting kernel isolation.

Consequently, when looking for a game-changer, we focus
on how these hardware features could be extended so that
they could be used effectively for kernel security isolation
without requiring major changes to existing code. The soft-
ware engineering challenge of such OS changes is strongly
similar, being in fact the matter of code and data decompo-
sition; however, the actual protection mechanism that will
take advantage of such decomposition must be very differ-
ent, owing to the differences between reliability and security
challenges.

7. CONCLUSION
We propose a simple modification to x86, extending and

reinterpreting the CPL and DPL bits to provide memory
separation as a first-class policy resource. While our pro-
posal is hardly radical, we believe it would make a profound
impact on process context isolation at the expense of modest
hardware- and system-engineering effort. In this paper, we
consider what effects the availability of this resource has in
terms of providing true isolation within the kernel as well as
support for the ability of application programmers to express
natural data ownership properties. A number of interesting
problems remain, including the handling of traps raised by
a label mismatch (i.e., interpreting the context labels).
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isolation for linux using mondriaan memory protection.
SIGOPS Oper. Syst. Rev., 39(5):31–44, 2005.

[24] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in HiStar. In
OSDI ’06, Berkeley, CA, USA, 2006. USENIX Association.

[25] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis.
Hardware Enforcement of Application Security Policies
Using Tagged Memory. In OSDI ’08, Berkeley, CA, USA,
2008. USENIX Association.


