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ABSTRACT
TPM-based trusted computing aspires to use hardware and
cryptography to provide a remote relying party with assur-
ances about the trustworthiness of a computing environ-
ment. However, standard approaches to trusted comput-
ing are hampered in the areas of scalability, expressiveness,
and flexibility. This paper reports on our research project
to address these limitations by using TPMs inside OpenSo-
laris: our kernel creates lightweight containers on demand,
and uses DTrace and other tools to extend attestation to
more nuanced runtime properties. We illustrate this work
with prototype application scenarios from cyber infrastruc-
ture operating the U.S. power grid.

Categories and Subject Descriptors
D.4.6 [Software]: Security and Protection

General Terms
Security

1. INTRODUCTION
TPM-based trusted computing aspires to use hardware

and cryptography to provide a remote relying party with
assurances about the trustworthiness of a computing envi-
ronment. However, standard approaches to trusted comput-
ing are hampered in three areas:
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• Scalability. How quickly can a new trusted environ-
ment be establish? How many trusted environments
can a single machine host?

• Expressiveness. The basic TCG architecture supports
attestation of basic software and hardware configura-
tion. What about more dynamic properties of runtime
behavior?

• Flexibility. Is the relying party constrained by the at-
tributed a server provides a priori for a trusted environment—
or can she negotiate for the suite of attributes impor-
tant to her?

This paper reports on our research project to address these
limitations by using TPMs inside OpenSolaris.

• Scalability. We use the construct of Solaris contain-
ers as a basis for lightweight virtualized userland envi-
ronments; our trusted kernel creates these containers
and generates certified keypairs for them, rooted in the
TPM.

• Expressiveness. We use the ability that our trusted
kernel lives within the same OS as the containers to
extend attestation to more general runtime properties;
in particular, our kernel can use the Solaris DTrace tool
to monitor more nuanced aspects of behavior, and to
revoke a container’s certificate if it departs from the
appropriate specifications.

• Flexibility. On demand from remote clients, our ker-
nel creates containers according to a suite of trust at-
tributes the client and server find mutually acceptable.

We illustrate this work with prototype application scenarios
from cyber infrastructure operating the U.S. power grid.

Section 2 discusses the standard approach to trusted com-
puting, some potential shortcomings, and work to address
these. Section 3 discusses the building blocks for our project.
Section 4 discusses example application scenarios. Section 5
presents our solution. Section 6 presents more detail about
our enforcement mechanisms. Section 7 evaluates scalabil-
ity. Section 8 concludes.

This submission is an adaption of the first author’s thesis
[3]. A concurrent (and largely orthogonal) project on Solaris
and trusted computing also appears in this conference [11].



2. TRADITIONALTRUSTEDCOMPUTING,
AND SHORTCOMINGS

2.1 Basic Approach
Trusted Computing is a vague concept which has histor-

ically been used in a variety of ways. For the purposes of
this project, however, a computer can be “trusted” if there
is some way to verify that it acts in the way it should, ei-
ther currently or for some period of time. This verification
must, to some degree, know the state of both hardware and
software, for neither alone can provide assurance of the op-
eration of the machine

Trusted hardware, being (perhaps) the lowest level of base
assumption one can make, is often the go-to method for es-
tablishing a root of trust for the machine and subsequent op-
erations. In the standard TCG approach, a Trusted Platform
Module participates in measuring (via cryptographic hashes)
the software and hardware configuration of a machine, and
using protected keypairs to make statements about current
configuration and to bind secrets to it.

2.2 Addressing the Shortcomings
Thus, the initial approach to attestation-based trusted

computing leads to the problems of what and how much
and how to evaluate the system—and how to reconcile the
trusted system a party provides with the requirements of a
remote relying party. Subsequent research explored ways to
solve this problem.

Towards Expressiveness.
Several researchers proposed ways to improve the expres-

siveness of basic attestation, beyond raw configuration in-
formation.

Sadeghi and Stüble [18] and others [16] proposed property-
based attestation. Rather than evaluating dependent on cer-
tain operating systems or applications, this approach seeks
to evaluate certain properties of the system itself. This has
the advantage of coming closer to attestation that makes
sense to users and their trust evaluations. However, it makes
a number of assumptions leading to an inconclusive solution.
Firstly, they rely on a Trusted Third Party (TTP) to take
a system setup and make it into a list of properties. Sec-
ondly, they simplify their design by assuming that the OS
is policy neutral. The design of this approach suffers from
both an overwhelming level of knowledge about the system,
which someone must convert to attestation, and from an as-
sumption that an external computing source can make the
majority of these evaluations.

In contrast, Haldar et al. [8] proposed basing attesta-
tion on programming language semantics. Nauman et al.
propose basing it on the UCON usage control model [15].
Projects such as SecVisor [19] use the newer LaGrande/Presidio-
style CPUs and resettable PCRs to provide periodic config-
uration measurement. England [4] speculates on approaches
such as certifying OS policy or creating a new “birth certifi-
cate” at each boot—or looking at virtual machines.

In our own lab, our initial work on integrating TPMs and
Linux [12] tried to bind attestation to a manifest of cur-
rently trusted configuration and update policy. Our later
compartmented attestation work [2, 1] tied attestation to an
SELinux security policy—a tool which proves too complex
to be usable.

Towards Scalability.
The traditional approach to attestation uses hardware to

testify the configuration of a single machine. Researchers
have explored getting more trusted platforms per machine
by gluing trusted computing to virtualization (e.g., [6, 5]).
The built-in features of virtualization often provide some
means of monitoring the virtual machines and a layer of
restrictions between the platform and the virtual machines.
For example, it is often trivial to shut off network access
to a virtual machine, or control the mounted file systems in
the machine. Trusted virtual domains extends the trusted
environment across multiple machines [7].

However,these approaches do not scale well to instances
where more than one dedicated application or OS is used on
the system Because of the way the virtual machine images
are created, they do not account for the increased appli-
cation stack when operating systems are used, one on top
of another, in the virtual machines, nor do they generalize
their checks to an environment where multiple applications
or types of containers may be required. They also do not ac-
count for the still-monstrous attestation needed when each
virtual machine has its own software stack needing verifica-
tion.

(The recently announced work of Löhr et al [11], noted
earlier, pursues Solaris Containers/Zones as a solution to
scalability, as do we.)

Towards Flexibility.
Virtualization alone still leaves open the question of how

to configure the virtual machine. Trusted Computing on
Demand operates under the philosophy that we should only
provide the attestation for those tasks/environments which
call for it [13]. This optimization allows the user to operate
with both greater freedom and greater efficiency when they
are willing to also accept greater risk, or forgo participating
in activities requiring a high level of trust. However, due
to the need to reboot every time a change in status occurs,
and the still-inconvenient task of auditing an entire system,
the option is less-than ideal and provides a minimal set of
benefits.

3. OUR BUILDING BLOCKS
Our project [1, 23, 3] seeks to address these shortcomings

by using Solaris Containers/Zones [17] as a lightweight ve-
hicle (addressing scalability), using monitoring tools such as
DTrace [14, 22] to measure more nuanced aspects of trust-
worthiness (addressing expressiveness), and creating these
on demand by remote clients (addressing flexibility). (The
literature uses the terms “Containers” and “Zones” almost
synonymously, although we’ve been told that “container” is
the more appropriate term, encompassing“zone”and related
machinery.)

3.1 Solaris
Solaris is the operating system released by Sun (now Or-

acle) following SunOS, with the capability to run on either
SPARC or x86 processors. Although similar to Linux in
form, it has a number of differences, which make it quirky
to code with. We chose this operating system for a few rea-
sons: its OS-level virtualization, runtime analysis tools, and
its open-source code.

Recently, much of the code for Solaris 10 was released as
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Figure 1: Paenevirtualization

OpenSolaris, meaning that we can delve into the operating
system if required. For this project, we run in the current
development repository for OpenSolaris (dev-133 or 0.5.11-
0.133 from http://pkg.opensolaris.org/dev). While this
allows us to take advantage of a number of features of the
trusted computing software stacks and TPM drivers, it un-
fortunately comes with the risk that such packages are not
fully ready for release.

3.2 Containers/Zones
In traditional virtualization, guest OS instances live on

top of a a virtual machine monitor, which itself lives either
directly on top of the hardware (Type I) or on top of a host
OS (Type II). These approaches permit each guest OS to
be different from each other and different from the host OS
(if one exists), but at the cost of significant software and
memory usage for each instance–and increased opacity of
each instance.

In contrast, Figure 1 shows OS-level virtualization (termed
by some researchers as paenevirtualization [21]). Solaris
Containers/Zones are an example. A single kernel is shared
among all of the zones. Applications thus see a guest con-
tainer as a standalone system, but only one copy of Solaris
is present on the machine. A single global zone is persistent,
always defined, and is the only zone which may access other
zones.

Theoretically, the Solaris Zones are more lightweight and
have a lower start-up time, overhead, etc, than do normal
forms of virtualization. Additionally, they do not run a fully
unique form of the operation system, thus reducing the soft-
ware stack down to a more manageable size. Sparse zones
can be created which share most of the files with the global
zone, or whole-root zones, which contain copies of a subset of
the files. Additionally, the theoretical isolation provided be-
tween zones is good for our purposes: the only zone that can
observe other zones is the global (initial) zone, and therefore
no client running in a container (zone) will be able to peek
into other system usage or containers, including the global
zone.

The zones are created from configuration files which are
easily parse-able and provide several useful options for our
project, including options to limit install options, network
activity, mount points and run-time resources. These are all
properties that would be important to monitor in creating
sterile containers.

3.3 Solaris DTrace
Another main reason for using Solaris is DTrace, [14, 22]
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Figure 2: Our idea: the hw root of trust measures
the monitor, which in turn measures containers and
(via tools such as DTrace) container behavior.

lauded on Slashdot as “the one true tool”As a dynamic trac-
ing method, DTrace is invaluable; it provides a lightweight
way for appropriately privileged code to monitor execution
of other processes (both at user-level and kernel-level). Start-
ing with Solaris 10, kernel code comes pre-instrumented with
providers that publish information to the DTrace subsys-
tem, but are structured to have minimal performance impact
in general—and particularly when no consumers are inter-
ested. The programmer can provide DTrace scripts that
specify predicates for interesting providers (including their
execution context, such as which process triggered them),
and code to be executed when these predicates are satisfied.
Nearly every function in kernel-land has a DTrace provider
at entrance and exit; triggered operations include things
such as examining both the user stack and kernel stack of
the relevant process.

Thus, DTrace gives us an easy way for our monitor code
(living as user-level code in the global zone) to measure fairly
arbitrary dynamic behavior, even at the kernel level, of our
created zones. In our system, the TPM statically measures
our core monitor code, which then creates zones and mea-
sures their behavior continually (via DTrace providers).

Figure 2 shows our general approach.

4. APPLICATION SCENARIOS
For motivating application scenarios, we looked to the

power grid cyberinfrastructure, where numerous somewhat
distrustful entities need to quickly create trustworthy envi-
ronments on each other’s machines.

Our idea here was to identify situations where parties
might require rapid and numerous creation of environments
(hence the need for scalability) whose trustworthiness re-
quirements may vary by relying party (hence flexibility) and
which cannot necessarily be characterized solely by measure-
ment of code (hence expressiveness).

4.1 Power Grid Cyberinfrastructure
The power grid, as it is currently run in North America, is

administrated by a number of large corporate entities, each
of whom may run a variety of different facilities. These fa-
cilities include generators, substations, control centers, etc.
The largest control entities are Regional Transmission Orga-
nizations (RTOs), with varying control over other entities in
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their region. The RTOs were created by a federal commit-
tee hoping to regulate the flow of power supply throughout
a variety of independent companies.

Below the RTOs there is no uniform form of organization,
but there may be varying levels of corporate participation
between companies who have control over generation, trans-
mission, distribution, or all three in a particular area.

This amorphous organizational structure means that rather
than having explicitly regulated interactions, these corpo-
rate entities must cooperate to get their jobs done and pro-
vide the best service. This cooperation inherently conflicts
with the secretive and mistrustful corporate environment
in which each entity must inherently be suspicious of their
competitors. Currently, the communication between these
entities—and even between centers within the same company—
is vulnerable and the companies are quite interested in se-
curing the various interactions.

We drew on the Inter-Control Center Communication Pro-
tocol (ICCP) [9] and openPDC http://openpdc.codeplex.

com/ for Scenario 1 through Scenario 4 below, each based
on actual examples of code or power grid interactions.

4.2 Scenario 1: Digests of Remote Device Logs
In Scenario 1 (Figure 3), Alice requests data digests from

Bob, but wishes to do the data processing on his machine.
The zone should have an external network connection so
that it can send encrypted data digests to Alice (and only
Alice). Bob allows Alice to run her (provided) executable on
his machine, but watches for data corruption over the data
he has let Alice see.

In the context of the power grid, this is the sort of thing
that would run persistently between two partner companies,
or a generation and transmission company, sending Alice
periodic digests of Bob’s data. It requires little interaction
with either party and is thus a fairly simple application to
monitor.

4.3 Scenario 2: Control of Remote Device
In Scenario 2 (Figure 4), Alice and Bob are companies

at the same level of power organization (e.g., transmission).
For whatever reason, they need to exchange control of a
device. Alice needs access to some device X. The physical
connection to device X is attached to and managed by Bob’s
computer. He grants her a container on his server, with some
restrictions.

When creating the container, he guarantees her container
some percentage of his cpu cycles. He allows her access to
a variety of programs, and to the network, but he watches
to ensure that data corruption does not change the status
of the device to a state which he believes to be dangerous.
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Figure 5: Scenario 3

4.4 Scenario 3: Audit Remote Machine
In Scenario 3 (Figure 5), Dave is an auditor, either ex-

ternally or from a higher-level power grid organization that
needs access to a variety of data and device information,
as well as the ability to investigate the state of various de-
vices. He is currently auditing Bob’s system and needs to
be able to run both his own code and some of Bob’s exe-
cutables, and needs them to happen in a specific order such
that Bob cannot alter the outcome of the audit, but can
provide information as necessary. Additionally, Bob would
like to ensure that Dave is not inserting anything malicious
into his executables, and that he does not change the device
state.

Because Bob’s audit data is sensitive, particularly to his
business, he would like Dave to encrypt anything that leaves
the server. However, Bob would also like to make sure that
Dave does not have the capability to encrypt any of Bob’s
files, and hold them hostage until Bob does something for
him. Thus, encryption is also a vital enforcement technique
here.

4.5 Scenario 4: Smart Grid Aggregation
In Scenario 4 (Figure 6), Bob is the data collection center

for a section of Hanover, NH. Bob collects and aggregates
data from the main campus of Dartmouth College, as well
as a number of residences, churches, and business that lie
within a short radius of the campus. All of the data will
be taken and used for power regulation purposes by Carlos,
who has no need for identifying information to be attached.

Alice, the owner of a residence just outside the college
border, is concerned about who gets her data. She fears
that if Dartmouth gets the information, they can use it to
somehow get her to sell her land to them. She is also a
bit concerned that Bob will give her information to some
advertising agents who see her habits and harass her with
spam. But she likes the idea of being able to see an itemized
bill at the end of the month.

Bob does the data aggregation within a container on his
server. Alice’s machines need access to report in and get in-
formation back, and Carlos needs the data to provide better
service to his customers. In this case, Bob requests the zone.
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He specifies a control flow that he expects the data to take,
such that anonymization happens after Alice’s operations
have finished and before Carlos jumps in. He isolates data
structures that need to remain uncorrupted for valid busi-
ness or accounting purposes. In addition, he asks that the
data going in and out must be encrypted for Alice’s privacy.

4.6 Trust Attributes
For these scenarios, we identified a number of attributes

which the relying parties might require for trustworthiness—
and which would demonstrate a range of properties more
general than mere software configuration.

The first, data requests, is common in both the ICCP
realm and openPDC. Data requests between providers and
within companies allow the load to remain balanced and in-
ternal checks to be made. The enforcement in this scenarios
prevents the host from modifying the data which the client
needs, and prevents the client from modifying the state of
the device she is getting data from. It explicitly protects
against the attack of client-provided code running amuck,
and restricts it to a specific set of input processing.

The second, device control, is explicitly laid out in the
openPDC code, and has some minimal specifications in the
ICCP. Again, it is common practice for device control to be
shared, particularly in border areas. The enforcement done
in this scenario explicitly protects against malicious use of
the device, hiding the use of the device from the host, and
delving into data outside of the device.

The third, device auditing, receives peripheral attention in
both the openPDC and the ICCP and is essentially a more
complicated form of the first scenario, data requests and ag-
gregation. The enforcement done in this scenario protects
the accuracy of the information: attacks of the host on the
outcome of the audit. Additionally, it prevents the audi-
tor from effecting a change in state through sending active
commands or executables to the devices it queries.

Finally, the fourth scenario has been explicitly laid out by
the smart grid planning, and has be historically pointed to
as a significant privacy hole. [10] The enforcement protects
the accuracy of information for each stage (itemized billing,
flow control, etc). It also ensures that privacy is kept as high
as possible.

Table 1 summarizes the attributes and scenarios. (Sec-
tion 6 discusses how we measure/enforce these attributes.)

5. OUR SOLUTION
Our solution (Figure 7) incorporates virtualization and

trusted computing on demand ; it runs on OpenSolaris and
provides a networked interface for lightweight virtual ma-
chines to be created and destroyed on command, eliminating
much of the overhead of the platform-wide trusted comput-
ing on demand, as well as preserving the isolation of virtual-

D. Config restrictions: run-time specs, mount 
points, cpu time, no network out, etc. X

A. Network connection: no "abnormal" 
connections, no destinations outside whitelist.

X X

E. Control flow: jobs originate from normal 
sources, control flow follows spec

X X

B. Data integrity: userland structures modified 
only by correct jobs, maintain invariants

X X X X

C. Safe encryption: used in appropriate 
places, not used in inappropriate ones

X X X

Digest
Control

Audit Smart
Grid

Table 1: Summary of trust attributes we considered
for these scenarios

ization and adding a flexibility in setup that allows a larger
variety of applications to be run on the virtual machines.

Our trusted virtual container monitor has five main func-
tions:

1. It intercepts commands to the zone (or controlling
the zone) from within the operating system or users
logged into the machine itself and redirects them to
our TVCon-specific versions, which have more checks
and logging capabilities, particularly for container cre-
ation.

2. It accepts zone commands over an SSL-based service,
and redirects those commands to the TVCOn-specific
versions. Additionally, this SSL server provides the
means for external clients to interact with non-networked
zones.

3. It monitors specific attributes of the system and con-
tainers and halts zones which do not comply with the
requested attributes. Such attributes are requested at
creation-time.

4. It employs PKI as a means of providing attestation via
property-attributed certificates that may be revoked to
negate the attestation: asserting that the user can no
longer trust the zone to have that property and comply
to the requested policy.

5. It utilizes secure hardware—the Trusted Platform Mod-
ule—to ensure ensure that zones whose certs have been
revoked cannot continue to attest or to operate within
the system.

Certificates.
The TPM is granted a certificate during manufacturing, as

well as the ability to create other keys, but not the ability
to act as a certificate authority. However, the certificate
granted during manufacture is the basis of our certificate
chain. Our certificate chain builds from here. An external
certificate authority, run by a trusted third party, verifies
the state of the TPM, OS, and zone monitor, allowing the
zone monitor to act as a certificate authority if it passes
inspection.

This zone montior then has its private key wrapped to the
verified machine configuration stored in the PCR values, and
the private key is stored in the TPM volatile key storage.
Thus, if the machine changes state, the private key cannot
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Figure 7: Our overall software structure.

be accessed. The zone monitor may then issue certificates
to the individual zones, based on their attributes.

We give each protected zone its own certified keypair, so
it can participate as a first-class citizen in broader crypto-
graphic protocols. However, questions arise regarding how
long such a keyholding entity should live (across reboots?
across code updates) and how long the official key-entity
binding should last (after zone death?). ([20] gives a more
exhaustive analysis of such issues.) For this prototype, we
chose the conceptually simplest approach: when the zone
halts, the entity dies and the certification of key to entity is
revoked.

The certificate is issued for a relatively short period of
time and is revoked if a zone is halted, and re-issued upon
start-up. The keys are stored in TPM volatile key storage,
under the keys granted to the TPM and the zone monitor.
The key is wrapped to the same value as the zone monitor,
and between its binding and its subordination to the pre-
vious keys, it restricts the subordinate keys to the system
setups where the base application is working properly.

When a zone wishes to attest to its secure properties, it
must only produce the certificate granted by the zone mon-
itor, which contains a list of attributes.

TVCon Monitor.
At the core of the project lies our TVCon Monitor (TVCM).

At a basic utilitarian level, the TVCM acts as a coordinator
for the trusted virtual containers. It receives and processes
requests for creation and removal of containers, and it acts
an intermediate between any container interaction and the
container itself. It is, in short, a buffer between the con-
tainers and external influences. The monitor also has more
a more complicated role as a means of ensuring the validity

both of the state of the machine and the protections on any
given zone.

TPM initialization.
The TPM, aided by the driver and low-level software, eval-

uates itself, the other hardware, BIOS, boot-loader, etc at
boot time, storing these evaluations in specific PCRs inside
the TPM itself. However, these values alone have no mean-
ing or ability to create secure usage. Something external to
the TPM must do this for us, and in this case that is the
trusted third party.

For this project, we store additional evaluations of spe-
cific parts of the operating system into PCRs. Specifically,
we store evaluations of a selection of zone utilities (generally
prefaced by zoneadm or zonecfg) in addition to the evalua-
tion of the code in our tools, to ensure that the zones are in
complete isolation and that our enforcement of attributes is
correct

Operations.
Figure 8 shows the overall operations of our system. Fig-

ure 9 shows how it handles client requests. Figure 10 anno-
tates the Solaris zone lifecycle with the additional operations
we added.

6. MEASUREMENT TOOLS
A series of utilities run at the same time as the main

TVCM code, maintaining the properties and taking appro-
priate measures should things be violated. For simplicity
of design, we implemented only one policy for dealing with
zones whose attributes fail: we halt the zone and revoke the
certificate.

Current zone enforcement mechanisms range from the sim-
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Figure 8: Establishment and teardown of global state in our system.
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Figure 10: Our extensions (in boldface) to standard Solaris zone/container lifecycle.



plest checking of the zone config files to the more compli-
cated ones involving external checks.

Zone config file.
We ran zone configuration checks run prior to zone cre-

ation. These are just internal consistency checks, more for
the host than the client. The client should specify a cfg
file that satisfies her config-level requirements, and the host
simply checks that it also matches his. Examples of such
checks are network connectivity, cputime guarantees, mount
points, etc. Our implementation consisted of a simple check
of the configuration file, and did not require persistent en-
forcement checks—rather, we had a script run through and
ensure that, for example, the zone lived in an appropriate
part of the filesystem such that it could not grab additional
data. Since configuration files are very simple, this is a sim-
ple matter of checking a handful of properties. (The content
of such checks was intentionally left flexible, since specify-
ing a percentage of CPU usage or max size of footprint and
whatnot are also possible for zones, and this would be quite
useful to take advantage of, especially on high-throughput
servers.)

Network Connectivity.
We ran network connectivity checks run concurrent with

the active zone, to ensure that any abnormal network ac-
tivity (either too much, of an abnormal sort, or encrypted
when it should not be) is stopped in its tracks. A few ex-
amples of these checks are those that check the destination
and frequency of the network traffic leaving a zone. This
enforcement is moot in some cases where the zone is not al-
lowed to connect to the outside world, except through the
original SSL remote zones connection.

Control Flow.
Control Flow checking monitors when and where specific

programs get executed or called. For example, one of our
scenarios mandates that executables get called in a specific
order, and presumably by someone specific. Both of these
checks are reliant on the userland application provided. We
have a number of applications provided that create specific
instances to check these enforcements. They lie as close to
the specifications as possible, and where possible we tried to
use actual code from the power grid, or close descriptions of
the interactions; this task was complicated by the fact that
the industry does not like to share real code.

We implemented control flow checking via DTrace. It’s a
relatively simple methodology to check that program B gets
called by program A (or even just “after” program A) with
the system probes in DTrace. We used probes to track the
syscalls for process execution: fork, exec, etc. As soon as
we recognized program A, we’d store the fact that it’d been
called, and continue checking for B. Once B was called,
we check either the store to see if A has already run, or
we check the caller—-depending on how strict we’re begin
with enforcement. The former can be stored in a single
variable; the latter is included information in the DTrace
probe publishing. This approach should be easily extensible
to constraints of the form “don’t let program D run during
this period of execution.”

With more complex flows, we need to specify constraints
such as program C runs after program B which runs after
program A. This increases the complexity rapidly, but is rel-

atively easy to specify for DTrace by running an additional
trace for each level of complexity. The entire set-up can exit
as soon as one program mis-steps and goes out of order.

Data Corruption.
Data Corruption periodically checks data vital to userland

(zone) applications, to ensure that no data is morphing in
unexpected ways. Sometimes these data corruption checks
look at files.

Data corruption checks ran in two different methods. One
existed much like control flow, and checked which processes
accessed which files when by probing into the filesystem calls
and checking the callers against the list provided. The other
method ran actual diffs on the data during times when ex-
ecution should be happening but data-changing should not
be happening; this latter approach incurred higher overhead
but offered more assurance. Imagine an interleaving such as
this: program A modifies file M , then no one touches file
M or file N until program B reads in both together. The
accesses can be checked by the same methodology as control
flow (above) and doing a diff at point A and point B: the
frequency of checks would be mandated by the frequency of
accesses. (However, we found that we did not need to use
diffs all that much, since DTrace did the job.)

Encryption.
An interesting, but less common problem is the encryption

of data to either hold it hostage or to do other sneaky things
with sensitive data. By tracking the encryption capabilities
and actions of the zone, we keep an eye on these situations.
In cases where sensitive data is being exchanged or being
sent over the wire, the host —and often the client—would
like encryption to be used. On the other hand, the host also
wants to be sure that if the client is playing with sensitive
data, it does not remove that data from the host’s access.
By tracking the encryption going on in a zone, we are able
to minimize the cases of insufficient external encryption or
restrictive internal encryption.

For external encryption, we inspected network traffic, and
for internal encryption, we used DTrace to track the usage
of known encryption methods on the computer: we set a
hook onto openssl for example, and tracked which processes
inside a zone employed the openssl tools. The main vulner-
ability here is that if there is an unknown implementation
of encryption used, it would be difficult for DTrace or other
runtime tools to catch it.

Design of Enforcement.
Most of the enforcement mechanisms run monitoring via

some form of DTrace and report to the security monitor
based on the information gathered therein. These are per-
sistent processes, most of which watch a single container and
do no revocation themselves. We chose to have enforcement
be enacted with a modular approach due to the potentially
flexible set of security properties required. With this design,
future modules may be installed, allowing a further exten-
sion to the security capabilities.

There is a performance hit associated with doing such en-
forcement, although it is rela- tively minor, due to the nature
of DTrace (intended to have “negligible” impact [22]). We
did not specifically measure DTrace performance impact for
this project—and the potential certainly exists for patholog-
ically bad impact.



Certifying Properties.
For each of these properties, we added a property field

(via “extensions”) into the openSSL X.509v3 indentity cer-
tificates created by the monitor. The entry into the field
specified what enforcement was provided for the property—
for example “NETWORK: no traffic” or “ENCRYPTION:
all outgoing.” These phrases should match the phrases used
to specify the enforcement requested, and are a small set
of specified words. For the purposes of this project, the
certificates did not mandate code to exist on the other end
to interpret the properties (so we could tell which were suc-
ceeding), although this could ostensibly be changed in future
iterations of the project and make the properties more heav-
ily enforced on the other end, rather than rely on humans
noticing.

The Global Zone.
In our system, the global zone became part of the TCB;

we did not run enforcement processes in the global zone
itself. (There are few times when the global zone, being all-
powerful, cannot do exactly what it wants.) However, wed
did run hooks into the zone commands (such as start, stop,
login, etc) to make sure no one interfered with the zones
we had running. The last is actually quite important, as
it’s the only convenient method of giving commands to the
non-global zones.

7. SCALABILITY EVALUATION
Figure 11 shows how we did with respect to scalability.
In terms of trusted platforms per machine,e paenevirtu-

alization scalability far surpasses that of Xen. Sun reports
over 8000 Solaris zones per machine; Figure 11 gives the
more conservative paenevirtualization measurement reported
by Soltesz et al [21] running Apache 2.0.46 as the workload,
on Xen 2.0.7 on a patched 2.6.12 XenoLinux versus Vserver
2.0.1 on Linux 2.6.12 on a 3.06Ghz Leon with 4GB of RAM.
This is a great benefit in situations such as the power grid,
wherein a single provider many want to talk with hundreds
of clients at a given time, and have a reasonable response
time.

However, in terms of time of creation, zone installation
time was unacceptably long. (Figure 11 reports measure-
ments we took on an Intel Core 2 Duo CPU T9600, 2.80GHz,
with 4096MB of RAM.) It appears that most of this time is
due to checking software packages for update (unnecessary,
in our scenarios)—and it turns out that there is little that
can currently be done without more substantive changes to
the OS. We were able to achieve a marginal speedup using
a clone option for the zones, which works well for closely-
related zones. However, cloning zones is not ideal. Over the
course of some discussion with Sun, it became clear that So-
laris containers have a faster startup than their OpenSolaris
alternatives, and the capability for this to occur may move
over to OpenSolaris at some point in the near future.

In situations where clients merely wish to boot an instance
of a zone that has already been installed, the status quo will
be fine.

8. CONCLUSIONS AND FUTUREWORK
Our overall implementation was a success, leading to a

successful and useful system, with a few caveats noted above.
Alteration of the Remote Zones code given to us, as well as
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Figure 11: Scalability of zones: the instances per
machine is good (left), but current installation times
are disappointing (right).

the addition of TPM and PKI capabilities led to smooth cre-
ation and command handling within the TVCon framework.

Specifically, the capability to start the system using trusted
boot, extend PCRs, initialize state, and accept clients hap-
pens without a hitch. Clients are successfully accepted, their
requests are parsed and created, with appropriate proper-
ties. We have options to work from either installed zones or
cloned zones, and both integrate well with the system.

Commands and replies also transpire without any prob-
lem: from the client’s viewpoint, it appears as if one is inter-
acting with a slightly different terminal, but with essentially
the same capabilities.

Property-based identity certificates are provided with clear
properties and elucidation about the specific requests in-
cluded in the certificate itself. This simplified attestation
improves vastly over previous solutions: a few lines of read-
ing in the certificate make it clear what the status of the
zone is. According to the policy implemented, revocation of
those certificates is simultaneous with the shutdown of the
zone.

Several areas suggest themselves for future work. The pri-
mary one is reducing the time necessary for container instal-
lation. Others include exploration of less drastic approaches
about what to do when a container misbehaves (e.g., merely
suspend its access to its key, rather than revoking its certifi-
cate), providing for inter-container communication (our goal
had been isolation), and exploring more thoroughly the effec-
tiveness of our enforcement measurements against actively
malicious code. (In particular, it is rumored that DTRace
may have a TOCTOU issue.) Another area would be to
incorporate negotiation of trusted container properties with
the ciphersuite negotiation already happening with SSL. We
also look forward to integrating this work with the concur-
rent Solaris zone project from our colleagues at Bochum [11].
Another natural area of future work would be to carry out
penetration tests to evaluate the effectiveness of the enforce-
ment mechanisms.

Of course, besides considering future work pertaining to
the base technology itself, we also look forward to integrat-



ing this work into actual power grid cyberinfrastructure—
provided we can find industry players to partner with us on
such pilots.
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