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Abstract

In 1976, Whitfield Diffie and Martin Hellman demonstrated how public key cryptography

could enable secure information exchange between parties that do not share secrets. In

order for public key cryptography to work in modern distributed environments, we need an

infrastructure for finding and trusting other parties’ public keys, i.e., a Public Key Infras-

tructure (PKI). While PKI applications differ in how they use keys, all applications share

one assumption: users have keypairs.

This thesis begins by examining the security aspects of some of the standard keystores

and their interaction with the Operating System. We establish that desktop keystores are not

safe places to store private keys, and our experiments demonstrate the permeability of such

keystores. Additionally, desktop keystores are immobile, difficult to use, and make it hard

or impossible for relying parties to make reasonable trust judgments. We show that these

problems stem from the fact that the Trusted Computing Base (TCB) of modern desktops

is too large and ill-defined, which makes standard desktops suboptimal PKI clients.

Since we would like to use desktops as PKI clients and cannot realistically expect to

redesign the entire desktop, this thesis presents a system that works within the confines

of modern desktops to shrink the TCB needed for PKI applications. Our system is called

Secure Hardware Enhanced MyProxy (SHEMP), and combines a number of techniques

and technologies to shrink the TCB in space and allow the TCB’s size to vary over time.

In addition, the SHEMP system addresses the problems of immobility and usability, and

allows relying parties to make reasonable trust judgments. Using analysis, experiments,

and formal methods, we conclude that SHEMP makes standard desktops suitable for use

as PKI clients.

The contributions of this thesis include the discovery of techniques used to identify

weaknesses in modern desktops; a prototype, analysis, and correctness proof of a sys-
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tem which makes desktops usable as PKI clients (SHEMP); a novel approach for reason-

ing about TCBs; and a formal framework for proving properties of PKI systems such as

SHEMP.
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Preface

During my time as a research assistant in Dartmouth’s PKI lab, I have had the opportunity

to work on a wide range of projects. In the early stages, it seemed as though every research

project was designed to fit some particular niche, and the results were only applicable to

the question at hand. I would approach each new research question with fervor, rarely

searching for non-obvious connections to my previous results, and thus keeping a local

view of each project. In hindsight, I realize that I was plotting points.

Only in the last year or so have I stepped back and tried to look at my results from

a more global perspective, trying to find connections between the points. In doing so, a

clear theme has emerged. All of my previous research efforts are asking variations of the

same question: “Why should I trust the results of a given computation?” If I begin with

the assumption that a specific program running on an isolated machine produces correct

results, then what happens to the program as I put it into the maze of machines, networks,

and software that constitutes the modern computing landscape? Should I still trust the

results?

Having taken more of a bottom-up approach to writing a thesis, I had the opportunity

to focus on numerous aspects of the trust issue in some detail. I have explored the areas of

software security, trusted computing, secure systems, PKI, and formal methods, and I have

built systems as well as broken them. Getting such exposure was the motivating factor for

pursuing a Ph.D. in the first place, and I am fortunate to have had the chance to work in so

many areas.

I am also fortunate to have had the chance to work with my advisor, Sean Smith. Sean

had the patience to deal with my wandering curiosity, half-baked ideas, and frequent lack

of clarity. He influenced and inspired me in a number of ways both professionally and

personally, and in the end, Sean helped me grow in many dimensions. He made graduate
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Chapter 1

Introduction

Because public-key cryptography can enable secure information exchange between parties

that do not share secrets a priori, Public Key Infrastructure (PKI) has long promised the

vision of enabling secure information services in large, distributed populations.

A number of useful applications become possible with PKI. While the applications

differ in how they use keys (e.g., some applications use the key for message encryption

and signing, while others uses it for authentication), all applications share one assumption:

users have keypairs. Where these user keypairs are stored and how they are used is the

primary focus of this research.

Traditionally, users either put their key on some sort of hardware device such as a

smart card or USB token, or they place it directly on the hard disk in a browser or system

keystore. Most modern operating systems (such as Windows and Mac OSX) include a

keystore and a set of Cryptographic Service Providers (CSPs) which use the key to perform

cryptographic operations. In fact, many cross-platform software systems, such as the Java

Runtime and the Netscape/Mozilla Web browser include their own keystore so that they

may use a keypair without having to rely on the underlying Operating System (OS), thus

enhancing portability.

1



All of these key storage approaches have something in common: in order for the pri-

vate key to be used, it must somehow be accessible to the set of software that exists on the

desktop1. The security properties (or lack thereof) of modern desktops makes this access

problematic. In order for an application to use the private key, it must expose highly sensi-

tive material (the private key) to an insecure and hostile environment (the desktop). As we

will explore in Chapter 2, the lack of desktop security makes it difficult or impossible for

relying parties to make reasonable trust judgments, and thus decreases and/or eliminates

the utility of desktops as PKI clients.

In addition to security concerns, desktops suffer a number of other limitations which

hinder their use as PKI clients. Among these limitations are the lack of mobility and the

lack of usability. Modern computing populations are becoming increasingly mobile, and

a PKI client that fails to accommodate this mobility (such as the modern desktop) is in-

effective in certain environments. Furthermore, as we will discuss in Chapter 2, modern

desktops make it difficult for users and application developers to construct valid mental

models of the system. As a result, it becomes difficult to use the system correctly.

The goal of this thesis is to make desktops usable as PKI clients. We begin by examining

the core reasons why desktops are unsuitable for use as PKI clients. We then establish

criteria for a solution, and introduce a system called Secure Hardware Enhanced MyProxy

(SHEMP) which meets our criteria and makes desktops usable as a PKI clients.

In the remainder of this chapter, we introduce the major components of this thesis,

provide a basic outline for the rest of the thesis, and present the contributions of this work.

1In this thesis, we define the desktop as a computer running a standard commodity OS (e.g., Windows).
Our definition covers personal computers, workstations, and laptop computers

2



1.1 Keystores

Most modern keystores fall into one of four basic categories:

• A software token stores the key on disk in some sort of encrypted format. Exam-

ples include the default CSP for Windows and the Mozilla/Netscape Web browser.

Sandhu et al. discuss other software tokens in depth [107].

• A hardware token stores the key and performs key operations. The interaction be-

tween an application and the key is typically mediated by the OS (although in some

cases, the application may interact with the device directly). In order for the OS or

application to be able to speak to the token, the token vendor must provide a driver

for the device which adheres to one of the two common standards for communicating

with cryptographic devices: the Cryptographic API (CAPI) for Microsoft [78], and

RSA’s PKCS#11 [109] for the rest of the world. Examples of hardware tokens in-

clude the Aladdin eToken and Spyrus Rosetta USB tokens, as well as more powerful

devices (sometimes referred to as cryptographic accelerators or Hardware Security

Modules (HSMs) ) such as nCipher’s nShield [85].

• A secure coprocessor stores the key, performs key operations internally using spe-

cialized cryptographic hardware, and can even house applications directly. An ex-

ample of a secure coprocessor is the IBM 4758 [18, 119]. These devices can also be

used as cryptographic accelerators or HSMs.

• A credential repository is a dedicated machine that stores private keys for a number

of users. When a user Alice wishes to perform private key operations, she must first

authenticate to the repository. The repository then certifies a temporary key with

Alice’s permanent key via a digital signature, issues a temporary credential, or ac-

3



tively participates in the requested key operation. Examples of credential repositories

include MyProxy [88], hardened MyProxy [64], and SEM [10].

Software and Hardware Tokens In Chapter 2, we will examine the security aspects

of some of the standard keystores and their interaction with the desktop. We will show

that software tokens are not safe places to store private keys, and we will demonstrate the

permeability of keystores such as the Microsoft default CSP and the Mozilla keystore. Our

experiments will show that in many cases, it is possible for an attacker to either steal the

private key or use it at will.

In addition to being unsafe, standard software keystores have the disadvantage of being

immobile. Once a private key is installed on a desktop, the only way to transport it to

another machine is to export it and re-import it on the new machine. As we will discuss

in Chapter 2, since this process can make the key vulnerable to attack, such solutions may

offer mobility at the expense of security. As user populations become more mobile and

begin to use multiple devices, this immobility becomes more problematic.

Hardware tokens claim to solve both of these problems—they get the key off of the

desktop and give users mobility. We experimented with these devices as well, and found

that an attacker is typically still able to use the key at will. However, with respect to

mobility, devices such as USB tokens can add some benefit, provided that the appropriate

software is installed on each machine, and that users use supported OSes (but the tokens we

experimented with did not have Apple or Linux support at the time of our experimentation).

As we will explore in Chapter 2, the security problems of software and hardware tokens

stem from the facts that the Trusted Computing Base (TCB) is too large and ill-defined,

and that usability issues make it hard for users and application developers to “do the right

thing.” These shortcomings make it impossible for relying parties to make reasonable trust

judgments about the system.
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Secure Coprocessors In previous work, we examined secure coprocessors (e.g., [114,

139, 140]): careful interweaving of physical armor and software protections can create

a device that, with high assurance, possesses a different security domain from its host

machine, and even from a party with direct physical access. Such devices can be used

to shrink the TCB significantly. Secure coprocessors have been shown to be feasible as

commercial products [18, 119] and can even run Linux and modern build tools [44].

We have explored using secure coprocessors for trusted computing—both as general

designs (e.g., [94]) as well as real prototypes (e.g., [46])—but repeatedly were hampered

by their relatively weak computational power. Their relatively high cost also inhibits

widespread adoption, particularly at clients. Their lack of ubiquity, coupled with their

sometimes awkward programming environments, lead us to conclude that secure coproces-

sors are difficult to use, especially for application developers.

In previous work, we used inexpensive commodity hardware to secure an entire desk-

top [67, 72, 73]. While the security properties are not as strong as a real secure coprocessor

(such as the IBM 4758), our approach shrinks the standard TCB of a general purpose desk-

top. Our platform (called Bear/Enforcer) will be discussed further in Chapter 4.

Credential Repositories Credential repositories can provide safe storage facilities for

private keys as well as give users mobility. The repository approach allows an organization

to focus security resources on the repository, thus providing economies of scale. In terms

of secure key storage, repositories significantly shrink the TCB. The private key no longer

relies on a general purpose (and buggy) desktop for safe storage, but instead on a dedicated

server which is presumably administered by a professional and is running only what the

administrator allows. Repositories also allow users to access their private key from multiple

machines, thus giving users mobility.

However, when a user Alice wishes to use her private key to perform some operations,
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Keystore Secure Usable Mobile Allows Judgments

Software Token no no no no
Hardware Token no no maybe no

Coprocessors yes maybe no yes
Repositories maybe no yes no

Table 1.1: A summary of modern keystores.

she must bring the key to her desktop, or use a protocol which allows her to use the pri-

vate key on the repository (and rewrite her application to use this new protocol). Thus,

repositories can be difficult to use, especially for application developers.

Recently, a new credential repository has been developed and embraced by the Grid

computing community which provides both security and mobility to clients. Their reposi-

tory is called MyProxy [88], and there have even been efforts to harden a MyProxy repos-

itory by using an IBM 4758 for key storage and cryptographic operations [64]. MyProxy

will be discussed further in Chapter 4.

Desktops Are Not Usable as PKI Clients As we will establish in Chapter 3, a usable key

storage solution must be secure, be usable, give users mobility, and allow relying parties to

make reasonable trust judgments. As we have discussed in this section, none of the current

approaches meet this criteria. Table 1.1 summarizes the status quo.

1.2 SHEMP Overview

The status quo is not satisfactory. Ideally, we need a way to use a desktop as a PKI client

which answers “yes” in all of the columns of Table 1.1. Since we cannot redesign the

entire desktop and expect anyone to use it, our solution must operate within the confines of

modern desktops. Additionally, in order to remain usable to application developers, it must

adhere to common development paradigms and practices.
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Our solution is a system which we call SHEMP, and will be discussed in detail in

Chapter 4, Chapter 5, and Chapter 6. Briefly, the idea behind SHEMP is to remove the

private key from the desktop altogether, placing it in a SHEMP credential repository which

is based on the MyProxy design. When a user Alice wishes to use her private key, she

logs into the SHEMP repository from her client desktop, generates a temporary keypair

on her desktop, and then requests a Proxy Certificate (PC) [126, 132] that includes the

public portion of her temporary keypair and is signed by her permanent private key on the

repository.

If Alice’s policy permits the operation under her current security context, then a PC is

generated, signed, and returned to Alice. The PC is only valid for a short period of time,

and includes a snapshot of the environment in which the PC was generated. This snapshot

describes the security attributes of the repository and client desktop, and allows applications

to decide for themselves how trustworthy the private key described by PC really is.

The SHEMP system attempts to leverage secure hardware when it can, but it does

not require secure hardware. Concretely, SHEMP allows keypairs on the repository and

the client to be generated and used in secure coprocessors. Additionally, the framework

for describing the security attributes of repositories and client desktops allows users and

administrators to express the presence and quality of secure hardware. Finally, the SHEMP

policy mechanism allows users, relying parties, and applications to make decisions based

on the current security context, including the presence and quality of secure hardware.

Using SHEMP, Alice can walk up to any computer in her domain, generate a temporary

keypair (possibly using secure hardware), and request that the SHEMP repository generate

a PC for her. She can then give her PC to an application and request that the application

perform some operation. Finally, the application carrying out the operation can use the

SHEMP policy mechanism to decide whether or not to perform the operation based on

Alice’s current environment.
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Making Desktops Usable for PKI The SHEMP system will be evaluated analytically

and experimentally in Chapter 7 and formally in Chapter 8. Put simply, SHEMP meets the

criteria shown in Table 1.1, and thus makes desktops usable as PKI clients. SHEMP obtains

security by taking the private key off of the desktop altogether and storing it in a credential

repository (which is possibly storing the key in secure hardware). Thus, the TCB when the

key is not in use only includes the repository.

When Alice needs to use her private key, her desktop generates a temporary keypair

(again, possibly storing the key in secure hardware) and attempts to obtain a PC which

contains the public portion of the temporary key. If Alice’s policy permits the operation,

the TCB is extended to include the desktop—but only to store and wield a short-lived dis-

posable keypair. When Alice logs out or her PC expires, the TCB shrinks to only include

the repository again. As we will discuss in Chapter 7, should Alice’s desktop be compro-

mised and her temporary private key disclosed, SHEMP reduces the attacker’s window of

opportunity for misuse by issuing short-lived PCs.

SHEMP provides usability to users and application developers by including information

about Alice’s current environment in the PC. In essence, this information is a snapshot

of the current TCB under which Alice generated her temporary keypair and PC. These

snapshots also allow relying parties to make reasonable trust judgments.

SHEMP solves the mobility problem by allowing Alice to log on to a SHEMP reposi-

tory and request a PC from anywhere in her domain. Some machines that Alice uses may

be more secure than others—for instance, a public terminal in a common area may be sig-

nificantly less secure than the desktop in her office which has secure hardware. Not only

does SHEMP allow Alice to use a variety of machines with different security levels, it

relays the security level to the relying party via the PC.

In essence, SHEMP makes desktops usable as PKI clients by first recognizing that the

TCB should not be treated as a static entity. SHEMP views the effective TCB as the union
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of the repository’s TCB with the client’s, and recognizes that this TCB can vary in size

(by using secure hardware and by potentially limiting the key operations in accordance

with a user’s policy) and in time (by issuing short-lived PCs). By viewing the TCB as a

dynamic entity, SHEMP keeps the TCB small, and allows it to expand only when needed.

Furthermore, SHEMP allows users to control the TCB via policy. SHEMP maintains se-

curity while giving users mobility by recognizing that client machines may have varying

levels of security, and that users and relying parties need these security properties in order

to construct valid mental models of the system as well as make reasonable trust judgments.

1.3 Thesis Contributions

In this thesis, we examine the usability of standard desktops as PKI clients. As we discuss

in Chapter 2, much effort and many resources are being put towards rolling out real PKI

systems which rely on standard desktops as their clients. The first contribution of this

work, and indeed a fundamental one, is the discovery of the problem: desktops are not

usable as PKI clients. Despite the barrage of marketing literature suggesting that users are

better off by using private keys stored on standard desktops, our experiments show that

such approaches are vulnerable to an attack we call keyjacking.

Our approach to making desktops usable as PKI clients involves the design and imple-

mentation of the SHEMP system, which is our second contribution. Additionally, SHEMP

employs some novel construction techniques which are of interest in their own right. The

first of these techniques is taking the view that the TCB is a dynamic entity which varies

in space and time. Previous discussions of the TCB (such as what is found in the “Orange

Book” [90]) are limited to treating the TCB as a purely spatial entity (sometimes called a

“security perimeter”). SHEMP also attempts to describe the state of the TCB to those who

need it most: relying parties. The second technique involves the use of PCs for decryption
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and signing applications (described in Chapter 6). Current uses of PCs focus solely on

authorization.

Finally, in order for relying parties to make reasonable trust judgments about SHEMP,

they need a framework in which to express and reason about the flow of trust in the system.

As we will discuss in Chapter 8, this task is best accomplished with the use of formal

methods. A number of calculi have been developed for this task, but none of them are robust

enough to deal with the variety of issues found in SHEMP (such as multiple certificate

formats, the concept of time, and revocation). In Chapter 8 we present a new calculus for

reasoning about PKI systems, and use it to offer a formal proof of SHEMP’s correctness.

We also use the calculus to reason about a number of PKI systems which we could not

model using the other calculi. Thus, we believe that our calculus is a contribution in its

own right.

In short form, this thesis makes the following contributions:

• Demonstration of architectural flaws within Microsoft’s Cryptographic API, a suite

of attacks which exploit those flaws, and the realization that such flaws make desk-

tops unsuitable for use as PKI clients,

• The establishment of criteria for making desktops usable as PKI clients,

• A working system which meets that criteria: SHEMP,

• The view that the TCB should be treated as a dynamic entity,

• The implementation of applications which use Proxy Certificates for decryption and

signing, and

• A formal framework for reasoning about PKI systems.
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1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 describes why desktops are not usable as PKI

clients. We present our experiments and an analysis of the results. Chapter 3 establishes

criteria which any solution to this problem must meet, providing analysis of where and why

previous efforts have been unsuccessful, and how they differ from SHEMP.

Chapter 4 introduces the building blocks used to build SHEMP. Chapter 5 gives a de-

tailed explanation of the design and implementation of the SHEMP system. Chapter 6

describes applications which we designed and implemented, and introduces a number of

applications where SHEMP could provide an improvement over current approaches.

Chapter 7 provides an analytical and experimental evaluation of the SHEMP system.

We show how SHEMP meets the criteria put forth in Chapter 3, we present the results of

our usability study and performance tests, and we discuss how we would attack the SHEMP

system.

Chapter 8 presents our formal framework for reasoning about PKI systems; we show

how our framework is robust enough to model systems that other frameworks cannot. Then,

we use our new framework to prove that SHEMP is correct and that a number of applica-

tions we built are also correct.

Finally, Chapter 9 presents a summary and analysis of the thesis, and introduces some

areas for possible future work.
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Chapter 2

Keyjacking

In the last decade, the Web has become the dominant paradigm for electronic access to

information services. The Secure Sockets Layer (SSL) is the dominant paradigm for secur-

ing Web interaction. For a long time, SSL with server-side authentication—where, during

the handshake, the server presents a public-key certificate and demonstrates knowledge of

the corresponding private key—was perhaps the most accessible use of PKI in the lives of

ordinary users.

However, in the full vision of PKI, all users have keypairs, not just the server operators.

Within the SSL specification, a server can request client-side authentication where, during

the handshake, the client also presents a public-key certificate and demonstrates knowledge

of the corresponding private key. The server can then use this information for identification,

authentication, and access control on the services it provides to this client.

Client-side PKI exploits the natural synergy between these two scenarios. Because the

Web is the way we do business and client-side SSL permits servers to authenticate clients,

we are beginning to see some of the necessary building blocks to achieve the client-side

vision:

• Many modern operating systems (e.g., all flavors of Windows and Mac OSX) include
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a keystore and a set of CSPs which can be used by any application on the machine.

• Modern browsers which are designed to be used across multiple platforms (e.g.,

Netscape/Mozilla) now include keystores for a user’s keypairs.

• Enterprises (and other distributed populations) are arranging for users to obtain cer-

tified keypairs to live in these keystores. Some populations are even making plans to

distribute USB tokens to users in order to store their keypairs.

• Providers of Web information services are starting to use client-side SSL as a better

alternative than passwords to authenticate users.

Using client-side PKI can alleviate the need for users to remember multiple passwords

for multiple services. It also reduces the risk of an attacker capturing a user’s password

either by guessing or via a keyboard sniffer.

Does It Work? In previous work, our lab has examined the effectiveness of server-side

SSL [137] and of digital signatures on documents [53]. In this chapter, we examine the

question: does client-side PKI work?

• When browsers use a private key in contemporary desktop environments, is it reason-

able for the user at the client to assume that his private key is used only to authenticate

services he was aware of, and intended?

• Is it reasonable for the user at the server to assume that, if a request is authenticated

via client-side SSL, that that client was aware of and approved that request?

The perception of users—not only the users at the client, but also the application authors

and administrators at the server—plays a critical role in determining whether client-side

PKI works. If the natural mental models of the system do not match the actual system
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behavior, then users have no basis to make reasonable trust judgments. In security settings

such as client-side PKI, this inability to reason about the system can thwart the security

efforts that the system’s designers have implemented.

Our Agenda We wish to stress that we believe that PKI is a much better way than the al-

ternatives to carry out authentication and authorization in distributed, multi-organizational

settings. PKI does not require shared secrets or a previously-established direct trust rela-

tionship between the two parties. Further, PKI permits many parties to make assertions,

and allows for non-repudiation of those assertions—Bob can prove to Cathy that Alice

authorized this request to Bob.

However, rolling out client-side PKI and migrating existing information services to use

it requires considerable resources and effort. Weaknesses in the underlying technology risk

undermining this effort. We provide a critical examination of the current client-side PKI

approach precisely because we want the PKI vision to succeed. Indeed, the remainder of

this thesis is devoted to a system (SHEMP) which strives to realize the PKI vision.

Chapter Outline In the next section, we examine the status quo. In Section 2.2, we

pose the question which drives our experiments. Section 2.3, Section 2.4, Section 2.5, and

Section 2.6 describe our experiments. We conclude this chapter in Section 2.7.

2.1 The Current State of Affairs

2.1.1 Web Information Services and Web Applications

Currently, the Web is the dominant paradigm for information services. Typically, the

browser issues a request to a server and the server responds with material which the browser

renders.
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Language of the Interaction From the initial perspective of a browser user (or the crafter

of a home page), the “requests” correspond to explicit user actions, such as clicking a link

or typing a URL; the “responses” consist of HTML files.

However, the language of the interaction is richer than this, and not necessarily well-

defined. The HTML content a server provides can include references to other HTML con-

tent at other servers. Depending on the tastes of the server operator and the browser, the

content can also include executable code; Java and Javascript are fairly universal. This

richer content language provides many ways for the browser to issue requests that are more

complex than a user might expect, and not necessarily correlated to user actions like “click-

ing on a link.”

As part of a request, the browser will quietly provide parameters such as the browser

platform and the REFERER (sic)—the URL of the page that contained the link that gener-

ated this request.

In the current computing paradigm, we also see a continual bleeding between Web

interaction and other applications. For example, in many desktop configurations, a server

can send a file in an application format (such as PDF or Word), which the browser hands off

to the appropriate application; non-Web content (such as PDF or Word) can contain Web

links, and cause the application to happily issue Web requests.

Web Applications Surfing through hypertext documents constituted the initial vision for

the Web and, for many users, its initial use. However, in current enterprise settings, the

interaction is typically much richer: users (both of the browser and server) want to map

non-electronic processes into the Web, by having client users fill out forms that engender

personalized responses (e.g., a list of links matching a search term, or the user’s current

medical history) and perhaps have non-Web consequences (such as registering for classes

or placing an Amazon order). In the standard way of doing this, the server provides an
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HTML form element which the browser user fills out and returns to a common gateway

interface (CGI) script (e.g., see Chapter 15 in [87]).

The form element can contain input tags that (when rendered by the browser) pro-

duce the familiar elements of a Web form: boxes to enter text, boxes with a “browse” tag

to enter file names for upload, radio buttons, check-boxes, etc. For each of these tags, the

server may specify a name which names the parameter being collected from the user and

a default value. The server content associates this form with a submit action (typically

triggered by the user pressing a button labeled “Submit”), which transforms the parame-

ters and their values into a request for a specific URL. If the submit action specified the

GET method, the parameters are pasted onto the end of the URL; if the action specified the

POST method, the parameters are sent back in a second request part.

However, the submit URL specifies an executable script, not a passive HTML file, in

the Web directory at the server. When a server receives a request for such a script, it invokes

the script. The script can interrogate request parameters such as the form responses, interact

with other software at the server side, and also dynamically craft content to return to the

browser.

2.1.2 Security Mechanisms

In enterprise settings, the server operator may wish to restrict content to authorized browser

users. When the browser user is requesting a service via a form, the server operator may

wish to authenticate specific attributes about the user, such as identity and the fact that

the user authorizes this request. The Web paradigm provides several standard avenues to

perform such a task.

Client Address The server may restrict requests to client machines with specific host-

name or IP address properties.
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Passwords With basic authentication (or the digest authentication variant), the server

can require that the user present a username and password, which the browser collects

via a special user interface channel and returns to the server. The server requesting the

authentication can provide some text that the browser will display in the password-prompt

box. Alternatively, the server may also collect such authenticators as part of the form

responses from the user.

With these various forms of password-based authentication, the server operator would

be wise to take steps to ensure that sensitive data is protected in transit. Some of the

common approaches include offering the entire service over an SSL channel, and having

the form submitted by the POST method, so the responses are not cataloged in histories,

logs, REFERER fields, etc..

Indeed, if neither the user nor server otherwise expose a user’s password, and if the

user has authenticated that he is talking to the intended server, then a strong case can be

made that a properly authenticated request requires the user’s awareness and approval. The

password had to come from somewhere!

Password-based systems have a number of risks. Users may pick bad passwords or

share them across services; the authentication is not bound to the actual service (i.e., we

have no non-repudiation); the adversary may mount online guessing attacks (Pinkus et al.

have recently considered some interesting countermeasures [98]); users may not check that

they are connected to correct server, making them vulnerable to bogus sites that look similar

(i.e., “Spoofing” or “Phishing” [31, 137, 138]).

Cookies The server can establish longer state at a browser by saving a cookie at the

browser. The server can choose the contents, expiration date, and access policy for a spe-

cific cookie. A properly functioning browser will automatically provide the cookie along

with any request to a server that satisfies the policy. Many distributed Web systems—such
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as “PubCookies” [101] and Microsoft’s “Passport” [79]—use one of the above mechanisms

to initially authenticate the browser user, and then use a cookie to amplify this authentica-

tion to a longer session at that browser, for a wider set of servers.

Cookie-based authentication can also be risky. Fu et al. [33] discuss many design flaws

in cookie-based authentication schemes; PivX [127] discusses many implementation flaws

in IE that allows an adversarial site to read other sites’ cookies.

2.1.3 Validating User Input

Besides authenticating the user, another critical security aspect of providing Web services

is ensuring that the input is correct. Failing to do so can lead to a number of issues. For

example, an adversarial user can exploit server-side script vulnerabilities by carefully craft-

ing escape sequences that cause the server to behave in unintended ways. The canonical

example here is a server using user input as an argument in a shell command; devious in-

put can cause the server to execute a command of the user’s choosing. Another example

occurs on the application level, where an adversarial user can change the request data, such

as form fields or cookie values. The canonical example here is a commerce server that

collects items and prices via a form, and allows a malicious user to purchase an item for a

lower price than the vendor intended.

Standard good advice is that the script writer thoroughly vet any user input [37], and

also verify that critical data being returned has not been modified [99].

2.1.4 Client-Side PKI

When prodded, PKI researchers (such as ourselves) will recite a litany of reasons why PKI

is a much better way than the alternatives to carry out authentication and authorization in

distributed, multi-organizational settings. In practical settings, many enterprises are adopt-
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ing PKI technology because it allows single sign-on, minimizes the impact of keyboard

sniffers, and is being heavily marketed by PKI vendors.

As we mentioned in the introduction, using various keystores and client-side SSL is a

dominant emerging paradigm for bringing PKI to large populations. Some organizations

currently using client-side SSL include Dartmouth College, MIT, the Globus Grid project,

IBM WebSphere, many enterprise PKIs, Federal PKI projects, and many suppliers of VPN

software.

On the application end, numerous players preach that client-side SSL is a better way to

authenticate users than passwords. We cite a few examples culled from the Web:

• The W3C: “SSL can also be used to verify the users’ identity to the server, pro-

viding more reliable authentication than the common password-based authentication

schemes.” [121]

• Verisign: “Digital IDs (digital certificates) give web sites the only control mechanism

available today that implements easily, provides enhanced security over passwords,

and enables a better user experience.” [47]

• Thawte: “Most modern Web browsers allow you to use a Personal Email Certificate

from Thawte to authenticate yourself to a Web server. Certificate-based authentica-

tion is much stronger and more secure than password-based authentication.” [96]

• Entrust: “... identify or authenticate users to a Web site using digital certificates

as opposed to username/password authentication where passwords are stored on the

server and open to attacks.” [13]

Recent research on user authentication issues also cite client-side SSL as the desired

(but impractical) solution [33, 98]. The clear message is that Web services using password-

based authentication would be much stronger if they used client-side SSL instead.
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At the Server As noted earlier, SSL permits the browser and user to establish an en-

crypted, integrity-protected channel over which to carry out their Web interaction: request,

cookies, form responses, basic authentication data, etc. The typical SSL use includes server

authentication; newer SSL uses permit the browser to authenticate via PKI as well. The

server operator can require that a client authenticate via PKI and can restrict access based

on how it chooses to validate the client certificate. Server-side CGI scripts can then inter-

rogate client-certificate information (often via environment variables), along with the other

parameters available.

At the Browser Different browsers take different approaches to storing keys and certifi-

cates. Our experiment focuses on the two browsers which are the most commonly used:

Netscape/Mozilla and Microsoft’s Internet Explorer (IE) .

Netscape/Mozilla stores its security information in a subdirectory of the application

named .netscape (.mozilla in Mozilla). There are two files of primary interest:

key3.db which stores the user’s private key, and cert8.db which stores the certificates

recognized by the browser’s security module. Both of these files are binary data stored in

the Berkeley DB 1.85 format [6]. Additionally, the information in these files is encrypted

with a keyphrase so that any application capable of reading the Berkeley DB format is still

required to provide a password to read the plaintext or to modify the files without detection.

A detailed description of the techniques used to securely store user’s keys is beyond the

scope of this thesis, but we point readers to the relevant literature (e.g., [39, 40, 43, 81, 86])

for details.

IE relies on the Windows system keystore and CSP to store the private key. One unfor-

tunate result of this tight coupling between IE and the OS is that versions of IE which run

on MacIntosh computers have no support for storing or using private keys.

By default, Windows uses its own CSPs to store the private key, which generate low
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Figure 2.1: The Microsoft CSP’s password prompt dialog.

security keys (i.e., not password-protected) by default. Many organizations (such as the

Department of Defense (DoD) and even Microsoft) recommend against this behavior, not-

ing that the key is only as secure as the user’s account [80]. This implies that if an attacker

were to gain access to a user’s account or convince the user to execute code with the user’s

privileges, the attacker would be able to use the private key at will, without having to go

through any protections on the key (such as a password challenge).

One way to remedy the lack of password protection is to “export” the private key,

placing it in a password protected .pwl file (for IE 3 and earlier) or a .pfx file which

stores the key in PKCS#12 (for IE 4 to current versions). Once the key is exported, a

user must then “import” it at a higher security level: medium-security, which prompts

the user when the key is used; or high-security, which requires a password to use the

key (assuming the user does not check the box marked “Remember password”, which

immediately demotes it to a low-security key. See Figure 2.1).

While exporting and re-importing the private key may seem like a cumbersome process,

it has become a standard practice in many organizations. In fact, the DoD guidelines for

the Defense Message System outline the process in detail [49].
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2.2 The Question

We believe that PKI is valuable and that secure Web information services are important.

We also realize that any deployment will require considerable effort and user education

(as we participate in such a deployment here at Dartmouth). Hence, we believe that it is

important to ask the fundamental question: does it work?

Discussions of usability and security stress the importance the system behaving as the

user expects [141], and the dangers in creating systems whose proper use is too com-

plex [1, 134]. It is advertised that by using client-side PKI, a client can assume that his

private key is used only to authenticate services he was aware of and intended, and a server

operator can assume that the client was aware of and approved that request. In the common

understanding of the Web, the user must choose to click in order to issue a request. With the

protections promised by medium-security and high-security CSPs, we additionally expect

the user to see and approve a warning dialog before a private key is used.

If we encourage user populations to enroll in client-side PKI, and encourage service

providers to migrate current services to use client-side SSL authentication and to roll out

new services this way, have we achieved the desired goals: that service requests are authen-

ticated from user A only when user A consciously issued that request?

To this end, we carried out a series of experiments in order to evaluate the effectiveness

of using the desktop, browser, and client-SSL as a component of a client-side PKI. (How-

ever, some of our attacks have a wide range of applications, and could potentially be used

to subvert other authentication schemes as well. We focus on PKI because it is claimed to

be the strongest—and in theory, it could be.)

We were not focused on bizarre bugs or extremely carefully constructed applications,

but on general usability. If users on either end follow the “path of least resistance”—

standard out-of-the-box configurations and advice—do they construct a mental model which
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matches actual system behavior?

2.3 Experiment 1: Stealing Keys

2.3.1 Historical Vulnerabilities

This research began when we noticed some of the weakness of client-side PKI and browser

keystores in the literature. Perhaps the most comprehensive list of problems with Mi-

crosoft’s key storage system over the years comes from Peter Gutmann [35]. Three vulner-

abilities in particular caught our attention.

The first vulnerability applies to situations where the private key is stored without pass-

word protection (the Microsoft CSP’s default behavior). With a tool such as the “Offline

NT Password & Registry Editor” [89], it is possible for an attacker to access a user’s ac-

count in a few minutes, given physical access to the computer on which the account resides.

Since the private key is not password-protected, an attacker can use the private key of the

account’s owner at will for as long as they are logged on. Additionally, an attacker could

export the key to a floppy disk (password-protecting it with a password that the attacker

chooses), and then use tools like Gutmann’s or our modified version of OpenSSL to re-

trieve the key offline.

The second vulnerability comes from the format in which the private key is stored on

disk once it has been exported (in a .pwl or .pfx file). Gutmann’s breakms tool performs

a dictionary attack to discover the password used to protect the file and outputs the private

key.

The third vulnerability involves the CryptExportKey function found in the Cryp-

toAPI, which Gutmann raised concerns about back in 1998. Specifically, with the default

key generation (i.e., no password protection) and an exportable key, any program running
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under the user’s privileges may call the CryptExportKey function and silently obtain a

copy of the user’s private key.

In the Microsoft “low-security” model of client-side PKI, it seems that one has to trust

the entire system (OS, IE, the CSP, etc.) for the client-side vision to work. If an attacker

compromises one piece of the system (e.g., an executable with a user’s privileges), then

because of tight coupling, the attacker can violate other parts the system (e.g., the user’s

private key).

2.3.2 Stealing Low-Security Keys

We wondered if, with its new security emphasis, Microsoft had fixed some of these vulner-

abilities, either directly or perhaps as a result of decoupling IE and the OS.

We began our experiments with the low-security key—a key which can be used by

any application running with the user’s privileges without warning the user that the key

is in use. Immediately, we noticed that generating low security keys is still the Microsoft

CSP’s default behavior. We were curious to see if the latest versions of the CryptoAPI

and CSP have remedied the CryptExportKey issue, perhaps by warning the user when

their private key is being exported. Our conclusion: “no.” We were able to construct

a small executable which, when run on a low-security (default) key, quietly exports the

user’s private key with no warning.

2.3.3 Stealing IE Medium-Security and High-Security Keys

The Windows CryptoAPI does permit users to import keypairs at medium or high security

levels. With both of these levels, use of the private key will trigger a warning window;

in the high-security option, the warning window requests a password. Consequently, the

previous attack may not work; when the executable asks the API to export the key, the user
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may notice an unexpected warning window. So our attack strategy had to improve.

API Hijacking

Before we discuss the specifics of stealing medium and high security keys, a brief intro-

duction to the general method of API Hijacking is in order. The goal of API Hijacking

is to intercept (hijack) calls from some process (such as IE) to system APIs (such as the

CryptoAPI)1.

Delay Loading API Hijacking uses a feature of Microsoft’s linker called “Delay Load-

ing”. Typically, when a process calls a function from an imported Dynamic Link Library

(DLL) , the linker adds information about the DLL into the process in a place referred to as

the imports section. We present a brief overview here (see [97] for details).

When a process is loaded, the Windows loader reads the imports section of the process,

and dynamically loads each DLL required. As each DLL is loaded, the loader finds the

address of each function in the DLL and writes this information into a data structure main-

tained in the process’s imports section known as the Import Address Table (IAT) . As the

name suggests, the IAT is essentially a table of function pointers.

When a DLL has the “Delay Load” feature enabled, the linker generates a small stub

containing the DLL and function name. This stub (instead of the function’s address) is

placed into the imports section of the calling process. Now, when a function in the DLL is

called by a process for the first time, the stub in the process’s IAT dynamically loads the

DLL (using LoadLibrary and GetProcAddress). This way, the DLL is not loaded

until a function it provides is actually called—i.e., its loading is delayed until it is needed.

For delay loading to be used, the application must specify which DLLs it would like to

delay load via a linker option during the build phase of the application.

1Very recently, other researchers have suggested an attack that replaces the original DLLs [92]. However,
the countermeasures suggested for that attack do not defend against ours.
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DLL Injection So, how does an attacker use delay loading on a program for which he

can not build (possibly because he does not have the source code—i.e., IE)? The answer is

to redirect the IAT of the victim process (e.g. IE) to point to a stub which implements the

delay loading while the process is running.

The strategy is to get the stub code as well as the IAT redirection code into an attack

DLL, and inject this DLL into the address space of the victim process. Once the attack

DLL is in the process, the IAT redirection code changes the victim’s IAT to point to the

stub code. At that point, all of the victim process’s calls to certain imported DLLs will pass

through the attack DLL (which imported DLLs are targeted and which functions within

those DLLs are specified by the attack DLL—i.e., the attacker gets to choose which DLLs

to intercept). This implements a software man-in-the-middle attack between an application

and certain DLLs on which the application depends.

The Windows OS provides a number of methods for injecting a DLL into an process’s

address space (a technique commonly referred to as “DLL Injection”). The preferred

method is via a “Windows Hook”, which is a point in the Windows message handling

system where an application can install a routine which intercepts messages to a window.

Hijacking the CryptoAPI

Using the techniques above, we were able to construct a couple of programs which, running

at user privileges only, allowed us to intercept function calls from IE to the CryptoAPI.

This is particularly useful for stealing medium or high security private keys which display

warning messages when used (in a client-side SSL negotiation, for example).

The idea is to wait for IE to use the key (hence, displaying the warning or prompting

for a password), and then get a copy of the private key for ourselves—without triggering

an extra window that might alert the user.
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The Attack Essentially, the attack code is two programs: the parasite—an attack DLL

with the IAT redirection code and the delay loading stubs, and the grappling hook—an

executable to register a hook which is used to inject the parasite into IE’s address space.

We implemented this attack as follows:

1. Get the parasite and grappling hook onto the victim’s machine (perhaps through a

virus or a remote code execution vulnerability in IE or any part of the Windows OS).

2. Get the grappling hook running with the user’s privileges. This installs a Windows

hook which gets the parasite injected into IE’s address space.

3. The parasite changes IE’s IAT so that calls to desired functions in the CryptoAPI

(crypt32.dll and advapi32.dll) are redirected to the parasite.

4. At this point, we have complete control and are aware of what IE is trying to do.

For example, if we specify CryptSignMessage to be redirected in our parasite,

then every time IE calls this function (e.g., to do an SSL client-side authentication),

control will pass to our code.

5. We know that the user is expecting to see a warning in this case, so we take advantage

of the opportunity to do something nefarious—like export the private key. In our cur-

rent demo, the adversarial code exports the private key, so the warning window will

say “exporting” instead of “signing” at the top2. This potential detection mechanism

could be remedied by hijacking the call which displays the warning. In fact, doing

so would allow us to disable all such warnings, but we did not implement this UI

hijacking.

2In our demo, we fail the IE request, so the user sees a “404” error.
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Non-exportable Keys The bottom line is that with a DLL and small executable running

with the victim’s privileges, the private key—even with medium-security or high-security

protections—can be stolen if it is exportable. The obvious solution is to make keys non-

exportable, and we verified that this countermeasure prevents the attack.

2.4 Experiment 2: Malicious Use of Keys via Content-only

Attacks

Since making keys non-exportable stops outright theft, we had to revise our attack strategy.

We wondered if we could just use the key at will without having to actually steal it, as this

would be just as devastating and would work against non-exportable keys. So we began our

second experiment with the question: “Can we exploit the complexity of the language of

interaction in order to use the key as we wish, even if we are limited to just serving content

to the browser?”

2.4.1 GET Requests

The language of Web interaction—even when restricted to HTML only, and no Javascript—

makes it very easy for a server SA to send content to a browser B that causes the browser

to issue an arbitrary request r to an arbitrary server.

If one wants this request r to be issued over SSL, we have found that a reliable tech-

nique is to use the HTML frameset construction, itself offered over server-side SSL.

Figure 2.2 sketches this scenario. To borrow client-side authentication, the adversary needs

to convince the browser’s user to visit an SSL page at the evil server. Using the ordinary

rules of Web interaction, the evil server can provide content that causes the browser to qui-

etly issue a SSL request, authenticated with the user’s personal certificate, to the victim
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server.

Figure 2.3 shows some sample HTML for implementing the attack using a GET request.

HTML permits an adversarial server to send a frameset to a browser. The browser will then

issue requests to obtain the material to be loaded into each frame. A deviously crafted

frameset (such as the one in Figure 2.3) appears to be an ordinary page. If an adversarial

server includes a form response in the hidden frame, the browser will submit an SSL request

to an arbitrary target server via GET. In many scenarios, browsers will use client-side

authentication for the GET; with the devious frameset, the user may remain unaware of the

request, the use of his personal certificate, and the response from the target.

Basic Techniques A frameset enables a server SA to specify that the browser should

divide the screen into a number of frames, and to load a specified URL into each frame. The

adversarial server can specify any URL for these frames. If the server is careful with frame

options, only one of these frames will be visible at the browser. However, the browser will

issue all the specified requests.

This behavior appears to violate the well-known security model that “an applet can only

talk back to the server that sent it” because this material is not an applet.

We stress that this is different from full-blown cross-site scripting. SA is not is using a

subtle bug to inject code into pages that are (or appear to be from) other servers. Rather,

SA is using the standard rules of HTML to ask the browser to itself load another page.

Framesets and SSL Ye and Smith noticed that if server SA offers a frameset over server-

side SSL, but specifies that the browser load an SSL page from SB in the hidden frame, then

many browser configurations will happily negotiate SSL handshakes with both servers—

but the browser will only report the SA certificate [137].

So, we wondered what would happen if SB requested client-side authentication. In
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PSfrag replacements

Evil server
SA

Browser B

Target server
SB

1. innocent request

2. evil frameset

3. stealth r, client-authenticated

4. hidden response

Figure 2.2: The setup for borrowing client-side authentication.

Mozilla 1.0.1 on Linux (RedHat 7.3 with 2.4.18-5 kernel), using default options, the browser

will happily use a client key to authenticate, without informing the user. In IE 6.0/Win-

dowsXP, using default options and any level key, the browser will happily use a client key

to authenticate without informing the user, if the user has already client-side authenticated

to SB . If the user has not, a window will pop-up saying that the server with a specified

hostname has requested client-side authentication; which key, and is it OK? In Netscape

4.79/Linux (RedHat 7.3 with 2.4.18-5 kernel), using default options, the browser will pop-

up a window saying that the server with a specified hostname has requested client-side

authentication; which key, and is it OK? Then the browser will authenticate.

The request to SB can easily be a GET request, forging the response of a user to a Web

form.

2.4.2 POST Requests

Some implementors preach that no sane Web service should accept GET response to Web

forms. However, services that use POST responses are also vulnerable. If we extend the

adversary’s tools to include Javascript, then the adversarial page can easily include a form
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<html>
<frameset rows="*,1" cols="*,1" frameborder="no">

<frame src="f0.html" name="f0" scrolling="no">
<frame src="blank" name="b0" scrolling="no">
<frame src="blank" name="b1" scrolling="no">
<frame src="https://cobweb.dartmouth.edu:8443/cgi-bin/test.pl?

debit=1000&
major=None%3B%20I%27m%20withdrawing%20from%20the%20college"
name="f1" scrolling="no">

</frameset>
<noframes> no frames </noframes>
</html>

Figure 2.3: Borrowing client-side authentication via a GET request.

element with default values, and an onload function that submits it, via an SSL POST

request, to SB .

Figure 2.4 sketches an attack using the POST method. A web page such as this uses

Javascript to cause the browser submit an SSL request to an arbitrary target server via

POST. In many scenarios, browsers will use client-side authentication for the POST. If an

adversarial server specifies that this page be loaded into a hidden frame, then the user may

remain unaware of the request, the use of his personal certificate, and the response from the

target.

2.4.3 Implications

As we noted earlier, it is continually touted that client-side SSL is superior to password-

based authentication. Suppose that the operator of an honest server SB offers a service

where authorization or authentication are important. For example, perhaps SB wanted to

prove that its content was served to particular authorized parties (and perhaps to prove

that those parties requested it—one thinks of Pete Townshend or a patent challenge), or

perhaps SB is offering email or class registration services, via form elements, to a campus
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<html>
<head>
<SCRIPT LANGUAGE=javascript>

function fnTemp()
{
document.myform.submit();

}
</script>
</head>
<body onload="fnTemp()">

<form name="myform" method="post"
action="https://cobweb.dartmouth.edu:8443/cgi-bin/test.pl">

<input name="debit" value="1000">
<input name="major" value="Hockey">
<input type="submit" value="Submit Form">
</form>
</body>
</html>

Figure 2.4: Borrowing client-side authentication via a POST request.

population. If SB had used server-side SSL and required basic authentication or some other

password scheme, then one might argue that a service can be executed in a user’s name only

if that user authorized it, or shared their password.

However, suppose SB uses “stronger” client-side SSL. With Mozilla and default op-

tions, a user’s request to SB can be forged by a visit to an adversarial site SA. With IE and

default options, a user’s request can be forged if the user has already visited SB .

We note that this authentication-borrowing differs from the standard single-sign-on risk

that, once a user arms their credential, their browser may silently authenticate to any site

the user consciously visits. In our scenario, the user’s browser silently authenticates to any

site of the adversarial site’s choosing.

We could not demonstrate a way for the adversary, using the tools of sending standard

HTML and Javascript to users with standard browsers, to forge a response to a file upload

input tag (see further discussion below) or to forge REFERER fields (although telnet
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links look promising).

2.4.4 Browser Configurations

The answer to our question for this experiment was: “Yes, with most standard out-of-the-

box configurations, we can use the key without the user’s permission.” The seemingly

natural defense to such attacks is to properly configure the browser to avoid them, and

indeed, actions such as disabling Javascript lowers the risk of a successful attacks.

2.5 Experiment 3: Malicious Use of Keys via API Attacks

IE on Windows is by far the dominant client platform. In trying to establish such a proper

browser configuration for IE, we noticed that IE would only prompt for a password on our

high security key once per visit to a particular domain. Specifically, we would visit site

A, perform a client-side authentication which prompted us for the password, leave site A,

and then return—only we were never prompted for the key’s password again. Furthermore,

we could not find any IE browser configuration which would enforce this behavior (even

the DoD guidelines leave browsers susceptible [49]), and we eventually discovered that

Microsoft considers the advertised behavior to be a bug [135].

The inability to configure our browser so that the advertised behavior of a high-security

key (which reads “Request my permission with a password when this item is to be used”)

led us to believe that the flaw must be at a lower level. So we began our third experiment

with the question: “Can we use some of our previous techniques such as API Hijacking to

understand what is happening and then to use the key without the owner’s permission?”
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2.5.1 The Default CSP is Broken

The first step was to convince ourselves that IE was really using our high security key to

perform client-side authentication without requesting our permission, and watching net-

work traffic with a sniffer confirmed our suspicion. We then attempted to reproduce the

behavior we observed. Using API Hijacking, were were able to attach a debugger to IE

and watch the parameters it passes to the CryptoAPI. Reverse engineering in this way al-

lowed us to build a standalone executable which made the same sequence of calls to the

CryptoAPI as IE does and uses the same parameters.

Our program opens the same keystore IE uses during a CryptAquireContext.

Our code sits in an infinite loop taking a line of input from the command line. It then

mimics the sequence of calls that IE makes to the CryptoAPI in order to get data signed:

CryptCreateHash, CryptHashData, and CryptSignHash. Since our key is a

high security, the first call to CryptSignHash prompts for a password, as expected.

However, no subsequent calls prompt for a password, even if the data is completely differ-

ent. Thus, the CSP is failing to “request my permission with a password when this item is

to be used.”

2.5.2 The Magic Button

In all of our explorations of the various IE configuration options, we came across one

button in the “Internet Options” menu labeled “Clear SSL State”. API Hijacking showed

that this button will make IE call CryptRelaseContext in the CryptoAPI, resulting in

a password prompt the next time the key is used. We also found that restarting the browser

will result in a prompt the next time the key is used (in contrast, we were initially surprised

that restarting the Web server did not result in another prompt).

These are more extreme measures than simply configuring the browser to behave rea-
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sonably, but they were the best we could find, and are recommended by Microsoft [48].

2.5.3 Exploiting the CSP to Get Around the Magic Button

Armed with a little information as to how the CSP and IE work, we were curious to see if

there was a way to defeat the magic button and browser restarts. Our goal was to make a

program—running only with user privileges—which waits for IE to prompt the user to arm

his high security key with the password, and then use the key to sign arbitrary messages—

even after IE has been closed, or SSL state has been cleared.

Using our previous technique of API Hijacking, we reused the grappling hook from

the attack in Section 2.3. However, the parasite is slightly different than the one men-

tioned in Section 2.3. In this attack, the parasite will spawn an agent process (called

iexplorer.exe; the real IE is iexplore.exe) which communicates with the par-

asite over a named pipe. When IE goes away, the agent will persist and be able to use the

key without prompting for the password.

The initial stages of the attack are identical to the one in Section 2.3. The attacker

begins by getting the grappling hook and parasite on the victim’s machine. Once the code

is in place, the grappling hook begins executing, which will get the parasite injected into

IE address space. Upon injection, the parasite changes IE’s IAT so that calls to desired

functions in the CryptoAPI (advapi32.dll and crypt32.dll) are redirected to the parasite.

Once the parasite is set up, it watches for IE to make a specific sequence of calls:

CryptAcquireContext, CryptCreateHash, CryptSetHashParam, followed

by two calls to CryptSignHash. This sequence indicates that IE is using a private key

for the first time, which will result in a password prompt. As each of these calls occur,

the parasite intercepts the call before the CryptoAPI has a chance to handle it, packs all

of the arguments into a binary data structure, and passes them to the agent over the named
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pipe. The idea here is that the agent is mirroring the exact sequence of calls (with the exact

arguments) that IE is making.

When IE makes the first call to CryptSignHash, it is trying to get the size needed to

store the signature. As with many Windows API functions, the client (IE in this scenario)

makes the first call to get the size of the hash, allocates memory, and then makes a second

call with the new chunk of memory so that the API can fill in the memory chunk with the

signature.

Our dear parasite listens for this call (and knows that it is the first call). It forwards

the parameters to the agent and waits for a reply. The agent receives the data and calls

CryptSignHash in order to get the size of the signature. The agent packs the return

value (i.e., the size) into a structure and sends a reply to the parasite.

Once the parasite receives the reply, it sets the arguments appropriately, making it look

as though the CryptoAPI call actually happened and returned a size. However, the para-

site does not allow the call to pass through to the CryptoAPI. The parasite simply returns

true, making IE think that the call has succeeded (and of course, the return arguments are

correct).

The attack is completed when the second call to CryptSignHash occurs, as this is the

call that spawns the password prompt. When this call occurs, the parasite does not actually

let the call pass through to the CryptoAPI; it has the agent sign the data instead. The result

is that the agent is the program which is requesting the user password, so it may use the

key indefinitely—with no further password prompts. IE gets the correct signature, so the

SSL handshake (or other key operation) continues as normal. Examining the “Details”

of the signing operation shows that “iexplorer.exe” (the name of our agent executable) is

using the private key instead of “iexplore.exe”; this subtle name change is the only means

of detection.

At this point, the user can close IE and the agent still has an “armed” key, which it can
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use indefinitely. Our example agent puts itself into command line mode, allowing us to sign

and decrypt arbitrary messages with the victim’s key. A real attack would most likely have

the agent act as a Trojan where it binds to a port and awaits remote signing and decryption

commands.

2.5.4 The Punchline: No Configuration Prevents This Attack

We were unable to find any browser configuration which stops this attack because the

problem is below the browser—it is with the CryptoAPI and the default CSP. The attack

is possible because the system is designed with the assumption that the entire system is

trusted. If one small malicious program with user privileges (such as can happen by a

user clicking on an unknown attachment) finds its way into the system, the security can be

undermined—even with high-security non-exportable keys, and even assuming everyone

does the right thing, no matter how awkward: browser users clear SSL state or kill the

browser after each session, and server application writers use forms with hidden nonces.

2.6 Experiment 4: Malicious Use of Keys on a USB Token

Many in the field suggest getting the private key out of the system altogether and placing

it in a separate secure device of some sort. Taking the key to a specialty device (such as

an inexpensive USB token) would seem to reduce the likelihood of key theft as well as

shrink the amount of software which has to be trusted in order for the system to be secure.

Specifically, at first glance, it would appear that the just the device and the software which

provides access to the device (i.e., its CSP) need to be trusted.

We had a couple of these devices (the Aladdin eToken and the Spyrus Rosetta USB

token), so we decided to have a critical look at these. Since the keys on the devices we

had were non-exportable, key theft seemed impossible (assuming we leave “rubber hose
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cryptanalysis” and hardware attacks out of our attack model), but we wondered if we could

use the key as in the previous attacks.

Spyrus Rosetta USB The Spyrus CSP was the most verbose one in all of our experi-

ments. It was the only CSP which prompted every time the key is used. In our opinion,

these devices work too well—it was not uncommon to get multiple password prompts while

loading one page.

(This suggests a further line of inquiry: why does the actual usage of a client private

key in such a session depart so radically from the user’s perception of it? That is: visiting

a site “once” should generate one warning, not an endless barrage.)

While the Spyrus CSP allows users to render the best mental model, the model it renders

is not a particularly usable one. Our hypothesis is that we could simply ask for the password

outright, and would probably get it because users are so trained to enter their password for

this device—we could probably just hide in the noise.

Upon contacting Spyrus about the issue, they pointed us to the “Spyrus Rosetta CSI

library.” The library supports a “Policy Console” feature which allows the CSP to use the

key for a user-specified time interval without asking for permission. This feature clearly

enhances the usability of the device, but opens a window of opportunity for an attack.

Aladdin eToken The Aladdin eToken did not give us any option as to how often we

wanted to be prompted for a password, and experiments showed that the Aladdin CSP’s

default behavior seems to follow a policy of one password authentication per application.

This is virtually the same behavior we saw with the default Microsoft CSP and the high se-

curity key. In fact, it is a bit worse than the default CSP in that the “Clear SSL State” button

has no effect on the token whatsoever. Within a few minutes, we were able to replicate the

attack in Section 2.5, allowing us to use the key even after the intended application (e.g.,
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IE) has been shut down.

Upon discussing the issue with Aladdin, they suggest setting a “Secondary Authenti-

cation” to prompt upon application request. This does indeed prompt for authentication

each time the key is used. As discussed previously, the result is possibly multiple password

prompts per page load.

2.7 Conclusions

For desktops to be usable as PKI clients, they must behave as expected—they must only

allow transactions which the client is aware of and approved. If we trust the entire desktop,

users “clear SSL state” or kill their browsers after each session, and application writers in-

clude and verify hidden nonces, then we might conclude that client-side PKI works and that

desktops are reasonable client platforms. However, these are not reasonable assumptions—

and as we have demonstrated, relaxing them even a little yields security trouble.

The results presented in this chapter suggests that desktops are unsuitable for use as PKI

clients. They allow a user’s private key to be stolen or used at an attacker’s will, they make

it difficult for users (and application authors) to do the “right thing”, they are inherently

immobile, and they do not allow relying parties to make good trust judgments about the

system (i.e., they allow the key to be used for transactions which the user was not aware of

or did not intend).

While our attacks focus primarily on IE and client-side SSL (as this is a widely used

PKI paradigm), they can be used to subvert any program which relies on the CryptoAPI for

key storage and use, and on many CSPs (as shown in Section 2.6). The reason for this is

that the problems lie in the design of the CryptoAPI (as discussed in Section 2.5).
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2.7.1 Usability

One cause of the problem is the software which runs on the client’s desktop and its in-

teraction with the underlying hardware. Given the complexity of modern software, it has

become almost impossible to know exactly what is happening during a given computation.

Is the machine executing the right code? Has critical data been altered or stolen?

One unfortunate consequence of this increase in complexity is a reduction in the level

of usability of the system. Clearly, it becomes difficult for users to make reasonable trust

judgments about the system if the system is difficult to use. In a security setting, this in-

ability to reason about the system can thwart the security efforts that the system’s designers

have implemented.

It should be easy for a user to perceive and approve of the use of their private key, and

it should be easy for an application developer to build on this. To cite just a few design

principles: [141]

• “The path of least resistance” for users should result in a secure configuration.

• The interface should expose “appropriate boundaries” between objects and actions.

• Things should be authenticated in the user’s name only as the “result of an explicit

user action that is understood to imply granting.”

One might quip that it is hard to find a principle here that the current paradigm does not

violate. In order for client-side PKI to work (and for desktops to be suitable for use as PKI

clients), these principles should apply to both the client user as well as to the IT staffer or

application developer setting up a Web page or designing a Web application.

The current paradigm makes it difficult or impossible for a user to construct an accu-

rate mental model of the system. For constructs such as warning windows to be effective,

the screen material to which it applies should be clearly perceivable by the user. Even
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adopting the “Basic Authentication” model of letting the server demanding the authenti-

cation provide some descriptive freetext might help. Instead of “hostname wants you to

authenticate,” the browser window might give some context, e.g., “...in order to change

your class registration—are you sure?”. (Netscape’s Signed Forms went in this direction,

but it permitted the server to provide HTML content that can enable some types of signature

spoofing.)

To rephrase a point from our earlier work [137], the community insists on strict access

controls protecting the client file system from server content, but neglects access controls

protecting the user’s perception of the client user interface.

2.7.2 The Trusted Computing Base

A second unfortunate result of modern software’s complexity is an expansion in the set

of software that must be trusted in order for the system to support the system’s security

policy—in this case, protect private keys. This set of software is often referred to as the

TCB. A good discussion of the TCB can be found in the “Orange Book” [90], and the

motivations to keep the TCB small are clear: minimize the attacker’s target and maximize

the chance for developers to build secure systems by reducing the amount of code that

they must get right. How can we shrink the trust boundary so that buggy desktops which

have frequent “Critical Security Updates” are not the cornerstone of our secure systems?

Trusting just the kernel does not solve the problem. Trusting a separate cryptographic token

does not solve the problem.

Placing a private key on a complex system such as the modern desktop is problematic.

As this chapter has illustrated, by exploiting the complexity, an attacker can trick users into

giving away their keys directly, or use it for purposes which they are unaware of or did not

intend. By exploiting the fact that so much of a complex system needs to be trusted in order
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for it to behave correctly, it is possible for an attacker to either get the key directly, or be

able to use it at will without alerting the key’s owner. We found that getting one user-level

executable to run on the client is enough to accomplish a successful attack.

Hardware Many in the field suggest getting the private key off of the desktop altogether

and placing it in a separate secure device of some sort. Taking the key to a specialty device

(such as an inexpensive USB token) would seem to reduce the likelihood of key theft as

well as shrink the amount of software which has to be trusted in order for the system to be

secure. Specifically, at first glance, it would appear that just the device and the software

which provides access to the device (i.e., its CSP) need to be trusted.

However, relying on such a device is also problematic. Just putting the private key

on a token does not shrink the TCB. The token’s CSP is still interacting with the whole

system (the OS and CryptoAPI), and thus the entire system still has to be trusted. Putting

the private key on a token gives some physical security and makes it harder to steal the key

(physical violence notwithstanding), but it does not protect against malicious use, and it

does not increase usability.

Secure coprocessing is an improvement from a security standpoint, but it is not a magic

bullet either. From a practical standpoint, high end devices such as the IBM 4758 are far

too expensive to deploy at every client. On the other end of the spectrum, lower priced de-

vices (e.g., the TPM) probably cannot withstand many common attacks (such as hardware

attacks, or attacks from root) without additional measures (e.g., aid from the processor,

such as what is being considered in the literature [63, 77, 120, 122]).

Tokens with UI On a system level, we recommend that further examination be given to

the module that stores and wields private keys: perhaps a trustable subsystem with a trusted

path to the user. As a device which has a very rich and complex interaction with the rest
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of the world, browsers can often behave in unexpected and unclear ways. Thus, browsers

should not be the cornerstone of a secure system.

Many researchers have long advocated that private keys are too important to be left

exposed on a general-purpose desktop. We concur. However, in light of our experiments,

we might go further and assert that the user interface governing the use of the private

key is too important to be left on the desktop—and too important to be left to the sole

determination of the server programmer, through a content language not designed to resist

spoofing. As we will discuss in Chapter 5, SHEMP attempts to give users a trusted path to

their keystore.

2.7.3 Immobility

In addition to the usability, security, and cost considerations mentioned above, the desktop

PKI client paradigm suffers another problem: immobility. Modern computing environ-

ments are becoming increasingly distributed and user populations are becoming increas-

ingly mobile. To exacerbate the problem, the number of computing devices that a typical

user owns is growing. It is not uncommon for someone to own a desktop, a laptop, a cell

phone, and a PDA. Which device(s) should house the private key?

One proposal is to use inexpensive tokens (such as USB tokens) and allow users to

carry tokens with them across devices and computing environments. This approach has a

number of drawbacks. First, some devices may not have the proper hardware or software

installed, or may not have support altogether. Second, a particular machine may not be

trustworthy, or may have malware installed which abuses the private key (as discussed in

Section 2.6). Again, getting the private key in a token does not shrink the TCB.

Another proposal is to move the key around on some removable media (e.g., a floppy)

by exporting the key to some intermediate format (e.g., PKCS#12 [110]) and then importing
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the key at the destination. This approach suffers a number of drawbacks as well. First,

some devices may not support the media—e.g., we are unaware of cell phones with floppy

drives, although they may have Bluetooth or smartcard support. Second, as described in

Section 2.3 the intermediate format may be insecure.

2.7.4 Threat Model

The experiments described in this chapter show that the natural mental model which arises

for client-side PKI is not representative of the actual system’s behavior. This fact, coupled

with the underlying assumption that all of the system’s components are trusted, creates

opportunities for a number of devastating attacks.

The attacks described in this chapter assume that the attacker can get an executable to

run on the victim’s machine and with the victim’s privilege level. Furthermore, the victim

does not need to be an Administrator or “root” user. For the remainder of this thesis, we

will define the minimum threat model to be an attacker which can run arbitrary code on the

victim’s machine with the victim’s privilege level. As we will discuss in Chapter 3, secure

hardware can minimize the impacts of a successful attack under this threat model, and can

be used to defend against stronger threat models, such as where an attacker has physical

access to critical servers.
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Chapter 3

Establishing Criteria for a Solution

In order for any proposed solution to succeed in making desktops usable for PKI, it must

address a range of issues including security, usability, and mobility. As we saw in Chap-

ter 2, modern desktops fail in all of these categories. Drawing on the lessons learned from

previous attempts, we can begin to understand what it takes to make a successful solution.

In this chapter, we introduce criteria which must be met in order to make desktops

usable PKI clients. In addition to defining a set of properties which a successful solution

must possess, we will define those properties in a context-meaningful way, and explore

other approaches which attempt to provide each property.

Since our aim is to build an actual system that meets the criteria, we must give some

level of consideration to practicality. In order for a proposed solution to be of any practical

interest, it must safely store and use private keys, give application developers flexibility

while maintaining security, match the model of real world user populations, and allow

relying parties to make reasonable trust judgments about the system. Additionally, we

cannot expect to rewrite the desktop OS or even decouple applications such as IE from the

OS, as such tasks are infeasible with modern ubiquitous, closed-source OSes.
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Chapter Outline In the next section, we discuss and define the first property that a pro-

posed solution must possess: security. We also examine a number of other relevant ap-

proaches which attempt to make PKI systems more secure. In Section 3.2, we establish

the second property: usability. In Section 3.3, we examine the mobility requirement, and

discuss previous attempts to make PKI users mobile. Section 3.4 briefly discusses the need

to for relying parties to be able to make reasonable trust judgments (Chapter 8 is devoted

to this topic, so it is only briefly discussed in Section 3.4). Finally, Section 3.5 concludes.

3.1 Security

The notion of security is difficult or impossible to quantify in a practical system. Within

a formal framework, one can prove that a system is secure, but once the formal frame-

works give way to implementations, problems often arise. As a result, we give a pragmatic

definition of security in this thesis. We let the operating definition of security in this the-

sis involve minimizing the risk, impact, and window of opportunity for misuse of a user’s

private key.

3.1.1 Minimizing the Risk of Key Disclosure

The TCB and Security We define the TCB for PKI applications to be the private key and

the set of software which stores and uses the private key directly (e.g., libraries that make

up constructs such as the CryptoAPI). The security trouble of Chapter 2 results from the

fact that this set of software is intertwined with the OS and applications (such as Internet

Explorer), and no clear boundaries exist. The result is that the entire system must be trusted

in order for the system to be secure; just one well-crafted piece of malware can subvert the

entire desktop, rendering it ineffective as a PKI client.
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The inversely proportional relationship between TCB size and security is no new dis-

covery. Again, as stated in Chapter 2, secure system designers have stressed the importance

of keeping the TCB small since the “Orange Book” days of the 1970’s [90]. A small TCB

reduces the attacker’s target and reduces the likelihood that a program error will result in

a security flaw. Thus, a small TCB as defined in this thesis can decrease the risk of an

attacker stealing or misusing a legitimate user’s private key.

The TCB and Secure Hardware Secure hardware can reduce the size of the TCB.

Highly secure devices such as the IBM 4758 [18, 119] can effectively create an entirely

separate security domain from their host. Since the device has a general-purpose OS, it can

house applications as well as critical data (e.g., private keys), thus eliminating the need for

the private key to come in contact with the host desktop at all. The end result is that the

entire TCB can be placed in such a device and be totally protected under the threat model

of this thesis (defined in Section 2.7).1 However, as discussed in Chapter 1, devices like the

IBM 4758 are expensive, which prohibits their widespread use on client platforms.

While few devices can isolate the TCB to the extent of the IBM 4758, other devices can

reduce the TCB to a level which is still acceptable under the given threat model. For in-

stance, Hardware Security Modules (HSMs) can get the key off of the desktop, perform key

operations internally, and even protect against physical attack. However, the applications

may still live on the desktop, leaving the device only as secure as the CSP.

Other approaches, such as our Bear [67, 72, 73] project and others [106], can extend

a weaker level of security to the entire desktop. However, this is sufficient given the cur-

rent threat model that an attacker can run code on the victim’s machine with the victim’s

privileges.

A more detailed examination of the IBM 4758 and Bear approaches will be given in

1In fact, the IBM 4758 is secure against much stronger threat models, such as one in which an attacker
has direct physical access to the device.
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Chapter 4, but the relevance to this discussion is the fact that secure hardware can reduce

the size of the TCB, and thus decrease the risk of private key disclosure.

A Solution Should use Secure Hardware When Available In SHEMP, machines which

house users’ private keys are called key repositories. Machines which actually use the key

on a user’s behalf are called clients. We envision repositories to be dedicated machines

which run no extraneous processes, have no shared filesystem, and are not remotely ad-

ministratable. Ideally, repositories should be dedicated servers (i.e., not running any other

applications) which are armed with some level of secure hardware and which are locally

administered by a specialized individual. We consider clients to be standard desktop ma-

chines that can service one user at a time. In terms of secure hardware, we envision a po-

tentially heterogeneous environment where machines can have very secure hardware such

as an IBM 4758 secure coprocessor, less secure hardware such as our Bear platform, or no

secure hardware at all.

Organizations which aim to provide high levels of security will adopt a threat model

which gives the attacker more power than what is assumed in this thesis. Under such a

threat model, key repositories should be able to withstand a wide range of attacks. For

instance, an organization may wish to assume that an attacker can get root privileges on

the repository’s host machine. This would imply that the attacker can watch any process’s

memory, and run any code of his choice on the host. Furthermore, the organization may

wish to assume that an attacker has physical access to the secure hardware holding the

private keys and can attempt to perform local hardware attacks. As a result, that organi-

zation’s repository should be able to resist local physical and software attacks, and should

refuse to disclose any user’s private key, even if the attack is running with root privileges.

In practice, this may involve using a device such as an IBM 4758 to house the repository,

thus giving the repository a different security domain than its host.
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Although using a device such as the IBM 4758 is achieves a high level of security,

a general solution should be flexible enough to deal with any type of hardware on the

repository. No matter what type of hardware is used, the system should be able to give all

parties enough information about the repository so that it can make informed decisions.

The threat model for clients may be different. Again, a successful general solution

should allow for such variations and be flexible enough to accommodate clients with a

range of security levels, as well as provide a means for expressing those security levels. The

mechanisms used to achieve this extensibility in SHEMP will be discussed in Chapter 5.

Moving the TCB for PKI Applications off of the Desktop Roughly speaking, the larger

the desktop-resident TCB, the greater the resulting risk of private key disclosure. If we

assume that client machines will be running standard OSes, then we should minimize the

amount of the PKI TCB that resides on the client machine. The ideal scenario is one in

which no part of the PKI TCB comes into contact with the client machine, although this

approach also makes desktops unusable as PKI clients (as no part of the desktop—including

applications—can be used in any PKI operation). A compromise could consist of keeping

the PKI TCB out of the reach of a desktop until some portion of that TCB is needed, and

only then, would the desktop be considered part or the PKI TCB.

3.1.2 Minimizing the Impact and Misuse Window

In Section 3.1.1, we explained how reducing the size of the TCB can decrease the risk of

private key disclosure. In order to minimize the impact of a key disclosure and the window

of opportunity for an attacker to misuse the key, we need some way to control the lifespan

during which a compromised key can be used. A short key lifespan reduces the opportunity

for misuse.

However, just issuing short-lived private keys to the population would increase the (al-
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ready cumbersome) administrative burden of the PKI, as users would have to be re-keyed

frequently. To remedy this, a number of systems rely on delegation to control the lifes-

pan of a user’s credentials. While the delegation frameworks differ across the types of

credentials (e.g., some frameworks rely on short-lived Proxy Certificates [126, 132] while

others rely on Simple Distributed Security Infrastructure/Simple PKI (SDSI/SPKI) certifi-

cates [20, 23, 24] ), they share the same goal: issue a temporary credential which, when

evaluated in conjunction with a long-term credential such as a PKI certificate, allows a

relying party to make a reasonable trust judgment.

The above approach allows organizations to shrink the TCB by placing the long-lived

private key in a secure place such as a credential repository. Then, when a client needs a

short-term credential, the TCB is effectively extended to include the short-term credential—

but only for a short period of time. Once the short-term credential expires or is destroyed

(possibly by logging out), the TCB shrinks back to its initial size (i.e., the size before the

user requested a short-term credential).

Should a short-term credential be compromised by an attacker, the attacker can only

misuse the temporary credential for a short period of time, thus minimizing the impact and

window of opportunity for misuse. As we discussed in Chapter 2, the status quo allows an

attacker to misuse the victim’s private key indefinitely—even across application restarts.

3.1.3 Relevant Approaches

There are a number of systems in existence which aim to shrink the TCB as it is defined

in this thesis. However, many of them do not accommodate the use of secure hardware to

decrease the risk of key disclosure. Nevertheless, there are numerous lessons to be learned

from the collection of prior art.
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MyProxy As briefly introduced in Chapter 1 (and discussed in detail in Chapter 4), the

Grid community’s MyProxy credential repository [88] minimizes the risk of key disclosure

by removing the user’s private key from a client machine and placing it in a repository. The

MyProxy repository minimizes the impact and misuse window through the use of Proxy

Certificates as a delegation framework. Lorch et al. have even investigated placing the

private keys inside of a secure device (i.e., the IBM 4758) [64].

One place where MyProxy falls short of the criteria outlined in Section 3.1.1 is in the

lack of support for secure hardware at the clients. The MyProxy system (even with the

aid of an IBM 4758 on the server) does not utilize the secure hardware available on the

client’s machine for identification and/or temporary key generation and storage purposes.

Additionally, MyProxy assumes that all clients are equal with respect to security, and thus

does not provide any mechanism for users or applications to reason about the security

properties of client machines.

Furthermore, even the hardened MyProxy [64] system (i.e., where the repository uses

an IBM 4758 for key storage) only places the user’s private key in secure hardware on

the repository, as opposed to the entire system. Since the IBM 4758 is a general-purpose

computing device, it could actually run the repository software itself. Since a hardened

MyProxy repository only places the private keys in the coprocessor, it effectively leaves

other portions of the TCB (such as the cryptographic libraries and applications) on the host.

Putting the entire TCB in the device would allow clients to communicate directly with

the repository software inside of the secure coprocessor, thus eliminating the proverbial

“armored car to a cardboard box.”

Kerberos Kerberos is an authentication framework based on secret key cryptography. A

good overview of the Internet Engineering Task Force (IETF) standards and workings of

Kerberos can be found in the literature (e.g., [54, 108]). Very briefly, Kerberos consists
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of a Key Distribution Center (KDC) and a set of libraries which applications must use

to authenticate clients. The KDC holds a master key which is a shared secret between

itself and each party (often called a principal) in the system. When principals would like

to communicate, the KDC generates a short-lived shared secret (i.e., a session key) and

distributes that to the principals.

Kerberos is not quite a general purpose PKI platform, as it relies on secret key cryptog-

raphy. Kerberos is mainly an authentication framework, whereas the scope of this thesis

is more tuned toward traditional PKI systems which could enable secrecy and signature

applications (e.g., S/MIME) as well as authentication.

As with MyProxy, there is a lack of accommodation for secure hardware in the general

Kerberos design. Some research has looked into placing the KDC inside of an IBM 4758

secure coprocessor [51], but as with MyProxy, this just places a portion of the TCB inside

the secure hardware, leaving cryptographic libraries and applications outside. Additionally,

there are no provisions to take advantage of secure hardware on the clients. Since Kerberos

stores credentials in memory, it is susceptible to the attacks described in Chapter 2.

Shibboleth Shibboleth is an Internet2 project which aims to develop a middleware that

supports user authorization and authentication. Nazareth et al. [83, 84] give a good overview

of Shibboleth and its components, but the general idea is to allow Alice (from institution A)

to access resources at institution B in such a way that preserves her privacy, while also ac-

commodating any licensing agreements A has with B. This is accomplished by institution

A issuing an anonymous handle to institution B, which it in turn uses to fetch attributes

about Alice from the Attribute Authority at institution A.

As with Kerberos, Shibboleth is not a general-purpose PKI solution, as it requires the

server (at institution B in the above description) to be equipped with components of the

Shibboleth system (e.g., the Shibboleth Indexical Reference Establisher, and the Shibbo-
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leth Attribute Requester). Shibboleth is, in essence, a privacy-preserving authentication

framework.

As with the other systems considered in this section, there is no mention of secure

hardware. The protocols used to establish handles and acquire attributes are all specified

by Shibboleth, and none of them take advantage of secure hardware, even if it is present.

Trusted Third Parties One thought is to not only house the users’ private keys on a

remote server, but to actually perform the key operations on that server. The entity re-

sponsible for performing such operations is sometimes referred to as a Trusted Third Party

(TTP) [95] . Variations on this idea involve letting the user own part of their key and

allowing the TTP to own the other part via some threshold cryptography scheme. TTPs

which aid in performing key operations are sometimes referred to as Semi-Trusted Media-

tors (SEMs) [10, 17].

TTPs and SEMs both decrease the risk of private key disclosure by removing all or part

of the private key from the desktop. SEMs typically split the user’s private key and place

a share of it in the SEM, and recent work has even explored adding secure hardware to

SEMs [129].

The major differences between the MyProxy approach and SEMs is that MyProxy

places the entire key inside of a repository, as opposed to a portion. This results in the

repository becoming a “fully-trusted mediator.” Second, MyProxy’s use of Proxy Certifi-

cates allow some operations to be accomplished without the aid of the repository (such

as authentication), whereas SEM requires the mediator to be involved in all private key

operations.

Greenpass The Greenpass project [34] is a delegation framework which uses SDSI/SPKI

delegation on top of X.509 certificates in order to authorize guests to an organization’s
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wireless network. The idea is for a member of the population (Alice) which holds an X.509

certificate to delegate (i.e., by signing a temporary SDSI/SPKI certificate) to her friend Bob

so that he can access her organization’s resources for some relatively short amount of time,

even though he is not a member of Alice’s organization.

While there are similarities in the delegation framework between MyProxy and Green-

pass, there are a number of important differences. First, there is no mention of secure

hardware in Greenpass, and no way (within the current implementation) for the Greenpass

system to relay information regarding secure hardware to relying parties. As we will dis-

cuss in Chapter 4, Proxy Certificates (the delegation framework used in MyProxy) provide

a hook for including such security information.

Second, there are no constraints on where users store their key under the Greenpass sys-

tem. There is no mention of a key repository, thus allowing users to store their private keys

on their desktop (in a browser keystore) or on a USB token of some sort. As demonstrated

in Chapter 2, storing private keys in such places can lead to security trouble.

3.2 Usability

The second feature that a proposed solution should provide is usability. Users, adminis-

trators, and application developers must be able construct accurate mental models of the

system. As we saw in Chapter 2, failure in this area yields security trouble and can render

the system useless.

In order for a proposed solution to be of any practical interest, it must work within the

constraints of the modern desktop. It is unreasonable to assume that a general solution

can require system-level software such as the OS or CryptoAPI to be redesigned and/or

rewritten. A successful solution for making desktops usable PKI clients must account for

the fact that the underlying desktop platform is insecure and attempt to provide as much
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security as possible, given that constraint. While this approach is not likely to produce a

perfectly secure system (if such a thing exists), it increases the probability that a solution is

usable in modern real-world PKI environments.

3.2.1 User Requirements

From a user’s perspective, the system must be easy to use. One design strategy which

can enhance the user’s experience involves hiding the system’s complexity from the user.

Clearly, there is a balance to be achieved; hiding too much complexity can have adverse

effects, as can exposing too much. Ideally, the system should hide enough complexity so

that users are not overwhelmed by configuration options (in which case, they are likely to

misuse and/or misconfigure the system—most likely resulting in security trouble). How-

ever, enough complexity should be visible so that users can construct a valid mental model

of the system.

In Chapter 2, we illustrated how IE fails this requirement. The proper way to use the

system (i.e., using the “Clear SSL State” button or restarting the browser after each visit

to a secure site) is somewhat complex and non-obvious. To make matters worse, too much

complexity is hidden in certain places (i.e., our high-security private key does not ask for

a password each time it is used, thus violating its advertised behavior). As a result, it is

impossible for users to render an accurate mental model of what the system is really doing.

In addition to hiding complexity, a successful solution must present a set of well-defined

operations to the users. Ideally, the operations should not have unexpected or unnoticeable

side-effects, as they can also make it impossible for the user to construct an accurate mental

model.

Last, the user interface should be straightforward, and should make the system difficult

or impossible to use incorrectly. Again, the basic design principles indicate that the “path of
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least resistance” should result in a secure configuration, and the the interface should expose

“appropriate boundaries” between objects and actions [141]. Chapter 2 and Whitten and

Tygar [134] illustrate the impact of failing to follow these principles.

3.2.2 Administrator Requirements

The requirements for an administrator’s view of the system can be different. In many sys-

tems, the administrator is a special entity who has a deeper knowledge of the system, and

as a result, can be burdened with some of the system’s complexity. In fact, in many sce-

narios, it is the administrator’s role to insulate the end user from the system’s complexity.

However, in order to deal with this complexity, administrators should be given tools which

aid in system configuration and use. Furthermore, the toolkit should make it difficult for

administrators to do the wrong thing, and easy for them to do the right one.

One feature which can make a system usable to administrators is flexibility. In the

context of this thesis, administrators should have the ability to define organization-specific

properties such as notions of security. For instance, organization A may refer to machines

behind their firewall as secure, while organization B may define secure machines as ones

patched within the last week. Giving administrators such flexibility can make the system

more usable, provided that the mechanisms which provide that flexibility are not too com-

plicated to use.

3.2.3 Developer Requirements

In order to get parties to write applications for the system, it should expose common pro-

gramming paradigms to developers, and allow them to use the solution to build and deploy

real applications. This requires that the platform must be easily programmable with modern

tools, and must also allow easy maintenance and upgrade of its software. Forcing develop-
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ers to conform to awkward or constraining mechanisms limits the usability of the system

from a developer’s viewpoint.

Since the problem this thesis addresses involves making desktops usable for PKI, ap-

plications which are likely to be developed for such a system will be wielding or relying on

users’ private keys. Thus, such applications will likely need to reason about the security-

specific state of the system and TCB. The underlying system should expose as much of that

state (and as many of the properties of the TCB) as possible, so that applications can make

informed decisions.

Last, as discussed in Section 3.1.1, secure hardware can reduce the risk of private key

disclosure. To this end, a system which makes desktops usable for PKI should allow appli-

cations to take advantage of secure hardware, if present.

3.3 Mobility

The third feature that a proposed solution must provide is mobility. Modern user popu-

lations increasingly use multiple computing platforms at multiple locations. As noted in

Chapter 1, many current PKI systems either make it difficult for the user to move their

private key or make it vulnerable to attack during and/or after transit.

A PKI solution must allow users to move throughout their domain, and across their

computing platforms. Most importantly, the solution should not put the private key at

risk of disclosure any time the user moves geographically or uses different devices. A good

solution should take into account the trustworthiness of the client platform, thus disallowing

the key to migrate to untrustable client machines (or severely limiting its use).

In practice, the credential repository approach is closest to achieving the goal of mobil-

ity. However, we have not identified a credential repository which takes the trustworthiness

of clients into account (this issue will be discussed further in Chapter 5).
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3.3.1 Relevant Approaches

There are approaches which allow users to migrate their private key across platforms, in

addition to the standard (and risky) “export/re-import” method described in Chapter 1.

PubCookies/Passport Web servers can establish longer state at a browser by saving a

cookie at the browser. The server can choose the contents, expiration date, and access

policy for a specific cookie; a properly functioning browser will automatically provide the

cookie along with any request to a server that satisfies the policy. Many distributed Web

systems—such as PubCookies [101] and Microsoft’s Passport [79]—use some authentica-

tion mechanism such as a password to initially authenticate the browser user, and then use

a cookie to amplify this authentication to a longer session at that browser, for a wider set

of servers.

Cookies fail to fully meet the mobility part of the criteria primarily because they are an

application-specific construct, and are only usable by Web browsers. A general solution to

making desktops suitable for PKI must be usable by a number of applications, including

but not limited to, Web browsers.

Sacred There is a working group within the IETF which is working on protocols for “Se-

curely Available Credentials” (Sacred). To date, they have established requirements [104],

a draft describing a framework [102] and a protocol [103]. The protocol describes two dif-

ferent methods for a user to transfer his private key from one device to another. Which

protocol to use is based on the relationship between the two devices: peer-to-peer or

client/server.

The Sacred project is a key migration system proper, not a general purpose PKI solution.

One undesirable property of Sacred is that is requires that the private key move along with

the user. If the user sits at a machine with some malware (such as our keyjacking software)
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installed, then the user’s key is easily compromised. Sacred provides the now infamous

“armored car to a cardboard box.”

3.4 Making Reasonable Trust Judgments

All of the above features are meaningless unless relying parties can reason about the sys-

tem. To this end, the last feature that any proposed solution should provide is the ability

to reason about it. Specifically, if Alice is given a pile of certificates from Bob, what can

Alice deduce about Bob—does she have any real reason to trust him?

In the context of this proposal, the relying party Alice makes decisions about Bob based

on the certificate(s) that the target Bob gives her. Specifically, it is not enough for these

certificates to express some transitive trust relationship which begins at one of Alice’s trust

anchors and ends with Bob. Those certificates must express something about the envi-

ronment Bob is operating in. How secure is his client machine? How secure is the key

repository? Was the software Bob used to authorize himself the “right” software? How

likely is it that his authorization was compromised?

In addition to providing a mechanism for relying parties to answer such questions, the

system should be flexible and expressive enough to allow Alice to answer domain-specific

security questions about Bob’s environment (e.g., is Bob’s machine inside the firewall?).

Since such trust judgments are often complex and important, it is best to use formal

methods to aid the decision-making process, and to determine if the system is sound. If

the system is sound, then it should use Bob’s private key if and only if Bob authorized the

request.

A number of formal frameworks exist to reason about bindings between entities and

keys and the protocols used to establish these bindings [12, 57, 59, 76]. The framework

best suited to reasoning about PKI systems (as opposed to distributed systems in general) is
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MyProxy Kerb Shib TTP Grnpss Cookies Sacred

PKI system yes no no yes yes no no
HW at server maybe maybe no maybe no no no
HW at client no no no maybe no no no

Key on desktop no no yes maybe yes yes yes
Delegation yes yes yes no yes no no
Mobility yes yes no no yes no yes

Table 3.1: A brief summary of the relevant approaches.

the work of Ueli Maurer [76]. His “deterministic model” is simple and expressive enough

to capture most of the design concepts employed by SHEMP. Maurer’s deterministic model

(and our model, which is based on Maurer’s) will be discussed in detail in Chapter 8. We

will also use our model to prove the correctness of SHEMP (and a number of applications)

from a PKI perspective.

3.5 Conclusions

In this chapter, we have examined the issues which need to be addressed in order to make

desktops usable PKI clients: security, usability, mobility, and the ability to reason about

trust. Our focus is on practicality; rewriting the OS or critical system components is not

an option. Furthermore, a successful solution should account for a wide range of platforms

with an even wider range of security properties.

In the context of this thesis, a solution increases security by decreasing the risk, impact,

and misuse window of a private key disclosure. Concretely, decreasing the risk of disclo-

sure can be achieved by shrinking the size of the TCB, by getting it off of the desktop, and

by taking advantage of secure hardware where available. Allowing the TCB to vary in time

(possibly using delegation) can minimize the impact and window for misuse in the event of

a private key disclosure.
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As we explored in Chapter 2, an unusable system can quickly become an insecure one.

To this end, any solution to the desktop PKI problem must be usable. Additionally, it is

not sufficient for the system to only be usable by end users; administrators and application

developers must be able to use the system as well. A successful solution should consider

all of the parties involved in the system, and be designed to fit all of their needs.

In order to make desktops suitable PKI clients, system designers must consider the

usage patterns of real-world computing populations. As users increasingly migrate between

and across platforms, access to their private key should follow—without undermining the

security of the system.

The last and most important property that a solution must provide is the ability for

relying parties to make reasonable trust judgments about the system. This topic will be

covered in detail in Chapter 8; without this property, none of the others are meaningful.

In addition to establishing criteria for solving the desktop PKI problem, we exam-

ined numerous approaches, and briefly discussed where they succeed and fail. The ap-

proaches are summarized in Table 3.1. In the next chapter, we introduce our solution,

named SHEMP, and discuss its design and implementation in detail. In Chapter 7, we

show how SHEMP meets the requirements outlined in this chapter.
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Chapter 4

SHEMP Building Blocks

So far in this thesis, we have established the fact that modern desktops are not usable as

PKI clients and we have uncovered the underlying causes. As we discussed in Chapter 2,

modern keystores are susceptible to attacks which result in the attacker being able to either

steal a user’s private key or use it at will. Such vulnerabilities are the result of a large

TCB which is formed by the tight coupling between the OS, keystore, and applications.

Desktops are not usable as PKI clients because users must trust the entire desktop in order

to trust the keystore.

In addition to discovering and demonstrating the problem, we have also established

criteria which a solution to the problem must meet in order to be considered successful.

In Chapter 3, we explained that, in order for a system to make desktops usable for PKI,

it must increase security, give users mobility, be usable, and allow relying parties to make

reasonable trust judgments. We also introduced a number of potential solutions to the

problem and showed where each of them failed to meet the criteria entirely.

In the next chapters, we introduce our solution: SHEMP. The philosophy behind SHEMP

is to use a credential repository to get keys off of the desktop and give users mobility. When

users need their keys for some operation, they generate a temporary keypair on their desk-
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top, and ask the repository to sign a short-lived Proxy Certificate (PC) containing the public

portion of the temporary keypair. This approach confines the TCB to the repository until

the user requests a PC, at which point the TCB expands to cover the desktop. The SHEMP

policy framework potentially limits what can go wrong at the desktop, even if it is included

in TCB. When the PC expires or the user destroys it (i.e., by logging out), the TCB is con-

fined to the repository again. In order to strengthen security even further, SHEMP takes

advantage of secure hardware, if available, on the repository as well as on the client desk-

top. As we will explore in Chapter 7 and Chapter 8, SHEMP meets the criteria of Chapter 3

and makes desktops usable PKI clients.

As we examined in Chapter 3, a number of existing systems satisfy parts of the criteria

put forth in that chapter. Rather than reinvent solutions to fit each of the requirements of

our criteria, we begin by examining the prior art and extending relevant ideas and designs

to fit our needs. The relevant prior art comprises our toolkit and form the basic conceptual

building blocks we use to build SHEMP.

Chapter Outline Our toolkit is made up of three categories. In Section 4.1, we discuss

a credential repository (MyProxy) and delegation framework (PCs) which are used to get

keys off of the desktops and give users mobility. In Section 4.2, we cover how secure

hardware can be used as a basic keystore, both at repositories and clients when available.

Section 4.3 describes a policy language which is used to express key usage and delegation

policies at the repository as well as express attributes of repositories and clients. Finally,

Section 4.4 concludes.
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4.1 MyProxy and Proxy Certificates

The first component we use to build SHEMP is the MyProxy credential repository, which

we use to shrink the TCB and give users mobility.

System Overview The Grid community’s MyProxy system [88] is a credential repository

designed to allow Grid users to obtain and delegate access to their credentials from multiple

locations on the Grid. Early versions of the MyProxy system had users store their long-

term credential (i.e., private key) on their desktop. Users would then generate a short-lived

delegation credential (i.e., a PC, discussed below), and store it in the MyProxy credential

repository. Then, when the user (or a process running on the user’s behalf) moved locations,

it could login to the MyProxy repository, and obtain the short-lived credential. This short-

lived delegation credential, when used in conjunction with the long-term credential issued

to the user (i.e., the user’s X.509 identity certificate), could then be used to identify the

user, or show that a process has some properties granted by the user.

More modern versions of MyProxy [64] take a slightly different approach. They use

the MyProxy repository to store the long-term credential, thus getting the private key off of

the user’s desktop altogether (in fact, Lorch et al. [64] store the key in an IBM 4758 secure

coprocessor at the repository). When a user (or process running on a user’s behalf) needs

to use a credential for authentication or authorization, it logs in to the MyProxy repository

and requests that a short-lived PC be generated. As before, the PC along with the user’s

long-term credential can then be used for authentication or authorization.

The MyProxy system is attractive for two reasons. First, the latter version (which we

base the SHEMP design on) gets the user’s private key off of the desktop entirely, and

thus shrinks the TCB. When a user or process needs to use a credential, the TCB expands

to include the desktop (via delegation)—but only for short period of time. This approach
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shrinks the TCB in space and time which, in turn, gives MyProxy a security advantage over

the standard desktop PKI approach. (Another security advantage is that the the private keys

are administered by a professional instead of end users.) Second, the MyProxy system gives

users mobility. Since the user’s private key is stored in a central location, it can be accessed

from many locations without having to be transported by hand (i.e., exporting/re-importing

or using a protocol like Sacred [102, 103, 104]).

As noted in Chapter 3, Kerberos and Semi-trusted Mediators (SEMs) are similar solu-

tions which could have possibly served as a starting point for the SHEMP design. MyProxy

stood out over Kerberos because it is a general-purpose PKI system, whereas Kerberos uses

symmetric keys. In comparison to SEMs, MyProxy is attractive because it gets the private

key off of the desktop altogether (SEM just gets a piece off), which shrinks the TCB further.

Additionally, MyProxy allows for delegation via PCs; SEMs have no such notion. Finally,

MyProxy’s use of PCs allows the user to be offline when the PC needs to be used (by some

entity which the user delegated to).

Proxy Certificates A detailed description of the SHEMP design will be given in Chap-

ter 5, but the main idea is to store the user’s private key in a credential repository, and use

it to sign a short-lived delegation credential (i.e., a PC [126, 132]) which the client can use.

The delegation framework used for the short-lived keys and certificates should be sim-

ple, widely accepted in practice, and should not require extra infrastructure such as Cer-

tificate Revocation Lists (CRLs). There are numerous frameworks and certificate formats

to choose from, such as X.509 [29], X.509 Proxy Certificates [126, 132], Permis [14, 15],

Keynote Credential Assertions [9, 55], and SDSI/SPKI [20, 23, 24]. Nazareth et al. pro-

vide an overview of a number of these delegation systems, as well as comparisons between

them [83].

We chose X.509 Proxy Certificates for a number of reasons. First, they are standard-
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ized by the IETF and are awaiting an RFC number assignment. Second, because they are

X.509-based, they can be used in many places in the existing infrastructure that are already

outfitted to deal with X.509 certificates. Third, they are widely used in the Grid community

and are used in the dominant middleware for Grid deployments: the Globus Toolkit [32].

Fourth, they allow dynamic delegation without the help of a third party, allowing clients

to obtain a PC without having to endure the cumbersome vetting process at the Certifi-

cate Authority. Last, the PC standard defines a Proxy Certificate Information (PCI) X.509

extension which can be used to carry a wide variety of (possibly domain-specific) policy

statements (e.g., XACML statements, discussed below).

In all fairness, SDSI/SPKI certificates could probably be used as well. However, since

MyProxy is based on PCs, and they suit our needs well, we decided to use them. Addition-

ally, our lab has a produced a number of projects which use the SDSI/SPKI format [34, 83],

and using PCs gives us an opportunity to explore something new. Furthermore, some of our

lab’s projects have encountered difficulties when passing SDSI/SPKI certificates to relying

parties [34].

In terms of the criteria of Chapter 3, PCs are used to minimize the risk of key disclosure

by allowing the TCB to expand and shrink over time. When a user does not need access to

their credential, the TCB need only cover the repository. When the user needs to use their

credentials from some desktop, then the TCB is expanded to cover the desktop. Concretely,

this TCB expansion is achieved by issuing a PC for a temporary keypair stored on the

desktop. When the user is finished (or the PC expires), the TCB effectively shrinks back to

covering only the repository. Second, the use of PCs minimizes the impact of a private key

disclosure. If an attacker compromises a desktop-resident private key (i.e., a key described

by a PC), then the attacker can use the private key at will—but only for a short period of

time since PCs have a short lifespan.
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4.2 Secure Hardware

Over the years, our lab has built a number of systems which involve and/or enhance se-

cure coprocessors. We have designed secure coprocessors, designed platforms which are

hardened by coprocessors, and used secure coprocessors as foundations for applications.

Secure hardware is interesting in the context of SHEMP because it can be used to reduce

the size of the TCB, thus reducing the risk of a key disclosure.

4.2.1 The IBM 4758

Most of our initial systems were constructed around the IBM 4758, as Sean Smith brought

it to our lab from IBM [18, 114, 118, 119]. Members of our group have used these devices

to enhance privacy [46], harden PKI [52, 70, 115], and enhance S/MIME [94].

The IBM 4758 is a secure coprocessor which provides secure storage facilities, crypto-

graphic acceleration, and a general-purpose platform on which to run third-party applica-

tions. The IBM 4758 is a very secure device, having been validated to FIPS 140-1 Level 4.

It can withstand both software and hardware attacks, and can effectively provide a different

security domain from its host machine. A good overview of the IBM 4758 and its capabil-

ities can be found in the literature (e.g., [18, 114, 118, 119]). We briefly describe some of

the features which are useful in the context of building a system such as SHEMP.

Modern versions of the IBM 47581 allow application developers to execute their appli-

cations (written in C/C++2) directly inside the device. Commercial versions ship with a

general-purpose OS called CP/Q++, and experimental versions can even run the Linux OS.

Since applications can be run directly inside the device, the IBM 4758 effectively allows

1Colleagues at IBM Research tell us there is a next-generation device called the IBM PCIXCC [2]. At the
time this project began, no developer kits were available for experimentation. Our remarks and analysis of
the IBM 4758 apply to an experimental version of the model 002 device.

2We successfully placed a small Java virtual machine in the device, but have not published those results.
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applications to run in an entirely different security domain than the host desktop.

In addition to an execution environment, the IBM 4758 provides cryptographic services

to applications. Using dedicated hardware (such as DES and modulo arithmetic engines),

the IBM 4758 can perform symmetric and asymmetric cryptographic operations faster than

many general-purpose desktops.

The device also offers a secure storage service to applications, allowing them to store

cryptographic secrets such as private keys. The device is designed to only allow particular

applications to access certain memory regions. This memory partitioning keeps processes

from accessing one another’s cryptographic secrets, thus enhancing process isolation.

The device is equipped with an internal PKI which it uses to perform what it calls Out-

bound Authentication (OA) (modern trusted computing platforms often refer to this feature

as attestation). OA enables applications running inside of the device to cryptographically

authenticate themselves to remote parties using PKI [116].

The strength of the IBM 4758 comes from the fact that all of the above components

(the general-purpose execution environment, the cryptographic acceleration hardware, the

secure storage service, and the OA subsystem) are housed in a tamper-resistant cage, and

plugged into the host computer’s PCI bus. Should an attacker attempt to physically open

the device (or otherwise attack it to probe the memory for cryptographic secrets), the device

will automatically clear the memory, erasing any secrets and possibly making it impossible

for applications to authenticate themselves any longer.

As previously noted, the IBM 4758 effectively provides an entirely different security

domain from its host computer. Data and applications inside the device never need to be

exposed to the host. Clearly, such security comes with a price (approximately $3000 US),

which prevents installation at every client.
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4.2.2 Bear/Enforcer

In some sense, secure coprocessors such as the IBM 4758 offer high-assurance security

at the price of low performance (and high cost). However, in industry, two new trusted

computing initiatives have emerged: the Trusted Computing Platform Alliance (TCPA)

(now renamed the Trusted Computing Group (TCG) [93, 123, 124, 125]) and Microsoft’s

Palladium (now renamed the Next Generation Secure Computing Base (NGSCB) [25, 26,

27, 28]). These efforts may benefit from Intel’s LaGrande initiative [120].

These new initiatives target a different tradeoff: lower-assurance security that protects

an entire desktop (thus greatly increasing the power of the trusted platform) and is cheap

enough to be commercially feasible. Indeed, the TCG technology has been available on

various IBM platforms, and other vendors have discussed availability. Some academic

efforts [63, 77, 122] have also explored alternative approaches in this “use a small amount

of hardware security” space.

More recent projects have involved constructing a “virtual” coprocessor out of com-

modity hardware. Our initial design and prototype is based on the TCG specification

(see [93, 123, 124, 125]) and is called Bear/Enforcer [67, 72]. We discuss the Bear/Enforcer

platform in depth, as it is what our prototype is built on.

The Basic Framework To start with, we need a way for Alice, working within existing

hardware, software, and protocols, to reach some conclusion about a computation occurring

on Bob’s computer. The TCPA/TCG specification’s Trusted Platform Module (TPM) gives

us a basic tool (described below). However, this tool binds a secret to a specific full-blown

software and data configuration on a given machine, which makes it difficult to deal with

two problems:

• In most applications where a relying party Alice needs to authenticate a remote pro-
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gram P on Bob’s machine, the overall software and data configuration on a platform

often needs to change (e.g., for upgrades), even though P remains the same.

• In current distributed security infrastructures, Alice wants to make her trust decision

based on whether P proves knowledge of a long-lived private key matching a long-

lived X.509 identity certificate, and Bob does not want to have to go back to a CA

each time his software or data changes.

We addressed both problems by indirection. The TPM and boot process verifies that our

Enforcer security module (described below) and supporting software is unmodified; the En-

forcer then checks the more dynamic parts of the system against a configuration file signed

by a (possibly remote) Security Administrator, Cathy. The TPM releases private keys to the

Enforcer only when it boots correctly; but the Enforcer only releases the program private

key when it satisfies the current configuration. Thus, by delegating configuration judgment

to Cathy, a CA can issue a long-lived certificate to Bob’s application.

The TPM We quickly review the basic functionality of the TPM that is currently avail-

able. More information on the TCPA/TCG technology can be found in our technical re-

ports [67, 72], the TCPA/TCG specifications [123, 124, 125], and other literature [45, 93,

105], as well as www.trustedcomputinggroup.org.

The TPM in our commodity hardware has 16 Platform Configuration Registers (PCRs),

each 20 bytes long. The TCPA/TCG specification reserves eight PCRs for specific pur-

poses, leaving eight for applications. The TPM provides a protected storage service to

its machine. From the programming perspective, one can ask the TPM to seal data, and

specify a subset of PCRs and target values. The TPM returns an encrypted blob (with an

internal hash, for integrity checking). One can also give an encrypted blob to the TPM,

and ask it to unseal it. The TPM will release the data only if the PCRs specified at sealing
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now have the same values they had when the object was sealed (and if the blob passes its

integrity check).

It is also possible to create keys which are bound to a specific machine configuration

with the TPM CreateWrapKey function. This alleviates the need to create a key and

then seal it, allowing both events to be performed by one atomic operation.

TPM protected storage can thus bind secrets to a particular software configuration, if

the PCRs reflect hashes of the elements of this configuration. The TPM also has the ability

to save and report the PCR values that existed when an object was sealed.

The TPM can perform RSA private-key operations internally. Besides enabling man-

agement of the key tree, this feature permits the TPM to do private-key operations with

other stored objects that happen to be private keys (if the PCRs and authorization permit

this) without exposing the private keys to the host platform. One special use of a TPM-held

private key is the TPM Quote command. If the caller is authorized to use a TPM-held

private key, the caller can use the TPM Quote command to have the TPM use it to sign a

snapshot of the current values of the PCRs. Another useful feature of a TPM-held key is

exposed via the TPM CertifyKey call. This function allows a TPM-held private key to

sign a certificate binding a TPM-held public key to its usage properties, including whether

it is wrapped, and to what PCR values.

Certification TCPA/TCG provides additional functionality for tasks like proving that a

TPM is genuine and attesting to the software configuration of a machine. The TCPA/TCG

specification—and subsequent research [106]—lays out some fairly complex procedures.

However, Alice does not want to carry out a complex procedure—she just wants to verify

that a remote program knows a private key matching the public key in an X.509 certificate.

Upon careful reading of the specification, it appears the TPM can provide equivalent func-

tionality. We provide a new code module that has the TPM create what it terms an “identity
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key pair” and then obtain an “identity certificate” from what we call YACA (“yet another

CA”). This module then uses the TPM to create a wrapped key pair bound to a configura-

tion which includes itself—and then has the TPM use the identity private key to certify that

fact. Finally, the module needs to return to a standard X.509 CA (which could be the same

YACA) with the identity certificate and the certificate created for this wrapped key pair, in

order to obtain a standard X.509 certificate.

Threat Model The TCPA/TCG design cannot protect against fundamental physical at-

tacks. If an adversary can extract the core secrets from the TPM, then they can build a fake

one that ignores the PCRs. If an adversary can manage to trick a genuine TPM (during

boot) to storing hash values that do not match the code that actually runs (e.g., perhaps

with dual-ported RAM or malicious DMA), then secrets can be exposed to the wrong soft-

ware. If the adversary can manage to read machine memory during runtime, then he may

be able to extract protected objects that the TPM has unsealed and returned to the host.

However, the TPM can protect against many attacks on software integrity. If the adver-

sary changes the boot loader or critical software on the hard disk, the TPM will refuse to

reveal secrets. Otherwise, the verified software can then verify (via hashes) data and other

software. Potentially, the TPM can protect against runtime attacks on software and data, if

onboard software can hash the attacked areas and inform the TPM of changes.

Design Our goal is to bind a private key to program P . How do we permit Bob to carry

out appropriate updates to the software that constitutes program P , without rendering this

private key unavailable? How do we ensure a malicious Bob cannot roll back a patched

program to an earlier version that we now know is unsafe? How do we permit a CA to

express something in a certificate that says something meaningful about the trustworthiness

of P over future changes—both of software as well as of more dynamic state?
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In some sense, everything is dynamic, even X.509 key pairs. However, in current PKI

paradigms, a certificate binds an entity to a key pair for some relatively long-lived period.

But if this entity P is to be a remote program offering some type of service, the entity will

have to change in ways that cannot be predicted at the time of certification. To address this

problem, we decided to organize system elements by how often they change: the relatively

long-lived core kernel; more medium-lived software; and short-lived operational data

As noted above, we add two additional items to the mix: a remote Security Adminis-

trator who controls the medium-lived software configuration via public-key signatures, and

an Enforcer software module that is part of the long-lived core.

The Security Administrator signs a description of the medium-lived software which rep-

resents a good configuration of the medium-lived software. The Security Administrator’s

signed description acts as a security policy for the medium-lived software. For simplicity,

the Security Administrator’s public key can be part of the long-lived core (although we

could have it elsewhere). A Security Administrator’s security policy could apply to large

sets of machines, and in theory, the Security Administrator may in fact be part of a different

organization. For example, Verisign or CERT might set up a Security Administrator who

signs descriptions of what are believed to be secure configurations of the program(s) in

question, and distributes these descriptions to a number of organizations to use as a secu-

rity policy. This approach allows one entity to bless the configurations for multiple sites

without having to run all of the servers itself.

The TCPA/TCG boot process (via our modified boot loader) ensures that the long-lived

core boots correctly and has access to its secrets. The Enforcer (within the long-lived core)

checks that the Security Administrator’s security policy is correctly signed, and that the

medium-lived software matches this policy. The Enforcer then uses the secure storage API

to retrieve and update short-lived operational data, when requested by the other software.

Our design binds the protected secrets to the Enforcer and long-lived core instead of
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the the medium- and short-lived components of the system. This approach alleviates the

need to get a new certificate each time the medium- or short-lived components change—

presumably quite often.

To prevent replay of old signed policies, the Security Administrator could include a

serial number within each description, as well a “high water mark” specifying the least

serial number that should still be regarded as valid. The Enforcer saves a high-water mark

as a field in a freshness table; the Enforcer accepts a signed policy only if the serial number

equals or exceeds the saved high-water mark. If the new high-water mark exceeds the old,

the Enforcer updates the saved one. (Alternatively, the Enforcer could use some type of

forward-secure key evolution.)

Structure In order to make our system usable, we chose designs that coincide with fa-

miliar programming constructs. These choices may also made our system easier to build—

since we could re-use existing code.

For short-lived data, we wanted to give the programmer a way to save and retrieve non-

volatile data whose structure can be fairly arbitrarily. In systems, the standard way that

programmers expect to do this is via a filesystem. A loopback filesystem provides a way

for a single file to be mounted and used as a filesystem; an encrypted loopback filesystem

allows this file to be encrypted when stored [11]. So, a natural choice for short-lived data

was to have the Enforcer save and retrieve keys for an encrypted loopback filesystem.

For the medium-lived software, we needed a way for a (remote) human to specify the

security-relevant configuration of a system, and a tool that can check whether the system

matches that configuration. We chose an approach in the spirit of previous work on kernel

integrity (e.g., [4, 128]).

The Security Administrator (again, possibly on a different machine or part of a different

organization) prepares a signed security policy of the medium-lived component; the long-
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lived component of our system uses this policy to verify the integrity of the medium-lived

component.

Another question was how to structure the Enforcer itself. The natural choice was as

a Linux Security Module (LSM)—besides being the standard framework for security mod-

ules in Linux, this choice also gives us the chance to mediate (if the LSM implementation

is correct) all security-relevant calls—including every inode lookup and insmod call. We

envisioned this Enforcer module running in two steps: an initialization component, check-

ing for the signed configuration file and performing other appropriate tasks at start-up, and

a run-time component, checking the integrity of the files in the medium-lived configuration.

Implementation Experience The Enforcer is an LSM which operates with a 2.6.x Linux

kernel. The Enforcer can either be built as a dynamically loadable module, or it can be

compiled directly into the kernel. Further details can be found in earlier technical re-

ports [67, 72].

The Enforcer uses the /etc/enforcer/ directory to store its signed policy, public

key, etc. (Having the kernel store data in the filesystem is a bit uncouth, but was the best

solution and is not completely unprecedented.) When the kernel initializes the Enforcer,

the Enforcer registers its hooks with the LSM framework. If built as a loadable module,

the Enforcer verifies the policy’s signature at load-time; if compiled into the kernel, the

Enforcer verifies it when the root filesystem is mounted.

At run-time, the Enforcer hooks all inode permission checks (which happen as a file is

opened). The Enforcer calculates a SHA-1 of the file and compares it to the SHA-1 listed

in the policy; if the values do not match, it reacts according the option: log the event to the

system log, fail the call, or panic the system. Tapping each inode read operation would be

better from a security standpoint, in that it would check the file’s integrity each time the

file is read. While this would alleviate any time-of-check-time-of-use issues which arise
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4d37d651b ... 4a57afd4f2 deny file.txt

Figure 4.1: An example line from the Enforcer’s security policy.

between opening a file and another party writing to it, it would also be quite expensive and

would still not work for things like log files.

Tools The Bear/Enforcer package includes a number of utilities to produce the security

policies used by the Enforcer. The security policies are constructed by the Security Ad-

ministrator, and an example line from a policy is depicted in Figure 4.1. The figure shows

the SHA-1 hash of the file file.txt. Should the Enforcer detect an integrity violation,

it will deny the request. In order to give the Enforcer the ability to perform key operations

(such as verifying the policy’s signature), we used an open source big integer package [50].

Our utilities also include a key generation and policy signing tool.

Trust Linux with the TPM and our Enforcer LSM enables in practice what prior work

only enabled in theory: a way to bind a general-function desktop or server program—

including its configuration and operational data—to a long-lived private key.

If someone tampers with a file on the server which is guarded by the Security Adminis-

trator’s security policy, the program will not be able to prove knowledge of the private key

to the relying party Alice. A CA who wants to certify the “correctness” of such a platform

essentially certifies that the long-lived core operates correctly, and that the named Secu-

rity Administrator will have good judgment about future maintenance. (Essentially, this

approach generalizes the “epoch” idea of outbound authentication in the IBM 4758 [116].)

In our scheme, the TPM testifies directly, through use of PCRs, to the long-lived com-

ponents of our server: the hardware and BIOS, the kernel and current Enforcer, and the

Security Administrator’s current public key. The Security Administrator then testifies to

the medium-level software, and the Enforcer (already verified) ensures that the current sys-
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Component How Protected Who Vouches

Short-term Log files File system System or
Web Pages App policy Application
Prog. keys Enc Loopback Admin

Med-term /bin/apache
/bin/openca Enforcer’s SA via

/bin/ls run-time check signed policy
/sbin/insmod

Long-term SA’s pubkey
Enforcer Policy check CA via TPM
Kernel TPM Unseal Attestation

HW + BIOS

Table 4.1: The Bear/Enforcer components and relationships.

tem matches the Security Administrator’s signed policy.

The operational data of the program is controlled by various users, per Bob’s policy.

These users are authenticated via the kernel and medium-level configuration that has al-

ready been testified to. Their content is saved in a protected loopback filesystem, ensuring

that it was valid content at some point. Table 4.1 illustrates the components and relation-

ships used in the Bear/Enforcer system.

Figure 4.2 sketches the components and their lifespans in Bear/Enforcer. To enable a

client to make a trust decision about dynamic content based on a long-lived application key

pair, we introduce indirection between the long-lived components and the more dynamic

components. Our intention is, like the IBM 4758, the TPM/Linux platform would let the

end user buy the hardware, which could authenticate these components to “Yet Another

CA.”

Limitations One limitation of the Bear/Enforcer approach is its susceptibility to attacks

from the “root” user. Once secrets have been released from the TPM and reside in memory,

root can access them by snooping memory. While this problem arises as a result of standard
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Figure 4.2: Sketch of the flow of protection and trust in Bear/Enforcer.
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Protects Against Standard Desktop Bear/Enforcer IBM 4758

Malware at user no yes yes
priv. (keyjacking)
Malware at root no no yes

priv. (yes w/ SELinux)
Physical attack no no yes

Table 4.2: Comparison of relevant secure hardware approaches.

Linux design, we can stop this attack by combining Bear/Enforcer with the National Secu-

rity Agency’s Security Enhanced Linux (SELinux). In previous work, our lab has examined

combining Bear/Enforcer and SELinux to produce an application called “compartmented

attestation”, which relies on the absence of a root-spy [73].

4.2.3 Summary

The primary use of secure hardware is in the area of trusted computing. Secure hardware

provides two features which make it attractive for such applications: a separate security

environment from the hardware’s host, and the ability to attest about processes running on

the hardware. SHEMP benefits from both of these features, and thus attempts to use secure

hardware when it is available.

In this section, we covered two platforms: the IBM 4758 and Bear/Enforcer. There are

other secure devices and platforms, but these are both unique. The IBM 4758 is the only

such platform to have been awarded a FIPS 140-1 Level 4 certification, and Bear/Enforcer

is the only freely available open-source platform based on the TCPA/TCG technology.

Table 4.2 compares the two platforms. Our SHEMP prototype was developed on the

Bear/Enforcer platform due to its larger memory capacity, ease of programmability, and

its ability to run Java (which gave us access to class libraries).
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4.3 Policy

The last tool we examine is a policy framework. In order to enhance the expressiveness

and usability of the SHEMP system, users must be able to relay their wishes regarding

key usage to relying parties and applications. Further, the system must also be able to

convey attributes of both key repositories and clients to relying parties. The “Extended

Key Usage” field of X.509 certificates allows users to restrict key usage, but it does not

consider attributes of the key’s environment (i.e., the repository and client which comprise

the current TCB).

In one role, the policy framework should allow a relying party Bob, upon receiving a

PC for Alice, to be able to discover the conditions under which Alice’s PC was generated.

Then, Bob can decide for himself whether to trust Alice, given her current environment. As

we will explain in detail in Chapter 5, SHEMP administrators assign attributes to clients

and repositories. When Alice makes a request for the repository to generate a PC for her,

the repository will include the attributes of the client desktop and the repository in the PC

itself. These attributes essentially define the Alice’s TCB. When Alice presents her PC to

Bob, he can examine the attributes himself, and then make a trust decision based on Alice’s

TCB.

In another role, the policy framework should allow a keyholder Alice to express her

wishes about uses of her private key—potentially based on the security level of the repos-

itory and client platform. For example, users may wish to restrict access to cryptographic

operations that the repository will perform with their private key; applications may wish to

restrict certain data or operations. Without this ability, a successful attacker could fully im-

personate the victim or use the victim’s key for any operation. The policy framework must

be flexible enough to allow SHEMP administrators to specify domain-specific attributes

to machines, and easy enough to use that users and application developers can construct
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policies which accurately govern their resources.

There are a number of policy frameworks which can be used to accomplish these tasks,

and the SHEMP system design is agnostic to which framework is used. However, for the

sake of implementation, we chose to use the eXtensible Access Control Markup Language

(XACML) [136]. XACML is an XML-based language for expressing generic policies and

attributes. A Policy Decision Point (PDP) takes a policy and a set of attributes, and makes an

access control decision. We chose XACML because, from a practical standpoint, XACML

is generic enough to perform express a wide range of attributes, and has an open-source

implementation (thanks to Seth Proctor at Sun Microsystems) [100] which is implemented

in the language of our prototype: Java. As we will show in Chapter 7, it is possible to build

XACML-generating policy tools which make XACML easy enough to use for administra-

tors and application developers.

4.4 Summary

In this chapter, we introduced the building blocks used to build the SHEMP system. In

Chapter 5, we discuss the SHEMP architecture, and present the parties, processes, and

system components involved in SHEMP. We also describe how we use the building blocks

to build our prototype implementation of the SHEMP system. In Chapter 6, we describe

how we used SHEMP to build some real-world applications; we also introduce some new

opportunities for application development.
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Chapter 5

SHEMP Architecture

Armed with the building blocks presented in Chapter 4, we can design and implement the

SHEMP system, which meets the criteria of Chapter 3 and makes desktops usable for PKI.

Concretely, the goal of the SHEMP system is to allow a relying party Bob to be able to

make valid trust judgments about Alice upon receiving a PC from her. Bob should have

some reason to believe that Alice authorized the issuance of her PC for the stated purpose,

and is aware of—and intended—the request.

Chapter Outline In Section 5.1, we examine the SHEMP architecture and introduce the

parties, procedures, and protocols which make up the SHEMP system. In Section 5.2, we

discuss our implementation experience. Finally, Section 5.3 summarizes the chapter.

5.1 SHEMP Architecture

5.1.1 SHEMP Entities

The first step in developing a system which relies on and enables trust is defining the en-

tities involved and showing the trust relationships between them. Figure 5.1 depicts the
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Figure 5.1: The parties in the SHEMP system.

parties and trust relationships in the SHEMP system. The circles represent individuals or

organizations and the boxes represent machines. The arrows indicate trust relationships

between the parties; an arrow from A to B means “A trusts B.”

Initially, we focus on three entities involved in SHEMP: a CA, a user (Alice in Fig-

ure 5.1), and a user’s machine (Matisse in Figure 5.1). As in any typical PKI, Alice trusts

her CA to certify members of her population, including herself. This relationship is de-

picted as a solid arrow from Alice to the CA in Figure 5.1.

In order for the CA to trust Alice, it must believe her identity and that she has the private

key matching the public key in her certificate request (typically a Registration Authority

(RA) verifies Alice’s identity on the CA’s behalf). Once the CA/RA believe Alice’s identity

is authentic and that she owns the private key, the CA will express its trust in Alice in the

form of a CA-signed identity certificate. This relationship is depicted as a dashed edge

from the CA to Alice in Figure 5.1.

For an application running on Alice’s machine (Matisse) to trust certificates signed

by the CA (such as Alice’s), it usually needs to have the CA’s certificate installed in its
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keystore. This relationship is represented by the edge from Matisse to the CA in Figure 5.1.

To illustrate a concrete example of the necessity of this relationship, assume that some

organization uses S/MIME mail. If Alice and Bob both have identity certificates signed

by the CA and Bob sends Alice a signed message, then Alice’s mail program needs to

know Bob’s certificate and it needs to trust the entity which vouched for Bob’s identity (the

CA/RA).

In addition to the three parties described above, the SHEMP system introduces three

more: a Repository Administrator who runs the key repository(s), a Platform Administrator

who is in charge of the client platforms in the domain (such as Matisse), and at least one

key repository (depicted as Repository 0 in Figure 5.1).

The Repository Administrator is in charge of operating the key repository. Since the

repository contains the entire population’s private keys (and is thus a target for attacks),

it must be maintained with care. Concretely, the Repository Administrator is in charge

of loading private keys into the repository and vouching for the repository’s identity and

security level (these will be discussed below). Thus, it is necessary for the CA to trust the

Repository Administrator. Since the Repository Administrator is a member of the CA’s

domain (in fact, probably part of the same organizational unit—such as Dartmouth College

Computing Services), it trusts the CA as well. This relationship is depicted by the edge

connecting the Repository Administrator to the CA in Figure 5.1.

The Platform Administrator is in charge of the desktop platforms that end users (e.g.,

Alice) will use. At the base level, the Platform Administrator has the same responsibilities

as a typical system administrator: configuring machines, installing and upgrading software,

applying patches, etc. Additionally, the Platform Administrator is in charge of creating and

vouching for platform identities and security properties (discussed below). Since the Plat-

form Administrator is in charge of the desktops that will be using the keys stored in the

repository, the CA must trust the Platform Administrator. Since the Platform Administra-
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tor is a part of the CA’s domain (again, possibly part of the same organizational unit), it

trusts the CA. The relationship is shown in Figure 5.1 as the edge connecting the Platform

Administrator to the CA.

The last entity involved is the actual key repository which holds the users’ private keys.

As with individual desktop platforms (e.g., Matisse), the repository trusts the CA. This

relationship makes it possible for entities with CA-signed certificates to establish SSL con-

nections to the repository. Since the repository trusts the CA, it believes the identity of an

entity with a CA-signed certificate. This relationship is represented by the edge between

Repository 0 and the CA in Figure 5.1

It is worth noting that there could be more entities involved in the system. For exam-

ple, there will most certainly be multiple users (e.g., Alices) and platforms (e.g., Matisses).

Further, there could be any number of CAs in virtually any valid architecture (e.g., a hi-

erarchy, mesh, etc.). There could also be multiple repositories with different Repository

Administrators, as well as multiple Platform Administrators. The only constraint that must

be enforced is that the multiple parties form a valid chain of certificates.

For example, assume that Dartmouth College has one root CA for the college, and each

department runs CAs for their own department. In this case, the Computer Science De-

partment runs a CA, and its CA certificate is signed by the Dartmouth College root CA,

thus forming a chain. In this example, the department may also run its own repository, and

the department’s Repository Administrator is certified by some college-wide repository

administrator (again forming a chain of certificates). A college-wide Platform Adminis-

trator could certify some departmental Platform Administrator to have the department’s

machines under her jurisdiction (again, forming a chain). The details of the certificates

used by SHEMP will be discussed below, but it is important to note that the system gener-

alizes beyond the entities in Figure 5.1. The set of entities in Figure 5.1 is the smallest set

which is necessary and sufficient to describe the system.
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Figure 5.2: The entities, trust relationships, and initial certificates in SHEMP.

5.1.2 Identity Certificates Setup

The way SHEMP (and PKI in general) represents trust is via certificates. From the ini-

tial trust relationships between the entities in Figure 5.1, a number of certificates can be

immediately issued. Figure 5.2 illustrates these initial certificates; they are contained in

the dashed box which could possibly represent a directory (possibly a Lightweight Di-

rectory Access Protocol (LDAP) directory) where users go to locate certificates. In this

figure, all three certificates are signed by the CA, and are issued to the Repository Ad-

ministrator, Platform Administrator, and Alice respectively. In practice, the certificates

shown may differ slightly from one another as they represent different sorts of trust rela-

tionships. For example, the Platform and Repository Administrator certificates may have

the basicConstraints X.509 extension set, indicating that they are able to act as CAs
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themselves.

The certificates are issued from the CA to entities which have a mutual trust relationship

with the CA. Since the administrators and Alice all have such a relationship with the CA,

they are all issued identity certificates. The certificates not shown in Figure 5.2 are the

CA certificates which are installed at the key repository and at the platform. As previously

discussed, these certificates are necessary to allow things like client-side SSL connections,

and are represented by the one-directional edges in Figure 5.2.

The first phase of setup begins when machines are added to the domain. As a repository

is added, the Repository Administrator must take a number of steps to set it up. First, he

must generate a keypair for the repository. This keypair can be generated in a number

of ways depending on what type of platform the repository runs on. For instance, if the

repository runs in an IBM 4758, then the keypair ought to be generated inside the device,
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thus reducing the risk of a key compromise. If the repository runs on a Bear platform, then

the keypair should be generated inside of the TPM. The idea is to use secure hardware, if

available.

Second, the Repository Administrator binds the public portion of that keypair to an

identifier for the repository. SHEMP is agnostic about these identifiers. A repository could

be identified by a name, a hardware MAC address, the hash of the newly-generated public

key, etc. The only restriction that SHEMP imposes is that this identifier uniquely identify

the repository. The binding of the public key to the identifier is accomplished via the

Repository Identity Certificate issued by the Repository Administrator. Figure 5.3 depicts

the certificate issued from the Repository Administrator to Repository 0 as a dashed edge.

The resulting certificate is added to the certificate store.

A similar procedure is performed by the Platform Administrator each time a new ma-

chine is added to the domain. First, the Platform Administrator generates a new keypair on

the platform, using the most secure method available to it (e.g., an IBM 4758 or TPM, if

available).

Second, the Platform Administrator binds the public portion of the keypair to a unique

identifier for the platform. This binding is represented as the Platform Identity Certificate

(depicted as the certificate issued from the Platform Administrator to Matisse in Figure 5.3).

As with the repository, SHEMP is agnostic to the specific mechanism used to identify

the platform, but administrators should use the “least spoofable” identifier possible. For

example, if a TPM is present, the TPM’s Public Endorsement Key could be used, providing

a more secure identifier than a hardware MAC address (which is easily spoofed).
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5.1.3 Attribute Certificates Setup

The final phase of setting up the system involves issuing attribute certificates to the appro-

priate entities. These attribute certificates are used to bind the security level of the machines

(i.e., the repository and client platform) to the machine’s identifier, and to bind a user’s key

usage and delegation policy to the user’s identity. In the case where the attributes are as-

signed to machines (i.e., the repository and client platforms), the attributes can be used by

a relying party to reason about the security level of the TCB.

As the Repository Administrator configures the repository, he must also assign some

domain-specific security level to the repository. Concretely, the security level is expressed

by the Repository Administrator generating and signing some XML attributes for the repos-

itory. The idea is for the administrator to make some signed XML statements such as “This

repository runs on a Bear platform”, “This repository is in a secure location and guarded

by armed guards”, etc. These attributes can be arbitrarily complex, and are stuffed into a

signed XML statement called a Repository Attribute Certificate (RAC). The RAC is identi-

fied by the same identifier that the Repository Administrator used in the Repository Identity

Certificate, and thus binds the repository to its XML attributes. The RAC is then signed

by the Repository Administrator and placed in a well-known location, such as an LDAP

directory. This procedure and the resulting certificate is shown in Figure 5.4.

The story continues as client platforms are added to the network. As the Platform Ad-

ministrator configures new machines, she constructs some XML attributes for the platform

and signs them. These attributes are expressed in XML, and can state any domain-specific

properties that the Platform Administrator feels are important in determining the security

level of the machine. Examples may include statements such as “This machine is inside

the firewall”, “This machine is a Bear platform”, “This machine was patched on April 21,

2004”, etc.
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Like the RAC, these attributes can be arbitrarily complex. The attributes are placed

into a signed XML statement called the Platform Attribute Certificate (PAC). The PAC is

identified by the same unique identifier that the Platform Administrator used to identify

the platform in the Platform Identity Certificate. Again, machines with no secure hardware

may be identified by a hardware MAC address, whereas a Bear platform may be identified

by the TPM’s endorsement key. In any case, the PAC binds the client platform’s identity to

XML attributes which express the security level of the machine. The PAC is signed by the

Platform Administrator and is placed in a well-known location such as an LDAP directory.

This procedure and the resulting certificate is shown in Figure 5.4.

The last part of the setup occurs when a user Alice visits the CA for the first time in

order to get her identity certificate issued. Alice goes through the standard identity vetting

process, eventually proving her identity to the CA/RA.

At the CA, Alice also gets a chance to express her Key Usage Policy (KUP), which

governs how her key is to be used. For example, Alice may specify “If my key lives in a

4758 repository, and I request a Proxy Certificate from a Bear platform, grant the Proxy

Certificate full privileges. If my key lives in a Bear repository, and I request a Proxy

Certificate from any machine outside the firewall, allow my key to be used for encryption

only. etc.” This KUP is expressed as an XACML policy, and is signed by the CA. The

signed KUP is identified by Alice’s name (i.e., the same X.500 Distinguished Name in her

X.509 identity certificate) and is placed into the LDAP along with her identity certificate.

Alice’s private key is then loaded into the repository (actually, it is generated there and the

CA receives a Certificate Request Message Format (CRMF) request), and setup is complete

(see Figure 5.4).
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Figure 5.5: The basic protocol for generating a Proxy Certificate under the SHEMP system.

5.1.4 The System in Motion

Once setup is completed, Alice is free to wander throughout the domain and use her

repository-resident private key from any client desktop. For example, assume that she

needs to register for classes via an SSL client-side authenticated Web site. Alice begins by

finding a computer which is acting as a client (i.e., has the SHEMP client software installed,

and hence has a Platform Identity Certificate and PAC in the directory). For illustration,

assume Alice walks up to the client named Matisse.

The protocol for establishing a Proxy Certificate is shown in Figure 5.5. Steps 3, 4, 5, 6,
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10, and 11 represent our enhancements to the basic MyProxy approach. Step 8 also differs

somewhat in that under SHEMP, the temporary keypair can be generated in the most secure

manner that a client has at its disposal (e.g., in a TPM or an IBM 4758).

Figure 5.5 illustrates a scenario where the user Alice is at a client desktop named Ma-

tisse. Matisse first connects to the repository and establishes a client-side SSL connection.

The repository and platform identity certificates (and the corresponding private keys in-

stalled by the appropriate administrator) are used to negotiate this connection. Recall that

the Repository and Platform Identity Certificates are signed by the appropriate administra-

tors (Repository and Platform, respectively), and that the administrators have CA-signed

certificates (or a valid chain of certificates back to the CA). The implication is that there is a

valid certificate chain from each of the platforms back to the CA. Since both the repository

and platform trust the CA, they have good reason to believe the client-side SSL authentica-

tion.

The second step is for Alice to authenticate herself to the repository. SHEMP is agnostic

with respect to how authentication is accomplished. For prototyping purposes, Alice uses

a username/password (as does the MyProxy system). For stronger security, Alice could

use an authentication technique which cannot be intercepted by rogue processes on the

client. For instance, Alice could use some other keypair (possibly stored on a token) for

authentication purposes or she could use biometrics, etc.

Once both Matisse and Alice have authenticated, the repository software uses Matisse’s

identifier to look up Matisse’s PAC. As shown in Figure 5.5, the repository may also fetch

Alice’s identity certificate and KUP if it is not locally stored on the repository (possibly to

save space on the repository). Once the repository has gathered all of the policy information

about the Matisse and Alice (e.g., the PAC, KUP, and Alice’s identity certificate), it will

acknowledge Alice’s and Matisse’s authentication, and wait for a Proxy Certificate request

from Matisse.
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Matisse will then generate a temporary keypair for Alice to use. Again, this may be

generated a number of ways depending on the resources available to the client. For exam-

ple, if the client is a Bear platform, it could generate a keypair in the TPM so that the key

will never leave the TPM. If the client is a standard unarmed desktop, it may generate a

keypair with OpenSSL [91]. In any event, the client (Matisse) generates an unsigned Proxy

Certificate containing the public portion of the temporary key, and sends it to the repository

to be signed by Alice’s private key. As with standard X.509 certificates, Alice fills in the

certificate information and proves possession of the private key.

The repository must then decide if it should sign the request with Alice’s private key.

The repository takes the security levels of itself and Matisse (contained in the RAC and

PAC, respectively) and generates an XACML request containing the attributes contained

in the certificates. This XACML request and Alice’s KUP are then evaluated to determine

whether the operation is allowed. Concretely, an XACML Policy Decision Point running

on the repository (as part of the repository software) makes this decision.

If the PC generation operation is allowed, the repository will place the RAC, PAC, and

KUP into the Proxy Certificate’s Proxy Certificate Information extension, and then sign the

Proxy Certificate with Alice’s private key. Placing the RAC, PAC, and KUP into the PCI

allows the Proxy Certificate’s relying party to see attributes of the client platform and the

repository without having to search for them in a directory. The attributes contained in the

certificates tell Bob what kind of environment Alice is operating in. Thus, Bob can decide

whether he should allow access to resources based on Alice’s current environment. The

signed Proxy Certificate is then returned to Alice.

Instead of presenting her actual certificate to services which require it, Alice now

presents her Proxy Certificate which, along with her identity certificate, forms a chain:

one which includes her real public key which is signed by the CA, and an X.509 Proxy

Certificate which contains a short-lived temporary public key, signed by her real private
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key by the repository.

5.2 Implementation

In Section 5.1, we gave a conceptual view of the SHEMP system. In this section, we

present a specification- and implementation-level view of SHEMP. We begin by describing

the prototype environment. We then walk through setting up the system from the view of an

administrator, discussing what the SHEMP setup tools do and how they are implemented.

Finally, we illustrate using the system from the perspective of a user, this time explaining

what the SHEMP client software is doing.

5.2.1 Prototype Environment

The SHEMP prototype is comprised of several programs which are used to configure the

system, run a SHEMP repository with decryption and signing proxy applications (discussed

in Chapter 6), and let clients access the repository. The prototype was developed on the

Linux OS, specifically, the Debian distribution on the “unstable” branch. The repository

and client portions of the prototype are written in Java and were developed on the Java 2

Platform, Standard Edition (J2SE) version 5.0. The SHEMP Admin (shadmin) tool which

is used for setup is written in Perl, and was developed on Perl 5.6.

In addition to borrowing design concepts from MyProxy, we also borrowed some im-

plementation libraries. Our goal was to make the SHEMP programming interface resemble

the MyProxy interface as much as possible, as this reduces the learning curve for MyProxy

application developers to write applications for SHEMP. To this end, we developed the

prototype as part of the Globus Java Commodity Grid Kit (CoG kit) [130], which is a stan-

dard development kit for the Grid community. This decision gave us access to libraries for

performing tasks such as minting Proxy Certificates.
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As briefly mentioned in Chapter 4, our policy framework is implemented in the

XACML policy language. The prototype utilizes the SunXACML libraries which are freely

available from Sun Microsystems [100], and are written in Java.

Once early versions of the SHEMP repository and client software were stable, we con-

structed a small testbed consisting of four machines which were used for development and

testing. Two of the machines run Bear/Enforcer—one hosting the repository and one host-

ing client software. The other two machines are standard desktops, one with a firewall

installed, and one without. Our idea was that this heterogeneous collection of machines

likely represents real environments where SHEMP may be used.

5.2.2 SHEMP Setup

In order to demonstrate setting up the SHEMP system, we walk through the three tasks per-

formed by the shadmin tool: installing a repository, installing a client, and adding a user

to the repository. We begin with the assumption that the CA has issued CA-certificates (i.e.,

the basicConstraints X.509 extension is set to true) to the Platform and Repository

Administrators.

Repository Installation To begin, the Repository Administrator needs to install the

repository software, install a keypair for the repository, and assign it attributes. In our

testbed, the Repository Administrator installs the repository software on a Bear/Enforcer

machine by unpacking the repository code in the encrypted loopback filesystem.1 If we

were using an IBM 4758, the Repository Administrator could install the code inside of the

device.

Once the software is installed and the repository is running, the Repository Adminis-

1The Repository Administrator, possibly acting as the machine’s Security Administrator should also set
up a security policy which protects the repository code and the private keys.
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trator will launch the shadmin tool, and select the set of operations for Repository Ad-

ministrators. This set of operations will allow the Repository Administrator to import the

CA’s certificate into the repository’s Java keystore, thus allowing the repository to accept

client-side SSL connections from platforms which have a certificate chain rooted at the

same CA. The shadmin tool calls the keytool program (part of the J2SE) to import the

CA’s certificate into the repository’s keystore.

The Repository Administrator can then generate a new keypair and certificate which

will uniquely identify the repository (again, the shadmin tool relies on the keytool

program to perform these tasks). The public portion of this keypair is put into a certifi-

cate request, and signed by the Repository Administrator. The shadmin tool calls the

openssl ca program to sign the repository’s certificate with the Repository Administra-

tor’s private key. The certificate’s Distinguished Name (DN) should be the least spoofable

identifier available; for our prototype, it is the TPM’s Public Endorsement Key. Once the

certificate is signed, the Repository Administrator imports it into the repository’s keystore.

The keypair is then used to negotiate SSL connections with clients, and the certificate is the

Repository Identity Certificate of Figure 5.4.

Once the repository is identified, the Repository Administrator must assign it a set of

attributes which will be included in the Repository Attribute Certificate (RAC). In addi-

tion to these attributes, the RAC contains the same DN for the repository as the identity

certificate, as well as the issuer’s DN (i.e., the DN of the Repository Administrator). The

shadmin tool constructs an XML document like the one depicted in Figure 5.6, and then

calls the openssl dgst program to hash the envelope and sign the hash with the Repos-

itory Administrator’s private key. Finally, the shadmin tool places the signature in the

envelopeSignature element of the RAC.
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<attrcert>
<envelope>

<subjectDN>CN=77:6e:84 . . . ,L=L,ST=ST,C=C</subjectDN>
<issuerDN>CN=RepAdmin1, . . . ,ST=PA,C=PA</issuerDN>
<attributes>

<attribute>HasTPM=true</attribute>
<attribute>BehindFirewall=true</attribute>

</attributes>
</envelope>

<envelopeSignature>2b586b . . . 1402e086</envelopeSignature>
</attrcert>

Figure 5.6: An example RAC.

Client Installation The installation procedure for clients is fairly similar to the procedure

for a repository. The Platform Administrator needs to install the SHEMP client software,

generate a keypair and certificate for the platform, and assign it attributes. The location of

the client install varies, depending on the target platform. In our testbed, machines running

Bear/Enforcer run the SHEMP client software from the loopback filesystem. Machines

without secure hardware just ran the client code as a normal program. Had we used an

IBM 4758, we could have placed the client code directly inside of the device.

The Platform Administrator’s first step is to install the CA’s certificate into the plat-

form’s Java keystore. The shadmin tool calls Sun’s keytool to accomplish this task.

Using the same procedure as the Repository Administrator, the Platform Administrator

must next generate a new keypair and Platform Identity Certificate for the new platform,

as well as the Platform Attribute Certificate (PAC) which contains the platform’s relevant

security properties. As before, the shadmin tool constructs an XML document similar

to the one depicted in Figure 5.6 (the names, attribute, and signature will be different, but

the structure is identical). The shadmin tool then calls the openssl dgst program to

hash the envelope and sign the hash with the Platform Administrator’s private key, and then

places the signature in the envelopeSignature element of the PAC.
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Adding a User Once at least one repository and platform have been installed, users can

begin to use the system. In order for Alice to use the system, she needs to have a long-term

keypair generated on the repository, have the public portion signed by a CA, and establish

her Key Usage Policy which dictates how and where her key may be used.

Alice begins the process by visiting the Repository Administrator and requesting a that

a new long-term keypair be generated for her. The Repository Administrator (possibly

working in conjunction with the CA and Registration Authority) will perform the standard

vetting process, ensuring that Alice is who she claims to be.

Once convinced, the Repository Administrator will launch the shadmin tool, and opt

to add a user to the repository. The shadmin tool will first generate a keypair and unsigned

certificate (containing the public portion of the newly generated keypair) for Alice using

the keytool. The private portion of the keypair never leaves the SHEMP repository, and

the unsigned portion (in the certificate) is then sent to the CA.

Upon receiving Alice’s unsigned certificate, the CA operator signs it with the CA’s

private key, producing a standard X.509 identity certificate for Alice. The shadmin tool

can be used by the CA operator for this task. It first ensures that the basicConstraints

extension is set to “true” in Alice’s certificate (thus allowing her to sign Proxy Certificates),

and then calls the openssl ca program to sign the certificate with the CA’s private key.

Once Alice’s certificate is signed, the CA uses the shadmin tool to generate a KUP for

Alice. In our prototype, the KUP protects Alice’s private key, and restricts how Alice can

generate Proxy Certificates and use her private key for decryption and signing. The idea is

for Alice and the CA operator to construct a policy which allows Alice to use her private

key for different operations (PC generation, decryption, and signing), based on Alice’s

environment at the time of the request. The shadmin tool generates the XACML policy

(i.e., the KUP) which represents Alice’s wishes, and then signs it with the CA’s private key.

Once Alice returns from the CA, the Repository Administrator (using the shadmin
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Figure 5.7: The SHUTIL login screen.

tool) installs the signed certificate in the repository keystore (via keytool), publishes

it in the organization’s certificate store (most likely, a directory), and sets up an account

and password for Alice on the repository.2 Once Alice has successfully been added to the

repository, the situation looks like Figure 5.4.

5.2.3 Using SHEMP

Once the repository and client(s) are installed, and Alice has a keypair and certificate, Alice

can begin to use the system. She begins by sitting at a client platform (for the remainder

of this section, we will call this platform “Matisse”). Alice launches the SHEMP Utility

(shutil), which presents her with the user interface depicted in Figure 5.7.

2Since our prototype uses passwords for user authentication, the shadmin tool sets Alice’s password. If
we had used biometrics or some other authentication technique, then the shadmin tool would need to set up
that mechanism instead of a password.
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Figure 5.8: Alice logs on to the repository.

Alice enters the hostname and port where the repository is running, and presses the

button labeled “Connect.” The shutil will then attempt to make a client-side SSL con-

nection to the repository, thus performing platform authentication (step 1 in Figure 5.5).

If a connection is established, the shutil initiates the user authentication step (step 2

in Figure 5.5) by repeatedly asking the repository for challenge strings to present to Alice.

The shutil code simply displays these strings on Alice’s console, as shown in Figure 5.8.

Alice responds in the text box labeled “Response”, and shutil forwards Alice’s response

back to the repository. In our prototype, the challenge strings will ask Alice for her user-

name and password, and check these against a password file on the repository. If Alice

provides a correct username and password, the repository sends a message to shutil

which indicates that Alice is authenticated. This message causes shutil to give access to

its operations (represented as the tabs in the figures): generate, decrypt, and sign.
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Figure 5.9: Alice requests a PC.

Typically, Alice will begin by selecting the “generate” option to generate a new Proxy

Certificate. Alice simply presses the “Generate PC” button (see Figure 5.9) which causes

the shutil to send a message to the repository. Upon receipt, the repository will gather

all of the relevant attribute certificates (i.e., the RAC, PAC, and Alice’s KUP), verify their

signatures, and construct an XACML request with the attributes. If the signatures verify,

then the repository sends a “ready” message to the shutil, indicating it is ready to receive

the unsigned Proxy Certificate (steps 3–7 in Figure 5.5).

The shutil then generates a keypair using whatever means available (the Platform

Administrator can specify the generation mechanism during system setup), and the public

portion is placed in an unsigned Proxy Certificate and sent to the repository for signing

(steps 8–9 in Figure 5.5).

The repository then runs the request (containing the attributes from the RAC and PAC)
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Figure 5.10: Alice successfully generates a PC.

along with Alice’s KUP through the XACML Policy Decision Point to determine whether

the current environment allows Alice to generate a Proxy Certificate. If so, the RAC, PAC,

and KUP are placed in the Proxy Certificate’s PCI extension, the Proxy Certificate is signed

by the repository using Alice’s private key, and the signed certificate is returned to Alice

(steps 10–12 in Figure 5.5). The result is shown in Figure 5.10.

Alice can now use her Proxy Certificate for the next two hours (shutil’s and

MyProxy’s default). As we will discuss further in Chapter 6, the SHEMP repository

offers two services which use Proxy Certificates for decryption and signing. Before

SHEMP, Proxy Certificates have been limited to authentication and authorization appli-

cations. When Alice is done, she may log out and destroy her Proxy Certificate and the

corresponding private key by pressing the “Destroy PC” button (see Figure 5.9).
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Remote Use So far, we have discussed how Alice uses the SHEMP system from within

her domain (i.e., Matisse is physically located in Alice’s domain). In the case where Alice

travels outside of her domain, Alice can no longer rely on her client machine to be under

the Platform Administrator’s jurisdiction.

In such scenarios, Alice can define a very restrictive KUP which covers untrusted exter-

nal machines; she would be wise not to perform sensitive operations from such platforms.

Alternatively, she could potentially used a token-based keypair to establish a Virtual Private

Network to some machine inside the domain. While this is far from a perfect solution, it

could give Alice some way to access a trusted machine remotely.

5.3 Summary

In this chapter, we introduced the parties, procedures, and protocols used in the SHEMP

system. We illustrated the trust relationships between SHEMP entities, and described the

mechanisms we used to express those relationships. We then described how we used the

building blocks of Chapter 4 to implement our design. In Chapter 6, we describe how we

use the SHEMP system to build applications.
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Chapter 6

SHEMP Applications

As discussed throughout this thesis, SHEMP’s goal is to make desktops usable for PKI.

One way to measure SHEMP’s success in this area is to try and build applications. In

this chapter, we describe the implementation of two applications which were built as a

part of the SHEMP repository: a decryption and signing proxy. While other approaches

use third parties to aid in private key operations (e.g., [3, 10, 17]), our applications are

novel contributions in themselves, as they explore the use of Proxy Certificates for standard

private key operations.

We then present three designs for some standard Grid applications, and show SHEMP

can enhance these designs. We also discuss the results of brainstorming sessions where we

discuss applications that could possibly benefit from SHEMP. In Chapter 7, we elaborate on

these designs and give the results of a user study we conducted which uses the applications

to measure the usability of SHEMP’s policy language.
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6.1 Decryption and Signing Proxies

Traditional PKI uses of private keys include decryption, signing, and authentication. The

Proxy Certificates (PCs) generated by SHEMP can by used for any of these operations,

although the short lifespan of the Proxy Certificate adds some complexity. For example,

if Bob encrypts something for Alice using her PC’s public key, and the PC expires before

Alice decrypts the message, then she loses the ability to decrypt the message. If Alice

signs something with her temporary private key, and Bob attempts to verify the message

after Alice’s PC has expired, the signature is unverifiable.

Having Bob deal with Alice’s long-term certificate would be ideal, but then Alice needs

a way to ask the repository to perform private key operations on her behalf. The decryption

and signing proxies are designed to solve this problem. They allow Alice to turn a message

encrypted with her long-term public key into a message encrypted with her temporary

public key, and turn a signature generated with her temporary private key into a signature

generated with her long-term one.

Our design and implementation goal is to allow Bob to send encrypted messages to—

and verify signatures from—Alice, using her long-term credential. Bob should not have to

know anything about SHEMP or Proxy Certificates and should still able to securely com-

municate with Alice. Relaxing this constraint yields some interesting potential applications

(discussed at the end of this section), but significantly increases the deployment overhead

which often results in a system that may never make it beyond the prototype stage. Without

the constraint, every Bob—and every PKI application that Bob uses—has to be rewritten

or extended to deal with a specialized SHEMP message format if they want to communi-

cate with a SHEMP user (e.g., Alice). The SHEMP design protects Alice from complexity

via the Repository and Platform Administrators. Insulating Bob from the complexity intro-

duced by PCs is consistent with the overall SHEMP design philosophy.
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Before we discuss the proxy applications in detail, it should be noted that PKI authen-

tication can be accomplished with the SHEMP system as is. The short lifespan has no real

effect on authentication applications, as Proxy Certificates were developed with authenti-

cation scenarios in mind (and dynamic delegation, which will be discussed below).

Decryption We first consider the case where Bob wants to encrypt a message and send it

to a SHEMP user Alice. We assume that Alice has an X.509 identity certificate issued by

her local CA, and that the private key corresponding to the public key in her certificate is

stored in a SHEMP repository. Furthermore, we assume that Alice’s certificate is in a place

where Bob can find it, such as a public directory.

Bob begins by locating Alice’s certificate, most likely by performing a directory search.

He then uses the public key in the certificate (i.e., Alice’s long-term public key) to encrypt

a message for Alice. Concretely, these tasks may all be performed by Bob’s email client, a

program like openssl, etc. Once encrypted, the ciphertext is transported to Alice.

Upon receipt, Alice needs to use her long-term private key (which lives on the repos-

itory) to decrypt the message and recover the plaintext. If Alice does not currently have

a valid Proxy Certificate, then she completes the process described in Chapter 5 to obtain

one.

Once Alice has a valid PC and has successfully logged on to the repository, she can

access the repository’s decryption proxy service via the shutil program. The shutil

code will prompt Alice for a file containing the encrypted message from Bob, and for a file

where it should place the result (see Figure 6.1). Once she has entered the filenames, Alice

sends the message and her PC to the repository by pressing the “Decrypt” button.

Once the repository receives the message and Alice’s PC, it needs to decide whether it

should perform the requested operation. To make this decision, the repository first locates

the RAC for itself, the PAC for the platform which Alice is making the request from (which
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Figure 6.1: Alice sends a request to the decryption proxy.

is uniquely identified by the SSL session), and Alice’s KUP. The repository verifies all of

the signatures, constructs an XACML request with the attributes found in the RAC and

PAC, and then passes the request and Alice’s KUP to the XACML Policy Decision Point

(PDP). The PDP evaluates the “decrypt” operation in Alice’s KUP, and determines whether

the decryption proxy should use Alice’s private key in the current environment.

Assuming that Alice’s KUP allows the operation, then the message is decrypted with

Alice’s long-term private key, and re-encrypted with the public key found in Alice’s current

PC. The message is then returned to Alice, where it is displayed in the shutil console

and written to the result file that Alice specified (see Figure 6.2).

At this point, Alice can use her temporary private key and a decryption tool (such as the

one included in the SHEMP package, openssl, etc.) to decrypt the message and recover

the plaintext. This application allows Alice to use her private key for decryption from
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Figure 6.2: Alice successfully decrypts a message.

anywhere in the domain (provided her KUP allows it) without having to transport it. It also

guarantees that the plaintext is only exposed on the repository (possibly in secure hardware)

if Alice’s environment and KUP prevent her from decrypting the message. Finally, this

approach hides the entire SHEMP system from Bob, allowing him to send messages to

Alice just as he would prior to SHEMP being installed in Alice’s domain. The performance

hit for the extra decryption and policy check will be examined in Chapter 7.

Signing We now consider the case where Alice wants to sign a message and give it to

Bob. We begin with the same set of assumptions about Alice: she has an X.509 identity

certificate issued by her local CA, the private key corresponding to the public key in her

certificate is stored in a SHEMP repository, and her certificate is in a place where Bob can

find it, such as a public directory.

If Alice does not already have a PC, she logs on to her repository and generates one
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Figure 6.3: Alice sends a request to the signing proxy.

using the process described in Chapter 5. Alice then uses her temporary private key and a

signing tool (again, such as the one included in the SHEMP package, openssl, etc.) to

sign the message.1

Since Bob will only be able to verify the signature for the lifespan of the Proxy Cer-

tificate (two hours by default), Alice would like to sign the message with her long-term

private key. She begins this process by logging into the repository and contacting the sign-

ing proxy service. The shutil code will prompt Alice for the file containing the message,

the file containing the short-term signature (i.e., the signature calculated with Alice’s tem-

porary private key), and a file to where shutil will place the result. Alice then presses

the “Sign” button to send the message, the short-term signature, and Alice’s current PC to

the repository. The situation is depicted in Figure 6.3.

Upon receipt, the repository first verifies that the message was actually signed with

1Actually, Alice typically calculates the message digest and signs that.
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Figure 6.4: Alice successfully signs a message.

Alice’s short-term private key. If so, then the signing proxy must check to see if Alice’s

KUP allows her to perform the “sign” operation under the current environment. As before,

the repository locates the RAC for itself, the PAC for the platform which Alice is making

the request from (again, identified by the SSL session), and Alice’s KUP. The repository

verifies all of the signatures, constructs an XACML request with the attributes found in the

RAC and PAC, and then passes the request and Alice’s KUP to the XACML PDP. The PDP

evaluates the “sign” operation in Alice’s KUP, and determines whether the signing proxy

should perform the operation.

Assuming that Alice’s KUP allows the operation, the message is re-signed with Alice’s

long-term private key, returned to Alice, displayed in the shutil console, and written to

the result file that Alice specified (see Figure 6.4).2

2In theory, the repository could also timestamp the signature at this point. We will discuss this issue in
detail in Chapter 8.
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Assuming everything was successful, Alice can now give Bob the signature which was

generated by the signing proxy using her long-term private key. When Bob wants to verify

the signature, he uses Alice’s long-term public key, just as he would. Bob can now verify

the signature even after Alice’s PC has expired, and he is not required to know anything

about SHEMP whatsoever. Alice can now generate signatures from anywhere in the do-

main (provided that her KUP allows it), and she does not have to worry about transporting

her private key. The performance impacts of this approach will be considered in Chapter 7.

6.1.1 Alternate Designs

We considered two alternative designs which we thought would be useful, but they force

Bob to become “SHEMP-aware.” Concretely, the implication is that Bob would have to

rewrite or extend his applications in order to communicate with any SHEMP-user (e.g.,

Alice in our previous examples). This level of cost to the relying parties would stifle the

adoption of SHEMP, as organizations would have to rewrite applications to either parse

Proxy Certificates or adhere to a SHEMP-specific message format. Nevertheless, these are

potentially useful applications and are worth mentioning, even though we did not imple-

ment them.

Closeout Certificates The first alternate design we present involves changing the signing

proxy. As before, we begin with the assumption that Alice has (or gets) a Proxy Certificate,

and that she wants to sign a message for Bob.

Alice begins by signing the message with her temporary private key, constructing a

request for the signing proxy, and sending it. As before, the signing proxy service will

perform the policy check by gathering the necessary certificates, verifying their signatures,

and asking the PDP if the signing operation is allowed under the current environment.

However, the signing proxy does not actually sign the message with Alice’s long-term
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private key. Instead, it calculates a hash of the short-term signature, timestamps the hash,

and Alice simply gives Bob the short-term signature. When Alice’s PC expires or is de-

stroyed, the signing proxy issues a closeout certificate, which contains the same public key

as Alice’s PC as well as the all of the hashes and their timestamps that were generated with

the corresponding private key.3

Now, when Bob wants to verify Alice’s signature, either Alice currently has the PC

which contains the public key corresponding to the private key she used to generate the

message, or the signing proxy has issued a closeout certificate for that public key which

contains all of the timestamped hashes Alice generated with the corresponding private key.

In the former case, Bob can trivially verify the message. In the latter case, Bob finds the

closeout certificate which contains the digest of the message he is trying to verify, and uses

the public key contained in the closeout certificate to verify the message.

The implication of implementing this approach is that Bob now has to do a more com-

plicated search to find the certificate which holds the public key to verify Alice’s signature.

The timestamps are a help, but require some level of clock synchronization, which is often

difficult in practice. Furthermore, any application which Bob uses to verify signatures has

to be extended or rewritten to perform the new algorithm.

User-specified Requirements Another alternate approach involves changing the

SHEMP message structure altogether so that parties can add requirements which specify

how the message should be viewed.

For one example, Bob may want to encrypt a message for Alice, and specify that parts

of the message should only be viewed under certain conditions. Concretely, this can be

accomplished by allowing Bob to add restrictions to Alice’s KUP in real time. This way,

the policy check on the repository takes Bob’s wishes into account as well as Alice’s.

3These hashes are likely contained in a Merkle tree or some similar data structure.
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<message>
<!-- Ciphertext to be decrypted when Alice has a TPM -->
<messagePart>

<data>UlWWaZPmzf6J0Y+F/. . .jcpuq+Dx24tzQkKEz5A<data>
<attributes>

<attribute>HasTPM=true</attribute>
</attributes>

</messagePart>

<!-- To be decrypted when Alice is behind a firewall -->
<messagePart>

<data>Ld4Kt9ZxI9IkHmPmY. . .xIyhiReXYGPuvWrm8EFR<data>
<attributes>

<attribute>BehindFirewall=true</attribute>
</attributes>

</messagePart>
</message>

Figure 6.5: An example encryption message format.

Another example could involve Alice including the attributes from her RAC and PAC in

her signature. This allows Bob to examine the conditions under which the signature was

generated, and assuming he knows what Alice’s security attributes mean, he can decide for

himself whether he believes the signature.

Figure 6.5 shows a SHEMP encryption message format in XML. The format allows

Bob to specify what attributes should be added to Alice’s KUP in order for her to decrypt

certain parts of his message. The message in Figure 6.5 specifies that Alice’s decryption

proxy should only decrypt the top portion of the message only if Alice is using a platform

equipped with a TPM (e.g., Bear/Enforcer), and the bottom portion only if Alice is behind

a firewall.

Figure 6.6 depicts a SHEMP signing message format in XML. The attributes included

in the message are the attributes included in the RAC and PAC. They tell Bob about the

environment under which the signature was generated. In the example of Figure 6.6, both

platforms are equipped with TPMs and are behind the firewall.
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<message>
<!-- The signature -->
<data>KlO/wod+mqfy3t0/7. . .vmp6yn8mOhkR2HswBUWW<data>

<!-- Repository attributes -->
<attributes>

<subjectDN>CN=77:6e:. . . ,L=L,ST=ST,C=C</subjectDN>
<issuerDN>CN=RepAdmin1, . . . ,ST=PA,C=PA</issuerDN>
<attribute>HasTPM=true</attribute>
<attribute>BehindFirewall=true</attribute>

</attributes>

<!-- Platform attributes -->
<attributes>

<subjectDN>CN=90:ed:. . . ,L=L,ST=ST,C=C</subjectDN>
<issuerDN>CN=PlatAdmin1, . . . ,ST=PA,C=PA</issuerDN>
<attribute>HasTPM=true</attribute>
<attribute>BehindFirewall=true</attribute>

</attributes>
</message>

Figure 6.6: An example signing message format.

Clearly, the design goal of keeping Bob unaware of SHEMP breaks down in this case. In

fact, not only must Bob be aware of SHEMP, he must be aware of the specific instantiation

of SHEMP which Alice is using—i.e., he must know Alice’s domain’s policy. As before,

Bob’s applications must be updated to understand the new message format, as well as

configured to understand the security policies of Alice’s domain (and any other domains

Bob deals with). Some of the implementation burden can be eased by standardizing the

message format (possibly via defining a SHEMP MIME type), but significantly raises the

barrier for SHEMP adoption. Thus, we did not implement it.
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6.2 Grid Application Designs

In addition to the applications we implemented (the encryption and signing proxies), we

re-designed three applications which are currently used in the Grid community to take

advantage of SHEMP. In this section, we give an overview to illustrate uses of SHEMP

beyond the PKI primitives of authentication, decryption, and signing. We will revisit these

applications in Chapter 7, as they form the basis of a user study we conducted to measure

the usability of the SHEMP policy framework.

The three applications all rely on PCs for authentication and authorization. GSSKLOG

uses PCs to obtain tokens for the Andrew Filesystem (AFS), GridFTP uses a PC to control

access to an FTP server, and GridSQL uses PCs to restrict which SQL operations can be

performed.

GSSKLOG The GSSKLOG application is used by Grid installations (such as Dart-

mouth’s Green Grid) to allow users to obtain AFS tokens. Our design uses SHEMP to

give the GSSKLOG application more information about the requester. The application es-

sentially constructs a policy very similar to Alice’s KUP which protects a resource, in this

case, the AFS token. The policy can then specify what attributes the client must possess in

order to obtain a token, and may further restrict the permission level of the token based on

the requester’s environment.

For example, assume that Alice is an AFS administrator and requests a token which

grants her administrative privileges. The GSSKLOG application may construct a policy

which allows Alice to obtain an administrative token from her own desktop, but not from

anywhere else. Similarly, the application may wish to restrict token privilege levels based

on whether the requester is behind a firewall, on a public terminal, using secure hardware,

etc.
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GridFTP The GridFTP application currently supports the use of Proxy Certificates for

authentication. We extended the system to use the SHEMP system, specifically, the envi-

ronmental information found in the requester’s PC (as above). This information allows the

GridFTP application’s policy to be more fine-grained and restrict access to specific FTP

operations (e.g., get and put) depending on the requester’s environment.

Another potentially interesting use of SHEMP would involve the GridFTP application

restricting access to parts of the FTP server’s filesystem based on environmental informa-

tion. Concretely, this could be achieved by having the GridFTP application construct a

policy (again, similar to Alice’s KUP) which protects subdirectories in the filesystem tree.

For example, the policy may specify that certain parts of the system may only be visible to

clients who are inside the firewall. Other examples consist of the GridFTP application not

making non-anonymized medical data available to clients coming from public terminals,

or disallowing the put operation from being performed from public terminals.

GridSQL The last application in this category is a MySQL database which uses PCs

for authentication. In the Grid middleware arena, there is much discussion of wanting to

restrict access to database information. In our design, SHEMP could be used to restrict

subsets of data and/or operations (e.g., the DELETE operation) to parties operating within

specific parameters. For example, a database of medical information way wish to disal-

low the JOIN operation for any client which is not on a “HIPAA compliant” machine, as

the operation could likely link fields such as name or other identifying information and

diagnosis.
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6.3 The Bigger Picture

In addition to the PKI primitives and specific Grid applications discussed in the previous

sections, we can envision broader application areas that might benefit from SHEMP. Instead

of just enhancing a particular service or application, we explore uses of SHEMP which

enhance a suite of related applications or an entire application area.

Computational Grids By far, the largest use of the X.509 Proxy Certificate approach

is the Grid community [132]. In fact, the X.509 Proxy Certificate standards [126] were

drafted by members of this community, and the major Grid toolkit (i.e., Globus [32]) in-

cludes Proxy Certificate support. The key repository and Proxy Certificate paradigms are

well accepted in the Grid context, and developing such systems are an active area of re-

search within that community.

Many applications in the Grid community could benefit from SHEMP. The price for

adoption is relatively low since the community is used to MyProxy and PCs, and SHEMP

adheres to many of the Grid community’s programming norms. The benefits of using

SHEMP are high: utilization of secure hardware, the inclusion of environmental attributes

in the PC, and uses of PCs for decryption and signing.

Mobile Clients Another interesting application area for SHEMP is one in which Alice

has a number of different machines (sometimes called a constellation) which all have a

need to use the key, but vary in levels of security. For example, it is not uncommon for a

user to own a desktop (possibly equipped with secure hardware), a PDA, and a Web enabled

cell phone. Since all of these devices belong to Alice, she should be able to use her key

from all of these devices. Alice’s KUP could limit the temporary key to performing only

certain operations (e.g., encryption) on certain devices.

In this area of power constrained devices, schemes such as SWATT [113] enable a form
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of attestation which can be used to identify a platform. SHEMP’s flexibility regarding au-

thentication and attestation mechanisms allows it to be extended to new attestation schemes

as they become available.

Multi-Level Security and Workflow Much of the security thought in the Orange Book

era involved Multi-Level Security (MLS). Details can be found in the Orange Book [90],

but the general idea is to allow different classes of users to access different sets of informa-

tion. For example, if Alice possesses a “Secret” security clearance, then she should not be

allowed to view information labeled as “Top Secret”, as this information exceeds her clear-

ance level. The term “MLS” is used to describe a system which allows multiple access

classes and enforces access policies.4

While the MLS paradigm is not widely employed in practice, a new breed of applica-

tions (often called workflow applications [38, 111]) are implementing some of the MLS

techniques at the application layer. Such applications often define different business units

(or specific roles) as the access classes, and then use a markup language (e.g., XML) to

label portions of a document. For example, Alice may work in development, Bob in hu-

man resources, and Charlie may be the CEO. Charlie may send a company wide memo

which contains payroll information. Since Alice has no need to know this information,

Alice’s email application should refuse to display that portion of the memo. However, it

may be relevant to Bob, and he is “cleared” to see such information, so his email client

should display it. As another example, assume that the three parties are jointly working

on a spreadsheet. Certain rows and columns should not be accessible to certain parties,

depending on the relevance to their department.

SHEMP provides a foundation on which to build such applications. Specifically, since

SHEMP PCs contain the user’s current environment (i.e., the attributes), applications can

4Much of the theoretical foundation can be found in the seminal work of Bell and LaPadula [5].
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use environmental attributes in addition to authentication or role information to make ac-

cess control decisions. The Grid applications of the previous section (i.e., GSSKLOG,

GridFTP, and GridSQL) illustrate scenarios where applications make decisions based on

this environmental information. The SHEMP policy framework allows applications to have

very fine-grained access control policies, to the point of restricting access to programming

constructs such as functions, objects, and data structures. Returning to the spreadsheet sce-

nario outline above, if the application were built using SHEMP, then the application could

not only hide access to certain rows or columns based on who is viewing them, but also

where they are viewing it from. For example, no one may see salary information from a

public terminal.

6.4 Chapter Summary

The last chapters explored the SHEMP system in detail. We began by introducing the

tools used to build SHEMP: MyProxy and Proxy Certificates, Secure Hardware, and the

XACML policy language. In Chapter 5, we covered the SHEMP design from a concep-

tual perspective. We introduced the special SHEMP parties: the Repository and Platform

Administrators, as well as the system-level components such as the repository, CA, and

client platform. We also explored the system from a specification and implementation

level, demonstrating how to set SHEMP up and use it. Finally, in this chapter, we covered

a range of applications, starting with ones we implemented (the proxies), and ending in

ones where we think SHEMP could have something to offer. In the next chapter, we give

an analysis of SHEMP, and illustrate how it meets the criteria of Chapter 3.
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Chapter 7

Evaluating SHEMP

The goal of SHEMP is to make standard desktops usable PKI clients. To meet this goal,

SHEMP must first be a practical system which does not require the entire desktop OS to be

re-engineered and/or rewritten. As we demonstrated in the last chapter, SHEMP satisfies

this practicality requirement: it is a real system that runs as an application on a standard

desktop. Furthermore, we expanded on this practicality requirement by showing how we

used SHEMP to construct real-world applications (the decryption and signing proxies) and

by discussing how we could use SHEMP to build numerous other applications.

While practicality is a necessary property of a successful solution to the desktop PKI

problem, it is not sufficient. In addition to showing that SHEMP is practical and can be

used to build real applications, we need to show that SHEMP offers security, mobility, and

flexibility—and that the complexity of these features do not overwhelm users (end users as

well as administrators and application developers). Most importantly, we need to show that

SHEMP can allow relying parties to make reasonable trust judgements.

In Chapter 3, we established criteria that define the notion of what it means for a desktop

to be usable as a PKI client. We argue that any solution which claims to be usable as a PKI

client should not only be practical, but also do the following:
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1. minimize the risk and impact of key disclosure,

2. allow for client mobility,

3. be usable to application developers and users, and

4. enable relying parties to make reasonable trust judgments.

We claim that the SHEMP system as described in Chapter 5 meets all of these criteria,

and thus makes desktops usable PKI clients. In this chapter, we offer support for this claim

by using analysis and experiments to show how SHEMP meets the first three criteria. In

Chapter 8, we illustrate how SHEMP meets the last criterion through the use of formal

methods.

Chapter Outline We begin this chapter by analyzing how well SHEMP reduces the risk

and impact of private key disclosure in Section 7.1. In Section 7.2, we show how SHEMP

gives clients mobility without sacrificing security. Section 7.3 addresses SHEMP’s usabil-

ity by presenting the results of a SHEMP usability study and performance tests. Finally,

Section 7.4 summarizes and concludes the chapter.

7.1 Minimizing the Risk and Impact of Key Disclosure

In Chapter 3, we defined the notion of security as minimizing the risk, impact, and oppor-

tunity for misuse of a user’s private key. This definition is a critical component of making

desktops usable PKI clients.

In Chapter 2, we demonstrated how desktops fail to meet this definition of security.

Because of a large Trusted Computing Base (TCB), executing just one piece of code with

a victim’s privileges can lead to a private key disclosure. In the modern computing land-

scape, there is a significant risk of an attacker executing code on a victim’s desktop—such
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vulnerabilities are published daily on mailing lists such as BugTraq [112]. The presence of

this risk makes it impossible for Bob, upon receiving a request claiming to be from Alice,

to know if she is really aware of and intended the request. There is a good chance that

someone other than Alice has access to her private key, which makes it impossible for Bob

to make reasonable trust judgements about Alice, thus leaving desktops unusable as PKI

clients.

We claim that SHEMP meets this definition of security and makes desktops secure.

SHEMP reduces the risk of private key disclosure by using a number of methods to shrink

the TCB. SHEMP reduces the impact of key disclosure and opportunity for misuse by

allowing the TCB size to vary in time.

Since security is impossible to quantify, we offer a security analysis of SHEMP to back

our claim. While such an analysis is not as strong as empirical evidence or formal proof, it

is commonplace within the secure systems space for two reasons:

• Empirical studies to measure system security typically involve a “penetrate and

patch” methodology, where systems are given to “ethical hackers” in order to lo-

cate vulnerabilities. Such a methodology cannot show that a system is secure (i.e.,

has no vulnerabilities), only that vulnerabilities exist.

• Formal proofs often prove that a model of the system is correct—not the actual sys-

tem itself. If the model fails to capture any feature or state of the actual system, then

proving that the model is correct does not naturally imply a proving the actual system

is correct.

As a result, the secure systems community often relies on analysis (possibly in combi-

nation with other techniques) when reasoning about the level of security in a system. We

do the same when reasoning about SHEMP’s security.
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Risk Analysis The security community at large has adopted the risk analysis model for

evaluating and designing security. Security architects typically begin by auditing their

environment, defining critical components, and assessing the likelihood and consequences

of compromise given a specific threat model. They can then allocate resources in such

a way as to protect high-risk components first. SHEMP was designed with this mode of

thinking in mind.

Before we offer a security analysis of SHEMP, we state an important assumption which

holds throughout our analysis: the level of security in SHEMP (or any system) cannot be

measured with a single bit. It is not the goal of our analysis to conclude some meaningless

statement such as “SHEMP is secure.” Rather, our analysis aims to illustrate how SHEMP

can be used to increase security in a wide range of environments with possibly different

threat models. We will show how SHEMP creates a framework which makes it possible

to build a secure PKI environment (i.e., one which minimizes the risk and impact of key

disclosure) under an array of threat models.

7.1.1 Minimizing Risk

SHEMP decreases the risk of private key disclosure in a number of ways. First, SHEMP

removes users’ keys from the desktop and places them in a credential repository which is

administered by a professional. Placing keys in a repository shrinks the TCB. The TCB

is expanded to cover the desktop only when needed, and only for a short period of time.

Second, by using secure hardware when available, SHEMP can reduce the TCB size even

further. Finally, the SHEMP policy mechanism includes environmental information (i.e.,

repository and platform attributes) in each user’s Proxy Certificate (PC), which allows re-

lying parties to decide for themselves whether they should trust the request. Furthermore,

user and application policies give entities a way to control the TCB based on the user’s
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security context.

Getting Keys Off of the Desktop As we explained in Chapter 2, modern desktops have

a large TCB which makes them susceptible to attacks such as keyjacking. SHEMP reduces

risk of key disclosure by taking private keys off of the end user desktops machines (or

devices such as USB tokens) and placing them in a SHEMP credential repository.

Since the TCB is a finite set of software and (possibly hardware) components, we can

represent TCBs with set notation as the set TCB. We consider the TCB of the current

client-side approach to be the union of the TCBs of all of the n client desktops in the

domain. We denote this total TCB as Ttotal, where:

Ttotal =
n
⋃

i=1

TCBi .

If any one of the n desktops in Alice’s domain have the keyjacking malware installed,

then anyone who uses that desktop will have their keys stolen or misused. Solutions which

encourage mobility (i.e., allowing users to store their private keys on USB dongles) actually

make matters worse, as a compromised machine is likely to service a number of users. In

this case, all of the users of the compromised machine could have their key stolen or mis-

used. If we assume that c of the desktops are infected with keyjacking malware, then Alice

has a c/n chance of having her key stolen or misused. If the desktops are all roughly the

same in terms of OS and software, and an attacker can compromise one of them, then it is

likely that c can approach n very quickly (e.g., if the keyjacking malware were propagated

by a worm or virus), leaving it almost certain that Alice will be keyjacked.

Under the SHEMP approach, there is only one machine which houses users’ private
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keys: the key repository.1 Centralization shrinks the total TCB from the n desktops to just

one key repository when no one is using the system. When Alice needs to use her key,

she requests that the repository extend the TCB to cover her machine for the duration of

her session. Concretely, this is accomplished by the repository signing a short-lived Proxy

Certificate for a temporary key on Alice’s current desktop. The SHEMP TCB at some time

t is the repository’s TCB plus the TCB of whatever clients are involved in active sessions

(i.e., have valid PCs) at time t. If we let p(t) be the number of valid PCs at time t, we can

denote SHEMP’s total TCB at time t as Tshemp(t), where:

Tshemp(t) = (TCBrep) ∪





p(t)
⋃

i=1

TCBi



 .

Assume that organization S uses SHEMP, and that organization O does not. Addition-

ally, assume that they have the same number of machines (denoted n), and that one machine

is serving as S’s key repository (leaving S with n− 1 clients, i.e., p(t) ≤ n− 1). The TCB

at S is never greater than the TCB at O, i.e., ∀t : |Tshemp(t)| ≤ |Ttotal| because:
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To see why this statement is true, assume that every user in S has a valid PC at some

time t. In this case p(t) = n − 1, which yields the same size TCB as O. The implication is

that if any client desktop does not have a valid PC, then the SHEMP approach shrinks the

TCB.
1Actually, the SHEMP design allows for a number of repositories, but we envision a small number of

repositories in relation to clients.
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From Alice’s perspective, the risk of compromise is not noticeably different, however.

If we let c of S’s machines be compromised, then Alice still has c/n chance of using a

compromised machine. However, the impact of using a key is reduced, as the attacker can

only keyjack a temporary keypair for a short period of time (this issue will be discussed

in detail in Section 7.1.2). As discussed in Chapter 2, the status quo allows an attacker to

keyjack Alice’s real private key for an indefinite period of time.

From a risk analysis viewpoint, all of the desktops are critical resources in the status

quo. If an attacker gets the keyjacking malware installed on any desktop in the domain,

he is likely to get the private keys on that desktop. From the organization’s perspective,

resources must be allocated in such a way that treats all of the desktops as equals. Given

a fixed amount of resources, this allocation scheme gives fewer resources to all of the

desktops. Such strategies prevent expensive secure hardware (such as the IBM 4758) from

being installed on all of the clients.

Under SHEMP, the private keys are stored in one place: the repository. An attacker has

a higher reward for a successful attack on the repository, but a lower reward for successful

attacks on the client desktops. From the organization’s perspective, this consolidation is

useful; it allows the organization to allocate resources where they matter most—at the

repository. Instead of spending a little on many machines, the organization can spend more

on a few critical machines. This approach allows the organization to get economies of scale

by using secure hardware at the repository.

SHEMP also minimizes the risk of private key disclosure by placing all of the private

keys under the control of a trusted entity: the Repository Administrator. The Repository

Administrator will likely be closely related to the organizational unit which issues certifi-

cates (i.e., the Certificate Authority). A specialist is more likely to protect the private keys

than an individual user is. Additionally, users can lose devices such as USB dongles. Thus,

letting a specialist care for the private keys decreases the risk of private key disclosure.
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Using Secure Hardware As we have discussed throughout this thesis, secure hardware

can potentially shrink the TCB. Highly secure devices such as the IBM 4758 can provide a

separate security domain from their host. As discussed in Chapter 4, secure platforms such

as our Bear/Enforcer platform can provide some level of protection, and cost significantly

less than an IBM 4758. SHEMP can reduce the TCB (and hence, the risk of private key

disclosure) further by taking advantage of secure hardware, when and where available.

Since the keys reside in a central location, we envision that the repository will utilize

some form of secure hardware. Ideally, the repository application should be running in

secure hardware, and the private keys should be stored inside. The organization’s threat

model should dictate the level of secure hardware that they adopt. For maximum secu-

rity, the repository should run in a device such as the IBM 4758, and the clients should

minimally use something like Bear/Enforcer.

In terms of the TCB equations, the use of secure hardware makes the value of the

TCB variable smaller. We denote a TCB with secure hardware as TCBshw, and define the

relationship between hardened and non-hardened TCBs as TCBshw < TCB. Revisiting

the TCB of our organization using SHEMP (S), if we assume that all of the nodes use

secure hardware and that the number of PCs are equivalent at time t, we get:
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The implication is that the use of secure hardware allows organizations with SHEMP

to shrink the TCB even further, thus further decreasing the risk of private key disclosure.

Policy and the TCB Finally, SHEMP also minimizes the risk of key disclosure through

the use of the environmental attributes (found in the Repository Attribute Certificate and
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Platform Attribute Certificate) and Key Usage Policies (KUPs) found in each Proxy Cer-

tificate’s PCI extension. SHEMP mandates that all of this information be included.

Our approach gives useful security information to relying parties, allowing them to

adjust their trust in the client based on the environment. Relying parties are thus aware

when a client generates a temporary key under conditions which are likely to result in

key disclosure, and have the possibility to limit the key’s use. The usability of the policy

statements in the context of building applications will be examined in a usability study

described in Section 7.3.

Moreover, the use of policy information can shrink the TCB even further. As we have

discussed, Alice’s KUP may limit the machines that she can use to perform key operations.

We denote the number of machines that Alice can operate from as the number m. We can

denote the total TCB from Alice’s perspective as TA where:

TA = (TCBrep) ∪

(

m
⋃

i=1

TCBi

)

.

In order for Alice to consider a particular machine in her calculation, her KUP must al-

low her to operate from that machine. If Alice’s KUP restricts her from using any machine,

then the TCB shrinks from Alice’s perspective as |TA| ≤ |Ttotal|. To see why this is true,

note that the expansion of the statement |TA| ≤ |Ttotal| yields the following:
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Recall that m is the number of machines that Alice may operate from, and that n is

the total number of machines in the organization. Additionally, recall that there are n − 1
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desktops, resulting in the relationship m ≤ n − 1. If Alice’s KUP restricts her from using

any machine in the organization, then m < n − 1 and |TA| < |Ttotal|.

It is worth noting that SHEMP’s use of policy not only shrinks the TCB when com-

pared to the current client-side approach, but also shrinks the TCB when compared to the

MyProxy system. We consider the total MyProxy TCB from Alice’s perspective to be union

of the repository’s TCB and all of the n− 1 desktops (recall that there are n machines, and

one of them is serving as the repository, which results in n − 1 desktops). We denote this

TCB TMA, where:

TMA = TCBrep ∪

(

n−1
⋃

i=1

TCBi

)

.

The relationship between Alice’s view of the TCB under SHEMP and Alice’s view of

the TCB under MyProxy is |TA| ≤ |TMA|:
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In the case where Alice’s KUP does not limit her from using any machines, we get

m = n − 1, and the total TCBs are the same. However, if Alice’s KUP restricts her at

all, then m < n − 1 which shrinks the total TCB under SHEMP. Furthermore, if any of

Alice’s client machines use secure hardware, then the SHEMP TCB will be smaller than

the MyProxy TCB.
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7.1.2 Minimizing Impacts

In addition to minimizing the risk of a private key disclosure, SHEMP minimizes the impact

of such a disclosure in the event that it does occur. First, a successful keyjacking-style

attack only gives the attacker access to a temporary keypair, and only for a limited period of

time. Second, SHEMP reduces the impact of a disclosure to the organization by simplifying

and shrinking the size of Certificate Revocation Lists (CRLs). Finally, SHEMP makes

forensics easier by consolidating (and possibly protecting) the audit trail.

Closing the Window SHEMP minimizes the impact of private key disclosure at the client

by only allowing the temporary key to be used for a short time. In Chapter 2, we showed

that key disclosure is disastrous within the current client-side infrastructure. In many cases,

an attacker is able to obtain the private key himself, or use it to perform arbitrary operations

for an indefinite period of time. Under SHEMP, the key issued on the client’s desktop is

valid for a number of hours (our prototype defaults to two hours). This small time window

limits the opportunity for a successful attacker to use the victim’s key.

The set of operations that an attacker can perform with a stolen key is possibly further

limited by the victim’s KUP. A successful attacker may not have access to the encryption or

signing proxies (or other resources in the domain) depending on how the victim has set her

KUP. Therefore, a restrictive KUP can also limit the impacts of a private key disclosure.

If Alice fails to log off of the SHEMP repository and destroy her temporary private key,

then it may persist on the client machine after the Proxy Certificate has expired. In the

event that an attacker successfully compromises a machine in such a state, he may be able

to wield Alice’s (expired) temporary key. If the attacker accesses information on the client

which was encrypted with the corresponding public key (Alice’s KUP would have had to

allow her to decrypt from the client machine), then he can decrypt that information. The

attacker cannot generate signatures or use Alice’s long-term private key on the repository,
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as the decryption and signing proxies would notice that Proxy Certificate is expired.

Revocation SHEMP minimizes the impact to the organization in the case of a key com-

promise. In many status quo PKIs, compromised keys are revoked by placing their certifi-

cate into a CRL or an Online Certificate Status Protocol (OCSP) server. Keeping CRLs

up to date and distributing them are non-trivial problems in the PKI space, and make for

interesting research problems in themselves (e.g., [16, 41, 56, 68, 82]).

Since only the SHEMP repository can use Alice’s private key, SHEMP can effec-

tively revoke a user’s keypair by changing the authentication information at the reposi-

tory. Changing Alice’s authentication information (e.g., changing her password) results

in Alice (or anyone with Alice’s login information) being unable to log on to the repos-

itory and make requests to use her private key. This approach greatly reduces the size

of CRLs, and thus reduces the amount of work for the organization’s administrative staff.

Such approaches are often given as advantages to the credential repository approach (e.g,

MyProxy [64, 88] and SEM [10, 17]).

The Audit Trail Finally, SHEMP minimizes the impact of a private key compromise by

consolidating the audit trail used for gathering forensic information. Since all accesses to

use Alice’s private key (either to generate a PC or to perform some operation) are received

by the SHEMP repository, there exists a central log of Alice’s private key activity on the

repository. In the event that Alice’s key is compromised, investigators need only look in

one place for information.

Furthermore, since the SHEMP repository software can run inside of secure hardware,

SHEMP can secure the logs themselves by keeping them inside of the hardware. The

logs could be cryptographically protected to prevent tamper or viewing by unauthorized

individuals. In the event of a key compromise, the organization would not only have a
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central location for the logs, but can protect them against modification (possibly by the

attacker).

7.1.3 Keyjacking Revisited

We continue our security analysis of the SHEMP system by offering a concrete example

which illustrates the differences between the current client-side infrastructure, MyProxy,

and SHEMP. As our example, we will revisit the keyjacking attack of Chapter 2, and ex-

plain how the different approaches effect the risk and impacts of a private key disclosure.

Threat Model Suppose that a malicious party named “Kevin the Keyjacker” would like

to steal Alice’s private key, and then use it to generate signatures. Recall from Chapter 2

that, in order to get Alice’s private key, Kevin has to first get a small executable to run on

Alice’s machine with her privileges. Furthermore, assume that Kevin is in some remote

location, that is, he does not have physical access to Alice’s machine. Our assumptions

about Kevin essentially define the threat model for this example: a remote attacker who

can run arbitrary code on Alice’s machines with her privileges.

As we have shown, the current client-side infrastructure cannot protect Alice’s key

given this threat model. MyProxy is somewhat of an improvement, as it gets the private

key off of the client desktops. However, without taking advantage of secure hardware on the

client, and without a method for describing Alice’s current environment, MyProxy cannot

adjust to handle stronger threat models (e.g., one where the attacker has physical access to

the client). SHEMP as we described in Chapter 5 can prevent this attack (discussed below),

and through the use of secure hardware and its policy language, can compensate for a range

of threat models. This ability to compensate for a range of threat models gives SHEMP an

advantage over the status quo and MyProxy.
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Risk of Private Key Disclosure Once Kevin has gotten his code to execute (e.g., possibly

by causing a buffer overflow) on Alice’s machine, he can get access to her private key and

use it to generate signatures. To Kevin, every machine in Alice’s domain has roughly

the same chance to lead to a successful attack. Kevin need not target critical servers or

infrastructure, attacking any standard desktop will likely result in gaining access to some

user’s private key (he may get Bob’s key instead of Alice’s, but he has accessed a user’s

private key nonetheless).

Comparing MyProxy to the current client-side infrastructure is not an entirely fair com-

parison, as MyProxy is not a general-purpose PKI solution, but an authentication and au-

thorization system (i.e., MyProxy does not allow users to sign or decrypt messages with

their Proxy Certificate). In order to give Alice access to all of her private key operations,

the MyProxy repository would have to export Alice’s private key to her machine when

she makes a request (such operations are permitted in MyProxy). Using this approach,

MyProxy still offers an advantage over the current client-side infrastructure, as Alice’s pri-

vate key resides on her desktop for only a short period of time. During that time, however,

Alice is susceptible to a keyjacking attack from Kevin.

Kevin’s strategy will likely change if Alice uses MyProxy. While Kevin can compro-

mise a desktop, he may now have to wait for some time before he can steal a key (i.e., until

Alice logs in to MyProxy and migrates her private key to the desktop). Furthermore, unless

he steals her key outright or Alice forgets to log out, he has a limited window where he

can use her key. If Kevin steals Alice’s password, then he can use her key from anywhere.

To Kevin, attacking the MyProxy repository has the highest payout, as he could access to

every user’s key in the organization. Even if the keys are stored a very secure device at the

repository (e.g., an IBM 4758 [64]), Kevin can use the keys at will by inserting his malware

into the MyProxy repository application itself. Since the hardened MyProxy approach does

not place the application in secure hardware, it is susceptible to attack.
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Under SHEMP, it is possible for Alice’s organization to configure the system in such

a way as to minimize the risk of key disclosure even further. Assume that Alice’s organi-

zation runs one SHEMP repository inside of a very secure device such as the IBM 4758.

In contrast to the hardened MyProxy approach mentioned above, assume that the entire

SHEMP application is running inside of the device. Furthermore, assume that the client

desktops are running on Bear/Enforcer platforms.2

Now assume that Alice has obtained a temporary keypair and Proxy Certificate on her

client. In this configuration, and assuming that the Platform Administrator has configured

the Bear/Enforcer platforms appropriately, Kevin’s keyjacking malware will violate the

victim application’s integrity policy and cause Enforcer to halt the system. Kevin can thus

deny service to Alice, but he cannot obtain her private key—not even her temporary one—

by attacking her desktop.

As with MyProxy, Kevin’s optimal strategy is to access the repository. However, since

we are assuming that the current SHEMP configuration places the repository application

and keys inside of an IBM 4758, Kevin is unable to get his malware into the applica-

tion, thus preventing him from accessing the private keys. If we assume a stronger threat

model where Kevin has physical access to the SHEMP repository, his tampering with the

IBM 4758 would cause it to destroy the private keys, denying service to the entire popula-

tion, but still refusing to disclose private keys. If we were to assume a weaker threat model

(e.g., where the repository runs on a Bear/Enforcer platform), then Kevin can install his

malware if he can obtain root privileges on the repository or physically extract secrets from

the TPM.

In summary, SHEMP reduces the risks of private key disclosure. The amount of risk

reduction depends on the SHEMP configuration and the amount of resources an organiza-

tion allocates to SHEMP. While it is possible to harden every machine in the domain with

2Our prototype uses Bear/Enforcer platforms for the repository and clients.
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an IBM 4758, such a solution would be costly. However, the SHEMP system can take

advantage of configurations involving just a few highly secure devices to provide a secure

environment.

Impacts of Key Disclosure Under the current client-side infrastructure, if Kevin is suc-

cessful, the impacts are devastating. As discussed in Chapter 2, Kevin can possibly obtain a

copy of Alice’s key to use at will. Minimally, he can wield Alice’s key indefinitely without

her knowledge. In order to fully recover from such an event, Alice needs a new keypair.

A key disclosure also burdens Alice’s organization. Minimally, the certificate describ-

ing Alice’s compromised keypair needs to be revoked by placing an entry for that certificate

in the latest CRL. Furthermore, if Alice’s key disclosure is important enough to investigate

(e.g., perhaps she signs electronic payroll documents), then the organization needs to search

through logs on multiple machines in order to reconstruct the attack timeline and discover

what actually happened.

If Alice is using MyProxy and her key is stolen from her desktop, then she needs a new

keypair, as before. The organization would still need to revoke her old certificate, but in-

vestigators would likely narrow their search for forensic evidence to a specific time interval

and desktop on which Alice used her private key. If Alice just had a temporary keypair

and Proxy Certificate on her desktop, then Kevin would just have a few hours to imper-

sonate Alice. In this scenario, he can only use Alice’s key for authentication (MyProxy

does not let Alice use her private key for decryption or signing) and no certificates need to

be revoked. If Kevin captures Alice’s repository login information, then he can access her

private key at will. However, assuming that Kevin does not export her key to his machine,

the organization can effectively stop Kevin from further access by simply changing Alice’s

login information.

If Alice and her organization are using SHEMP, then her real private key can never be
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stolen by a successful keyjacking attack on the desktop. A successful attack possibly gives

Kevin access to Alice’s temporary keypair (unless the client desktop is configured to halt

the system, as described above). In this scenario, Kevin can use the key for a short period

of time. Furthermore, depending on Alice’s desktop, Kevin may only be able to use the

key for a limited set of operations. Ideally, weaker desktops should have more restrictive

policies, meaning that successfully attacking a weak client should have a lower payoff for

the attacker.

The worst case scenario is where Kevin gets Alice’s repository login information. If the

organization is using passwords (as our prototype does), then it can change passwords at

the repository, and effectively block Kevin from further accessing Alice’s key. If the orga-

nization has configured SHEMP to use a stronger authentication method such as biometrics

or a two-factor scheme, then Kevin may have a harder time getting Alice’s authenticator.

In any event, if Kevin gets Alice’s temporary keypair, the organization does not need

to issue Alice a new keypair, and thus does not need to revoke her certificate. Kevin has a

small window of opportunity for key misuse, at best (again, assuming that SHEMP does not

halt the client). Even if Kevin is successful in getting Alice’s repository login information,

the organization still does not need to issue a new keypair to Alice; it can simply change

Alice’s login information. This eliminates the need for revocation once again. In the event

that Alice’s organization would like to investigate Alice’s key disclosure, it has a centralized

record of every access to Alice’s private key at the key repository. If the repository is

running in secure hardware (such as in our example scenario) then the logs will be protected

by secure hardware as well, keeping them safe from tampering.

In any of the scenarios, if Kevin compromises the Certificate Authority’s (CA) private

key, the organization will essentially have to rebuild the PKI from scratch. All of the user

keys will need to be reissued, and all of the user certificates (and any other certificates

signed by the CA) will have to be revoked.
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However, SHEMP introduces two new parties which insulate users from system com-

plexity: the Repository and Platform Administrators. Since these parties are trusted

throughout the domain, they make attractive targets. If Kevin were to compromise one

of these private keys, then the certificates signed by that key will have to be revoked. The

result is that the platform and repository identity and attribute certificates would have to be

reissued. The KUPs can be left alone, however, as they are signed by the CA and effectively

consider the Repository and Platform Administrators as roles.

7.1.4 Attacking SHEMP

We conclude our security analysis of SHEMP by offering a strategy of how we would

attack SHEMP. In this analysis, we hope to illuminate the pressure points in the SHEMP

design and define areas for future improvements. This analysis does not claim to cover

every possible avenue of attack on the SHEMP system; certainly, someone will think of an

approach we missed.

The Client The first avenue for attacking SHEMP involves the client. Perhaps the most

obvious attack involves an attacker installing a keystroke logger on a low-security client

machine. If the target organization is using passwords for user authentication (as our pro-

totype does), then an attacker will be able to capture Alice’s username and password as she

logs on to the repository. With this information, the attacker can then move to high-security

machines which are possibly less restricted by Alice’s KUP, and essentially use Alice’s key

at will. While there are numerous approaches to make the task of installing a keystroke

logger more difficult for the attacker, the only real solution to this problem is to harden

clients in such a way that users have a trusted path to the SHEMP client software.

The second attack comes from an attacker spoofing the SHEMP client software, and

presenting this spoofed version to users. When Alice presents her authentication informa-
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tion to the spoofed client, the attacker can store a copy for himself. A client platform which

enforces an integrity policy can prevent this type of attack. An example of such a platform

includes a client running Bear/Enforcer. If the integrity policy is configured to cover the

SHEMP client software, then the platform can detect when the attacker installs a spoofed

version.

A third attack consists of an attacker keyjacking the temporary private key from the

client machine. This scenario is covered in detail in Section 7.1.3. An additional risk under

this scenario comes about in the case where Alice does not properly log off of the repository

and destroy her temporary private key. A successful keyjacker can use the private key to

decrypt messages, even if the corresponding Proxy Certificate has expired. As with the

previous attacks, this scenario can be mitigated by using secure hardware on the client to

store the key.

The final client attack that we discuss involves an attacker spoofing a high-security

client machine. If the target platform is a low-security or untrusted platform, then the end

effect is that Alice may trust a low-security machine to perform high security operations.

This attack, coupled with one of the previously mentioned client attacks, can lead to a

temporary key and/or authentication credential compromise. As we discussed in Chapter 5,

the best line of defense against this attack is to identify platforms with the least spoofable

identifier available.

The Repository Another class of SHEMP attacks involve the key repository. Since the

repository houses the private keys for the entire population, it is likely to be a target for

attackers. While some of the client attacks could be profitable, the repository is susceptible

to wholesale compromises as well.

The first attack we discuss is the scenario where an attacker attempts to compromise all

of the users’ private keys. The attack could potentially be performed remotely by accessing
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the machine and copying the keystore. Our recommendation is to place the repository and

the keys in a secure device, thus preventing remote compromise. However, an attacker with

physical access may still be able to compromise the private keys, depending on the security

level of the device. The best defense is to store the private keys and application in a device

which can withstand local physical attacks, such as an IBM 4758.

The second repository attack consists of an attacker denying service to the keys stored

in the repository. The most straightforward method for accomplishing this is to make nu-

merous connection attempts to the repository. The more difficult and more disastrous de-

nial of service attack involves the attacker physically tampering with the device (e.g., the

IBM 4758) in an effort to trigger the tamper detection mechanism and force the device to

destroy its secrets. This would destroy the private keys for the entire population. Defending

against the remote denial of service scenario consists of throttling network traffic upstream,

perhaps at the router. Placing the repository in an access controlled physical location can

mitigate the risk of the second scenario.

Similar to the client-side attack mentioned above, an attacker that can convince a user

that a low-security repository is really a high-security one could replace or modify the

repository software in such a way that could lead to users’ authentication information being

captured. The best defense against this threat is to use the least spoofable identifier possible,

possibly relying on secure hardware to authenticate the machine to clients.

Other Entities In addition to attacking the repository and client platforms, attackers may

also target the most important keys in the organization: the CA’s private key, the Platform

Administrator’s private key, and the Repository Administrator’s private key.

An attacker with the CA’s private key can issue and revoke any certificate belonging

to the domain. This is a standard concern for PKI designers, and thus the CA’s private

key is often placed in a secure device of some sort. SHEMP introduces two new targets:
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the administrators. If an attacker were to obtain either of these keys, the results would be

disastrous. The attacker would be able to add false repositories and/or client platforms to

the domain. This would make the task of collecting users’ authentication information easy.

To protect the administrators’ keys, an organization should treat them with the same level

of importance as the CA’s private key, possibly protecting them with secure hardware of

some sort.

7.2 Mobility

In Chapter 3, we established that a successful solution to the desktop PKI problem must

allow users to migrate throughout the domain. As user populations become more mobile

and begin to use multiple devices, a PKI must allow users to migrate across machines.

Moreover, migration must not occur at the expense of security.

In Chapter 2, we discussed how the current client-side infrastructure fails to give users

mobility. Currently, users must export their private key, transport it to their destination, and

then import their keys at the destination. The intermediate format is often susceptible to

attack and users must have exportable keys, meaning that users get mobility at the expense

of security [35].

We claim that SHEMP gives users mobility without sacrificing security. We support this

claim by analysis and demonstration using the SHEMP prototype. In our prototype testbed,

we have three client desktops which are assigned a different set of security attributes. The

desktops represent low-, medium-, and high-security machines. We are able to access our

private key from each one, subject to the restrictions in our KUP.

The mobility of SHEMP stems from the fact that it is based on the MyProxy design.

The use of the credential repository approach allows SHEMP users to access their keys

from anywhere, provided that they can access the key repository. MyProxy’s mobility is
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what led us to use it as a foundation for the SHEMP design in the first place. In all fairness,

we can claim that SHEMP is as mobile as MyProxy.

One area where SHEMP excels, however, is in the security properties which are main-

tained during migration. Again, the current client-side infrastructure makes migration risky

by using unsafe transport formats, and by forcing users to have exportable keys. The use of

a secure transport format such as Sacred [102, 103, 104] could provide some benefits, but it

is not necessarily a part of what we consider the current client-side infrastructure. MyProxy

is an improvement in that private keys typically stay on the repository, and only Proxy Cer-

tificates are given to the user. However, MyProxy does not consider Alice’s environment

when deciding whether or not to allow Alice to use her private key. As long as Alice—or

anyone else—can provide the correct authentication information to the repository, it will

allow her to access her key.

SHEMP takes the MyProxy approach a step further by actually checking the security

properties of the current environment, and then consulting Alice’s KUP to see if it should

grant the request. Concretely, the SHEMP repository uses the platform authentication step

to identify the requesting platform. As discussed in Chapter 5, the repository gives the at-

tributes contained in the Platform and Repository Attribute Certificates along with Alice’s

KUP to a Policy Decision Point (PDP) for evaluation. If the PDP returns “Permit”, then

the request is granted. SHEMP’s use of environmental information in making its access

decision gives users the same amount of mobility as the MyProxy approach, while simul-

taneously providing extra security. Thus, SHEMP meets the mobility requirement of the

criteria outlined in Chapter 3.
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7.3 Usability

So far, we have shown how SHEMP achieves security and mobility, and as with most sys-

tems which try to provide security, the mechanisms which make SHEMP secure can also

make it hard to use. One way that SHEMP achieves security and flexibility is through the

use of policy. In order to meet the third criterion of Chapter 3 and show that SHEMP is

usable to application developers and administrators, we need to show that developers and

administrators can understand and construct valid policies to solve real security problems—

i.e., the policy mechanism must be a valid medium for developers and users to express their

mental models. Furthermore, we need to show that the computational overhead introduced

by SHEMP’s policy mechanism and use of extra keypairs does not make the system unus-

able from an end user’s perspective.

7.3.1 User Study

To see whether the policy mechanisms were usable, we conducted a user study consisting

of eight participants. While our sample size is small, it is highly representative of the types

of people who would be tasked with constructing SHEMP policies.

Our user study outlined some real application designs taken from Dartmouth’s Grid

community (discussed in Chapter 6). Once the applications were designed, we gave the

designs to subjects who would likely fill the roles of the Repository Administrator, the

Platform Administrator, and the CA. We were interested in evaluating whether the parties

could generate a meaningful set of policies which represent a given mental model, how

many tries it took them, and their feedback regarding the difficulty of their task. The results

indicate that the SHEMP policy mechanisms are usable, but a good policy construction tool

is essential.
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The Study Upon agreeing to participate in the user study, users were given a copy of

the toolkit used to construct policies and a set of instructions for unpacking the toolkit and

taking the test. The instructions best describe the parameters of the study, and are included

below.

Introduction
============

This research project is being conducted by a graduate student (John
Marchesini) as part of a Ph.D. dissertation. The purpose of this
experiment is to study the usability of the SHEMP system’s policy
language and policy building tools from a system administrator’s
perspective.

Your participation is voluntary and involves:

1) Installing a stand-alone Java test environment which contains the
toolkit (or setting up an appointment to use my toolkit),

2) Using the toolkit to generate a SHEMP policy for three hypothetical
applications, and

3) Completing the survey in this document.

Your information will be collected and maintained confidentially. No
identifying information will be used in any presentation or paper
written about this project.

Feel free to contact me at:

Office : 063 Sudikoff Laboratory
Phone : 603.646.9179
email : carlo@cs.dartmouth.edu

Installing the tools
====================

The first step in this experiment involves installing the toolkit.
You will need to be using a machine with the Linux operating system.
If you do not have access to such a machine (or you do not feel like
installing software), you can contact me and we can set up an
appointment for you to take the test on one of my machines. Obtain a
copy of the toolkit (policy.tar.gz) from me and unpack it:

tar xzvf policy.tar.gz

This will create a directory named ’policy’ which has the following
contents:
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INSTRUCTIONS This document.

lib/ Libraries directory.

requests/ Directory containing XACML requests which I
will use to test your policies.

src/ Directory containing Java source code for
all of the tools used in this experiment.

testftp A script I will use to test the GridFTP
application policy.

testklog A script I will use to test the GSSKLOG
application policy.

testsql A script I will use to test the GridSQL
application policy.

tools/ A directory containing scripts that you will
use to build policies for the three
applications.

Generating Policies
===================

From www.gridcomputing.com:

"Computational Grids enable the sharing, selection, and aggregation of
a wide variety of geographically distributed computational resources
(such as supercomputers, compute clusters, storage systems, data
sources, instruments, people) and presents them as a single, unified
resource for solving large-scale compute and data intensive computing
applications (e.g, molecular modeling for drug design, brain activity
analysis, and high energy physics). This idea is analogous to electric
power network (grid) where power generators are distributed, but the
users are able to access electric power without bothering about the
source of energy and its location."

For the duration of this experiment, assume that you are an
administrator working for Dartmouth’s Grid installation (Green Grid).
Specifically, you are in charge of administering three Grid
applications: GSSKLOG, GridFTP, and GridSQL. Dartmouth’s Green Grid
uses the SHEMP security infrastructure to protect Grid-accessible
resources. Your primary task today is to construct SHEMP security
policies for the three applications under your jurisdiction using the
tools in the tools/ directory.

Dartmouth has settled on the following set of attributes which may be
assigned to all Dartmouth machines:
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1) BelongsToDartmouth
2) LastPatchDate
3) BehindFirewall
4) PublicTerminal
5) OSType
6) IsLaptop

Any number of these attributes may be assigned to any machine in the
Dartmouth domain. The meaning of the attributes should be
straightforward, but the values warrant clarification. Some of the
attributes may be set to either "true" or "false", and others have
other values such as "windows", "linux", or "mac". The following
table summarizes possible values for the attributes in the experiment:

Attribute Name Possible Values
------------------ -----------------
BelongsToDartmouth true false
LastPatchDate DD/MM/YYYY
BehindFirewall true false
PublicTerminal true false
OSType windows linux mac
IsLaptop true false

The person that assigns attributes to machines is the Platform
Administrator, and is known as the "PlatformAdmin." Your policies
should only trust attributes issued by the PlatformAdmin.

Each SHEMP-enabled application has a set of operations which should be
governed by the policy (specifics are given below). The operation is
allowed to execute if and only if all of the conditions are met, where
conditions are (attribute, value) pairs. As the policy builder, your
task includes assigning zero or more conditions to the operations.
(Assigning zero conditions to an operation will allow the operation to
always execute.)

In order to test your policy, I will construct a request to execute
some specific operation in an application. That request will contain
a set of (attribute, value) pairs assigned by the PlatformAdmin which
will describe a hypothetical client platform. The request and your
policy will then be given to a Policy Decision Point, which will
determine whether or not your policy allows the operation to execute.

Dartmouth has decided on the following policies for the applications:

Application Name: GSSKLOG
-------------------------

Operation 0 : getToken
Conditions : The client machine belongs to Dartmouth
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Application Name: GridFTP
-------------------------

Operation 0 : get
Conditions : always allow

Operation 1 : put
Conditions : The client machine belongs to Dartmouth

The client machine is not a public terminal

Application Name: GridSQL
-------------------------

Operation 0 : SELECT
Conditions : always allow

Operation 1 : INSERT
Conditions : The client machine belongs to Dartmouth

The client machine is behind a firewall

Operation 2 : DELETE
Conditions : The client machine belongs to Dartmouth

The client machine is behind a firewall
The client machine is not a public terminal

Operation 3 : CREATE
Conditions : The client machine belongs to Dartmouth

The client machine is behind a firewall
The client machine is not a public terminal
The client machine runs the linux OS

To begin the experiment, cd into the tools/ directory and execute the
interactive self-explanatory scripts build_klog, build_ftp, and
build_sql. The scripts will output three xml files (klog.xml,
ftp.xml, and sql.xml, respectively). These files contain the
generated policy for the applications. Feel free to look at these,
but please do not edit them. You will need to get these files to me
for testing. If you make a mistake, you can retake the test by simply
reexecuting the script. Your previous policy will be overwritten.

Once users unpacked the toolkit, they began to take the test by executing the appropriate

scripts, as indicated in the instructions. The scripts call our Java-based XACML policy

generator with the appropriate arguments, and users were then guided through the necessary

steps to build policies. A screenshot of the policy generator is shown in Figure 7.1.
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After the user has finished constructing the policy with the generation tool, the tool

outputs the XACML policy (see Figure 7.2). Once we received all of the user-generated

policies, we constructed XACML requests (see Figure 7.3), and gave the requests and

policies to an XACML Policy Decision Point (PDP) for evaluation. The PDP decides

whether the policy allows the requested action to occur, given the current environment as

expressed in the request. Using this technique, we were able to score the test subjects on

their ability to construct a policy which matches the model presented in the instructions.

Results Subjects were tasked to construct policies governing a total of seven opera-

tions: one operation for GSSKLOG, two operations for GridFTP, and four operations for

GridSQL. Although some of the operations had more attributes to consider than others,

we decided to tally scores based on the output of the entire operation. If a subject set any

or the attributes incorrectly, whether there was one or four attributes for the operation, then

the answer was considered wrong. This approach best represents the real world: if any of

the attributes are set incorrectly, then Alice may be able to perform an operation she should

not be able to.

The overall results were positive. Half of the subjects built perfect policies, and of

the remaining half, no one missed more than one operation. Furthermore, every mistake

that was made resulted from a typographical error, such as a misspelled word or failure to

respect case sensitivity. These results suggest that a policy generation tool which does not

allow users to make such mistakes (possibly by doing input validation or presenting users

with a graphical menu of options to choose from) would yield better results.

Once users had completed the test, they were asked to complete and return the a small

survey (included below). The goals of the survey were to see if there was a correlation be-

tween an administrator’s experience and their score and get some feedback on the usability

of our tool.
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Figure 7.1: Our XACML policy generator.
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Figure 7.2: An XACML policy.
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Figure 7.3: An XACML resource request.
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The Survey
==========

Once you have successfully generated policies and sent them to me,
please take a moment to fill out the following survey. When you have
finished, please send me your answers.

1) Name :

2) Email address :

3) How many machines do you currently administer? :

4) What is the largest number of machines you have administered at one
time? :

5) Have you ever administered an application for multiple users (e.g.,
an Apache web server, MySQL database, etc)? (If not, please skip to
Question #12.) :

6) Did you install the application(s)? :

7) Did you configure the application(s)? :

8) Did you set the application’s security settings? :

9) Was building a SHEMP security policy easier or harder than your
previous experiences with other applications? :

10) What features of the SHEMP toolkit made it easier or harder? :

11) What was lacking from the SHEMP toolkit that made it easier or
harder? :

12) Was there anything particularly confusing about the toolkit? :

13) If you answered yes to Question #12, please elaborate. :

14) What feature(s) would you add to the toolkit, if you could? :

15) Do you think any current features are unnecessary? :

16) If you answered yes to Question #15, which ones and why? :

17) How many times did you run the build_klog application? :

18) How many times did you run the build_ftp application? :

19) How many times did you run the build_sql application? :

152



Compiling the survey data led to a few interesting discoveries. First, there was an

inverse correlation between the number of machines under the subject’s control and the

number of mistakes the subject made. The subjects who administered the most machines

made the fewest mistakes. Second, of the subjects who had configured other application

security policies, all but one of them said SHEMP was easier to configure. The one who

said it was harder recommended using a GUI, and giving a users a way to go back. Many

thought that the structure of the tool was helpful; they liked the question and answer tone

rather than having a random access configuration file to edit. Third, no one reported any-

thing particularly confusing about SHEMP, and everyone mentioned in one way or another

that they would like a GUI with the potential to go back to the previous set of options.

Finally, the subjects learned to use the tool rather quickly: no one reported running any of

the scripts more than three times.

Analysis While our toolkit for testing purposes was a set of standalone applications, it is

precisely representative of the logic found in our SHEMP prototype. The SHEMP reposi-

tory (and the decryption and signing proxies running on the repository) constructs a well-

formed XACML request with every private key request (i.e., Proxy Certificate generation,

and message decryption and signing). The request contains the attributes from the verified

Platform and Repository Attribute Certificates in the Environment tag of the request

(see Figure 7.3), and the policy is Alice’s KUP. The PDP is embedded in the repository,

thus allowing requests to be made internally.

Applications can also use this approach to protect their resources. In the example ap-

plications described in the user study, these application resources are operations, such as

the GridFTP’s get and put operations. However, applications could also use the policy

to protect critical data (such as a private key) or other abstractions, such as parts of the

GridFTP server’s filesystem.
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In summary, the user study suggests that the SHEMP policy mechanisms allow admin-

istrators and application developers to construct policies which match a given mental model

of the system. The study also suggests that good tools can improve usability even further.

A good GUI with easy navigability would further hide the complexity of using XACML,

and improve the odds that policy builders construct accurate policies.

7.3.2 Performance Analysis

In order to show that the overhead introduced by SHEMP does not make the system unus-

able to end users, we instrumented the SHEMP prototype so that it would accurately report

performance measurements. Performance is not the most interesting aspect of SHEMP, but

since a third party is contacted for all private key operations, we expected a slowdown and

wanted some quantification. If SHEMP keeps users waiting for long periods of time to

perform key operations, then users are likely to find faster solutions, even at the expense of

security.

Once we instrumented the code, we used our prototype testbed to measure the over-

head of Proxy Certificate generation and the decryption and signing proxies. As a base-

line, we compared SHEMP to a simple Java application which we call the SHEMP

CryptoAccessory. The CryptoAccessory performs the standard cryptographic

operations using a locally-stored keypair, and without third-party involvement. This base-

line tool performs the suite of public key cryptographic operations (encryption, decryption,

signing, and verification), and is included in the SHEMP toolkit.

The Testbed As discussed in Chapter 5, our testbed consists of four machines, two run-

ning the Bear/Enforcer platform, one running a Redhat Linux distribution, and the other

running Debian. For our performance tests, we only used three of the four machines, and

placed them in different network configurations to capture the effect of network delay in
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our test. While this makes our results look worse, it is a more accurate picture of how

SHEMP performs in real environments.

For the first configuration, we put the SHEMP client and the repository on the same

machine, thus eliminating network delay altogether. In the second configuration, we placed

the client and repository on the same Ethernet segment, so as to simulate a Local Area

Network. For the final configuration, we put the client and repository on different networks

by putting the client on our campus-wide wireless network.

Results Once our testbed was configured properly, and set to report timing measure-

ments, we began a series of experiments. We measured the slowdown for the three opera-

tions (Generate Proxy Certificate, Decrypt, and Sign) on the three network configurations

(Local, Same Segment, Different Network). We calculated each of the nine data points

by taking an average of ten runs with our CryptoAccessory and SHEMP, and then

calculating the slowdown introduced by the SHEMP overhead.

We first calculated a baseline by using our CryptoAccessory to perform ten runs

of each operation in each configuration. The operations consisted of generating an RSA

keypair, using it to decrypt a message, and then using it to sign a message. We then ran ten

of the SHEMP versions of the operations, and used our SHEMP client to do the following:

• generate an RSA keypair, and then ask the repository to sign a Proxy Certificate

which contains the newly generated public key;

• ask the decryption proxy to decrypt a message which was encrypted with our long-

term public key and re-encrypt it with our temporary public key, and we then de-

crypted the message with our temporary private key;

• sign a message with our temporary private key, and then ask the signing proxy to

verify the signature and sign the message with our long-term private key.
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Operation Local Same Segment Different Network Average

Gen. PC 3.69% 1.94% 4.33% 3.32%
Decrypt 54.95% 42.64% 54.42% 50.67%

Sign 40.22% 49.04% 57.51% 48.92%

Table 7.1: Slowdown of SHEMP compared to local private key operations.

Note that all of the SHEMP operations also perform a policy check on the repository.

The repository (and decryption and signing proxies) locate all of the appropriate policies

and attribute certificates, verify their signatures, and pass the information to the PDP for

evaluation. Further details of these operations can be found in Chapter 6. The results of

our experiment are given in Table 7.1.

Analysis The column labelled “Average” is an average over the results of the different

configurations. The results indicate that only 3.32% of the time spent generating a Proxy

Certificate is used by SHEMP. This extra time that SHEMP introduces is used to transport

the unsigned Proxy Certificate over the network, verify the current environment’s attribute

certificates, perform a policy check against Alice’s KUP, sign the Proxy Certificate, and re-

turn the signed PC to Alice. The other 96.68% of the time is spent generating the temporary

keypair on the client.

The performance results for the proxies is less impressive, indicating that roughly half

of the time spent performing the operation is introduced by SHEMP. In these cases, SHEMP

uses the time to transport the messages over the network, perform a policy check, perform

a public key operation (either to verify the message or to encrypt the message with Alice’s

temporary public key), and perform a private key operation (either to sign a message with

Alice’s long-term private key or decrypt a message which was encrypted with her long-term

public key). From a user’s perspective, using SHEMP doubles the time it takes to perform

a private key operation.
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However, this is not as bad as it appears. First, the extra time needed for SHEMP may

not be noticeable to humans. For example, over the average of the ten decryption operations

performed in the “Different Network” configuration, SHEMP takes the time of the opera-

tion from 222.3 milliseconds to 487.8 milliseconds. It is likely that human perception can

not detect the slowdown. If the network is lagging, then the time of the operation is likely to

grow even more, but then any application using the network will feel a loss of performance

as well. Second, it is possible to reduce the overhead by using cryptographic accelera-

tion hardware. Our prototype repository used the default Java cryptographic provider to

perform the operations. If we run the repository in an IBM 4758, we could exploit the

cryptographic acceleration subsystem to improve performance.

Our performance analysis indicates that the overhead introduced by SHEMP does not

make the system unusable. While the performance hit is statistically significant, it can be

improved via specialized hardware, and users are unlikely to notice the slowdown anyway.

7.4 Chapter Summary

In this chapter, we have shown how SHEMP meets the first three criteria of Chapter 3.

We showed how SHEMP enhances security by shrinking the TCB, and by allowing orga-

nizations to configure SHEMP to meet their threat model. We offered an analysis of how

SHEMP reduces the risk and impacts of a private key disclosure, and how SHEMP can

prevent keyjacking-style attacks.

Using SHEMP allows an organization to adjust for the threat model which it deems

relevant. Additionally, SHEMP reduces the risk of key disclosure by taking advantage of

secure hardware on the clients, and by disallowing the key from ever leaving the reposi-

tory. If SHEMP is configured in such a way that allows a user’s temporary keypair to be

disclosed, then the attacker can use the key for a short period of time and for a possibly
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limited set of operations. The organization rarely needs to revoke certificates, and has a

centralized and possibly protected set of logs if it decides to conduct an investigation.

We then illustrated how SHEMP gives users mobility without decreasing security. Fi-

nally, we presented the results of two studies we conducted which show that SHEMP is

usable from the perspective of administrators, application developers, and end users.

As mentioned in Chapter 3, all of the above properties are necessary, but if the system

cannot enable relying parties to make reasonable trust judgments, then SHEMP does not

work. To clarify, we are not only concerned with issues regarding UI development or the

standard concerns of the Human-Computer Interaction Security community. Rather, we

must show that SHEMP allows relying parties to conclude what they ought to conclude,

and disallow them from concluding things they should not. Thus, the ability to enable

such trust judgments should be viewed as a correctness condition for SHEMP. Since this is

the most important part of showing that SHEMP makes desktops usable for PKI, we have

devoted the entire next chapter to discussing it.
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Chapter 8

Making Trust Judgements

PKI systems are often complex distributed systems that are responsible for giving users

enough information to make reasonable trust judgments about one another. Since the cur-

rencies of PKI are trust and certificates, users who make trust decisions (often called relying

parties) must do so using only some initial trust beliefs about the PKI and some pile of cer-

tificates (and/or other assertions) they received from the PKI.

While there are a number of metrics we can use to reason about PKIs—such as their

usability, efficiency, or expressivity—one measure stands out as the most important: cor-

rectness. We say a PKI is correct if it allows Alice to conclude about Bob what she should,

and disallows her from concluding things she should not. If a relying party Alice is given a

pile of certificates about Bob from a PKI, can she make reasonable trust judgments about

Bob? Does she have any reason to believe that Bob is who he says he is? Does Bob really

have the private key matching the public key in his certificate? Does Bob have the proper-

ties and attributes that his certificate(s) claims he does? Can Alice make the types of trust

judgments she wants to?

In order to design systems which allow relying parties to answer such questions and

make reasonable trust judgments, PKI designers need tools which can accurately evaluate
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the correctness of their designs and clearly illustrate what types of trust judgments their

systems enable. Since such decisions are complex and the cost of a mistake is high (i.e.,

Alice might trust Bob when she should not), the tools best suited to the job are formal

methods. The literature contains a number of approaches for applying formal methods to

the PKI problem (e.g., [42, 58, 61, 76, 116]). The modeling work of Ueli Maurer [76]

stands out, as it is simple and flexible.

We wish to stress that we are concerned with a superset of the problems found in

Trust Management (TM) systems, such as KeyNote [7, 8], PolicyMaker [65, 66], and

SDSI/SPKI [22]. TM systems are primarily concerned with allowing an relying party

(called an authorizer in the TM context) to answer a the proof-of-compliance question:

“Do Alice’s credentials allow her to access my resource?” TM systems are primarily con-

cerned with distributed authorization, and as we will discuss in Section 8.3, our approach

is applicable to a wide range of systems and applications.

As discussed throughout this thesis, we are primarily concerned with designing, build-

ing, and deploying systems that allow relying parties to make reasonable trust judgments.

We have applied Maurer’s calculus to model some of the systems we have seen in the wild

as well as systems we have built in our lab. The real world is messy; repeatedly, we find

that the calculus cannot model some of the concepts we see in practice.

• Usually, what matters about a public key is not some innate “authenticity” of it, but

whether the keyholder has the properties to which the certificate attests. A calculus

needs to address this.

• Certificates carry more than names; they carry extensions, use policies, attributes,

etc. Some types of certificates (e.g., X.509 Attribute Certificates [30]) bind a key to a

set of properties, and other types (e.g., SDSI/SPKI [22]) do not require names at all.

In many real-world PKI applications, a globally unique name is not even the relevant
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parameter [19, 21]. A calculus needs to address this.

• Certificates and beliefs expire and/or get revoked. Some systems use short certifi-

cate lifespans as a security advantage (e.g., SHEMP via short-lived Proxy Certifi-

cates [126, 133]). Systems which use multiple certificates to describe an entity can

have lifespan mismatches. For example, an Attribute Certificate that contains the

courses Alice is enrolled in this term may expire well before her Identity Certificate.

A calculus needs to address this.

• Some systems allow users to delegate some or all of their authority to other users.

For example, the Greenpass [34] system uses delegation to give guests access to the

campus-wide wireless network. Another example involves our department delegat-

ing authority to a third party to process graduate school applications online. (Letter-

writers cannot easily determine the validity of this delegation from server-side SSL.)

As a final example, SHEMP relies on delegation to expand the size of the TCB, as

needed. A calculus needs to address this.

• Some systems use a combination of multiple certificate types. SHEMP, as well as the

Grid community’s MyProxy [88] system, uses X.509 certificates in conjunction with

short-lived Proxy Certificates [126, 133] for authentication and dynamic delegation.

Greenpass uses an X.509 certificate in conjunction with a SDSI/SPKI certificate to

express delegation. A calculus needs to address this.

• Many federated PKI systems (such as the Federal Bridge Certification Authority and

the Higher Education Bridge Certification Authority) involve multiple entities issu-

ing multiple statements about the trustworthiness of multiple users. The result is that

relying parties may have multiple, possibly conflicting, statements about an entity. A

calculus needs to address this.
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Rather than start with a calculus and attempt to make all of the PKIs we see fit into the

calculus, we start with the things we have seen, and rework Maurer’s calculus to allow us

to reason about all of them. Ultimately, our new calculus will provide a tool for evaluating

how well SHEMP allows relying parties to make reasonable trust judgements.

Chapter Outline We begin by reviewing Maurer’s calculus in Section 8.1. Then, we

extend the calculus in Section 8.2 in order to make it usable for evaluating real-world

PKIs. Section 8.3 uses the extended calculus to reason about a number of real-world PKI

scenarios. In Section 8.4, we apply the extended calculus to SHEMP in order to show that

SHEMP meets the last criterion in Chapter 3—i.e., SHEMP allows relying parties to make

reasonable trust judgments. Finally, Section 8.5 summarizes and concludes this chapter.

8.1 Maurer’s Calculus

In 1996, Ueli Maurer published a paper entitled “Modelling a Public-Key Infrastruc-

ture” [76] which presented two methods of modeling a PKI: one using a deterministic

model and the other using a probabilistic one. We are only interested in his deterministic

model (outlined in Section 3 of his paper), and our calculus is based on the deterministic

model. Maurer’s probabilistic model assigns confidence values to statements and allows a

relying party to deduce the likelihood that a particular statement is true. The probabilistic

model assumes that there is some function for assigning probabilities to statements in such

a way that the probabilities match the user’s beliefs. With our emphasis on creating a model

which is suited for the real world, we dismissed this approach on the grounds that such a

probability assigning function would be nearly impossible to create. As with Maurer’s de-

terministic model, our model can be viewed as a probabiltistic one with probabilities set to

zero and one.
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This section gives a brief overview of Maurer’s deterministic model and demonstrates

how the model is used by working two examples. All of the information in this section

(including the examples) can be found in Section 3 of Maurer’s paper.

8.1.1 Maurer’s Deterministic Model

According to Maurer, in any PKI, a relying party Alice can use a certificate issued by

Certification Authority (CA) X for a user Bob if and only if the following conditions are

met:

1. Alice knows the public key for X and believes that it is authentic.

2. Alice trusts X to be honest and to correctly authenticate the owner of a public key

before signing it.

Informally, for Alice to trust any certificates issued by X , she must have a copy of X’s

public key, believe that it really does belong to X , and she must believe that X’s certificate

issuance policies are sufficient.

Maurer’s deterministic model is a special type of logic (i.e., a calculus) which can be

used to model a PKI and determine whether Alice can deduce the above two conditions.

The calculus contains four types of propositions (called statements in this context) and two

inference rules for deriving statements from sets of statements. The axioms are sets of

statements which Alice believes to be true, and the initial set of Alice’s axioms is called

Alice’s initial view. Alice can use her initial view and the inference rules to derive new

statements, and these new statements along with Alice’s initial view are defined as Alice’s

derived view. Maurer defines a valid statement as one that is contained in Alice’s derived

view (i.e., it is derivable from her initial view), and defines an invalid statement as one

which cannot be derived from Alice’s initial view.
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Maurer introduces two concepts which we found unnatural, and thus worth clarifying.

First is the concept of a recommendation, which is Maurer’s instrument for transferring trust

in a PKI. Recommendations are similar to certificates, except that they grant the power to is-

sue certificates and/or further recommendations, and may contain private information. For

example, if entity X has issued a recommendation to entity Y , then X is stating that it be-

lieves Y is trustworthy enough to issue certificates and further recommendations. Second,

Maurer uses a trust level parameter to limit the length of certificate chains. For instance, if

Alice trusts X at level 3, then she will accept certificate chains with a maximum length of

3. If Alice trusts X at level 1, then she only trusts X to issue certificates directly to users

(i.e., certificate chains of length 1).

In addition to the calculus, Maurer also presents a graphical notation which is useful for

representing a PKI. The graphical notation coincides with the statement definition, so that

once a given PKI is represented with the graphical notation, it is easy to determine which

statements can be made about the PKI.

Maurer’s deterministic model is made up of the following two definitions:

Definition 1. Statements are one of the following forms:

• Authenticity of public keys. AutA,X denotes Alice’s belief that a particular public key

PX is authentic (i.e., belongs to entity X) and is represented graphically as an edge

from A to X: A X .

• Trust. TrustA,X,1 denotes Alice’s belief that a particular entity X is trustworthy for

issuing certificates. Similarly, her belief that X is trustworthy for issuing recommen-

dations of level i − 1 is denoted by TrustA,X,i.

The symbol is a dashed edge from A to X labeled with i: A
i

X .
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• Certificates. CertX,Y denotes the fact that Alice holds a certificate for Y ’s public

key (allegedly) issued and signed by entity X . The symbol is an edge from X to Y :

X Y .

• Recommendations. RecX,Y,i denotes the fact that Alice holds a recommendation of

level i for entity Y (allegedly) issued and signed by entity X .

The symbol is a dashed edge from X to Y labeled with i: X
i

Y .

Alice’s initial view, denoted ViewA, is a set of statements. In order for Alice to use Bob’s

certificate, she must be able to derive the statement AutA,B , meaning that Alice believes the

public key contained in Bob’s certificate (i.e., PB) actually belongs to Bob.

Definition 2. A statement is valid if and only if it is either contained in ViewA or if it can

be derived from ViewA by applications of the following two inference rules:

∀X,Y : AutA,X , TrustA,X,1, CertX,Y ` AutA,Y (1)

∀X,Y, i ≥ 1 : AutA,X , TrustA,X,i+1, RecX,Y,i ` TrustA,Y,i (2)

For a finite set S of statements, S denotes the closure of S under applications of the

inference rules (1) and (2), i.e., the set of statements derivable from S. Alice’s derived

view is the set ViewA of statements derivable from her initial view ViewA. A statement s is

valid if and only if s ∈ ViewA, and invalid otherwise.

Maurer’s model assumes that trust and recommendations of level i imply trust and

recommendations of lower levels, i.e.,

∀X,Y, 1 ≤ k < i : TrustA,X,i ` TrustA,X,k (3)

and

∀X,Y, 1 ≤ k < i : RecX,Y,i ` RecX,Y,k (4)
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Figure 8.1: A simple PKI.

8.1.2 Examples

Working through some simple examples will make the definitions concrete and demonstrate

how they work together to solve a problem. The examples come from Section 3 in Maurer’s

paper (there are two additional examples in Maurer’s paper).

Example 1. Consider the PKI depicted in Figure 8.1. The figure indicates that Alice (A)

believes her copy of X’s public key is authentic (depicted by the solid edge from A to

X). She trusts X and Y to issue certificates (the dashed edges), and her view contains two

certificates: one from X to Y , and one from Y to B. In order for Alice to be able to use

Bob’s (B) certificate, she needs to derive the statement AutA,B . Alice’s initial view is the

following set of statements:

V iewA = {AutA,X , T rustA,X,1, T rustA,Y,1, CertX,Y , CertY,B}

and the statement AutA,B can be derived by two applications of rule (1):

AutA,X , T rustA,X,1, CertX,Y ` AutA,Y

AutA,Y , T rustA,Y,1, CertY,B ` AutA,B .

Thus, Alice’s derived view is given by:

V iewA = V iewA ∪ {AutA,Y , AutA,B} .

Alice can use Bob’s certificate because she believes that it is authentic, i.e., the state-

ment AutA,B is valid since AutA,B ∈ V iewA .
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Figure 8.2: Another simple PKI.

Example 2. Now consider the PKI of Figure 8.2. The PKI is similar to that of Figure 8.1,

except that Alice does not trust Y directly. She also trusts X of level 2, meaning that she

trusts X to issue recommendations as well as certificates. As before, in order for Alice

to be able to use Bob’s (B) certificate, she needs to derive the statement AutA,B . In this

scenario, Alice’s initial view is the following set of statements:

V iewA = {AutA,X , T rustA,X,2, RecX,Y,1, CertX,Y , CertY,B} .

Since Alice does not trust Y , she must derive it using rule (2):

AutA,X , T rustA,X,2, RecX,Y,1 ` TrustA,Y,1 .

Once she trusts Y , she can use rule (1) as before to establish the authenticity of Bob’s

certificate:

AutA,X , T rustA,X,1, CertX,Y ` AutA,Y

AutA,Y , T rustA,Y,1, CertY,B ` AutA,B .

Thus, Alice’s derived view is given by:

V iewA = V iewA ∪ {TrustA,Y,1, AutA,Y , AutA,B} .

As before, Alice can use Bob’s certificate because she believes that it is authentic, i.e.,

the statement AutA,B is valid since AutA,B ∈ V iewA .
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8.1.3 Where Maurer’s Model Breaks Down

Maurer’s deterministic model is appealing because it is simple and flexible. However, when

we apply the model to the types of systems we deal with in practice, we discover the limits

of its applicability.

Authenticity Maurer’s “Authenticity of public keys” is the wrong concept. In practice,

we find that a relying party does not care about some innate “authenticity” of a public key.

Rather, a relying party cares about the authenticity of the binding between the public key

and the information in the certificate. If Alice is reasoning about Bob’s certificate, she

wants to determine if the entity holding the corresponding private key (i.e., Bob) is the

same entity described by the information in the certificate. Often times, the portion of the

certificate information that defines the subject’s name is not what Alice cares about. She

may want to determine the authenticity of other certificate information, such as key usage

policies, constraints, or other extensions. Sometimes, the subject’s name is of no interest to

Alice at all; she may only care about the subject’s role or some other attributes expressed

in the certificate. Maurer’s calculus just binds a key to some entity Bob, but to quote Joan

Feigenbaum, Alice must still answer the question “OK, so who is Bob?”.

Time In real-world PKIs, certificates expire, beliefs expire, and certificates get revoked.

Without any concept of time, Maurer’s model makes it impossible for relying parties to

take such events into consideration when making trust decisions.

Delegation Sometimes, Bob would like to give another party the right to claim some

of the attributes in his certificate. For instance, Bob may want to let Charlie claim to be

Bob, so that Charlie can act as Bob. Diane may want to issue a certificate to Frank which

indicates he is one of her teaching assistants. A University CA may want to let the Art
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Department certify Art students. Maurer’s recommendations are not enough.

Verification Maurer claims that certificates and recommendations are allegedly issued

by an entity, and then in a footnote states: “We use the word ’alleged’ because without

verification, there exists no evidence that the certificate was indeed issued by the claimed

entity” [76]. That verification is outside the scope of the calculus. However, verification—

including the various contending approaches to checking revocation and expiration—is an

important and messy part of real world PKI [16, 41, 56, 68, 82]. To illustrate the point,

assume that a relying party Alice has the following initial view:

ViewA = {AutA,X , TrustA,X,1, CertX,Y } .

Now, assume that CertX,Y is invalid for some reason. Perhaps X’s signature cannot be

verified, or the certificate has been revoked or has expired, or the certificate format forbids

the certificate (e.g., it is an X.509 Attribute Certificate that was issued by a party which

is not an Attribute Authority). Under Maurer’s calculus, if Alice applies rule (1), she can

derive the authenticity of Y ’s public key:

AutA,X , TrustA,X,1, CertX,Y ` AutA,Y

and Alice can use the invalid certificate because AutA,Y ∈ ViewA even though she

should not.

8.2 A Model for the Real World

The shortcomings of Maurer’s calculus, together with our desire to build real PKI systems

and our need to reason about our designs, led us to rework Maurer’s calculus so that it

may be applicable to systems such as SHEMP. Our revised model is rooted in Maurer’s
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deterministic model, but extends it in order to deal with the complexity of real-world PKIs.

From a high level, our extensions involve several elements:

1. We generalize Maurer’s Authenticity of public keys to capture the notion of the au-

thenticity of the binding between a public key and the certificate information.

2. We add the concept of time to Maurer’s calculus so that we can model expiration and

revocation.

3. We replace Maurer’s Recommendation with a Trust Transfer which allows an entity

A to give entity B the right to claim some or all of A’s certificate information. This

replacement allows us to remove the non-intuitive trust level parameter from the

calculus, and to explicitly handle the various forms of trust transfer that occur in

real-world PKI.

4. We introduce the notion of validity templates which are used to capture format-

specific definitions of a statement’s validity.

5. We redefine the inference rules to utilize these extensions.

(We also change the notation to use postfix instead of subscripts for the arguments, to

improve readability.)

8.2.1 Our Model

Before we formally define our model, we introduce three concepts used in the model.

We use two concepts to make Maurer’s deterministic model time-aware: lifespan and

activity. The lifespan of a statement s is the time interval from tj to tk on which s can be

used in trust calculations. We denote lifespans as the interval I where I is the time interval
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[tj, tk].1 If at time t, t > tk, we say that s has expired, and is no longer usable in trust

calculations. We say statement s is active at time t if and only if t ∈ I where I is the

lifespan of s. (In theory, we could add two levels of time: the time period during which

the assertion is true, and the time period during which a party may believe and use this

assertion. However, we found that the scenarios we considered, the simpler approach of

one level sufficed.)

We use the concept of a domain to indicate the set of properties that a certificate issuing

entity may assign to its subjects. Intuitively, the domain of an entity is what it is allowed

to vouch for. For example, the Dartmouth College CA can bind names, Dartmouth-specific

attributes, and other extensions to public keys. Thus, the Dartmouth CA’s domain (denoted

as the set D) is the set of names, Dartmouth-specific attributes, and extensions it can bind

to public keys. The Dartmouth CA can not bind Department of Defense (DoD)-specific

attributes to public keys because it is not authorized to vouch for the DoD—i.e., the DoD-

specific attributes are not in D. It is also worth noting that if Alice trusts the Dartmouth

College CA to vouch for domain D, then Alice trusts the CA to vouch for a subset of D.

Additionally, if Alice trusts the CA to vouch for domains D0 and D1, then Alice trusts the

CA to vouch for the union of the domains D0 ∪ D1.

With these three concepts, we can formally define our model with the following two

definitions.

Definition 3. In our model, statements and their representations are one of the following

forms:

• Authenticity of binding. Aut(A,X,P , I) denotes A’s belief that, during the interval

I, entity X (i.e., the entity holding the private key KX) has the properties defined by

the set P .
1Open intervals can also be used, e.g., (tj , tk], (tj , tk), [tj , tk) .
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The symbol is an edge from A to X labeled with P , I: A
P,I

X .

• Trust. Trust(A,X,D, I) denotes A’s belief that, during the interval I, entity X is

trustworthy for issuing certificates and trust transfers over domain D.

The symbol is a dashed edge from A to X labeled D, I: A
D,I

X .

• Certificates. Cert(X,Y,P , I) denotes the fact that X has issued a certificate to Y

which, during the interval I, binds Y ’s public key to the set of properties P .

The symbol is an edge from X to Y labeled with P , I: X
P,I

Y .

• Trust Transfers. Tran(X,Y,P , I) denotes that A holds a trust transfer issued by X

which, during the interval I, binds Y ’s public key to the set of properties P .

The symbol is a dashed edge from X to Y labeled with P , I: X
P,I

Y .

• Certificate Validity Templates. Valid〈A,C, t〉 denotes A’s belief that certificate C

is valid at time t according to the definition of validity appropriate for C’s format.

Minimally, the issuer’s signature over C must be verified and C must be active.

• Transfer Validity Templates. Valid〈A, T, t〉 denotes A’s belief that trust transfer T

is valid at time t according to the definition of validity appropriate for T ’s format.

Minimally, the issuer’s signature over T must be verified and T must be active.

We introduce the notion of templates because different PKI approaches have different

and non-trivial ways of expressing validity of certificates and transfers. For example, va-

lidity for X.509 identity certificates may be determined by expiration dates and the absence

of the certificate on a currently valid Certificate Revocation List (CRL); validity of transfer

in an X.509 identity certificate may be determined by basicConstraints and usage

bits in a certificate held by the source party. (The statements will be discussed in depth in

Section 8.2.2).
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Alice’s initial view is denoted ViewA, as before. Under the model, if Alice wishes to

verify that Bob had some property p at time t, she must be able to derive the statement

Aut(A,B,P , I) where t ∈ I and p ∈ P . In many cases, the evaluation time t is the

current time, meaning that Alice wants to verify that Bob currently has some property p.

It should be noted, however, that the model still functions if the evaluation time t is some

time in the past or the future. Such scenarios will be examined more closely in Section 8.3.

Definition 4. In our model, a statement is valid if and only if it is either contained in

ViewA or if it can be derived from ViewA by applications of the following two inference

rules:

∀X,Y, t ∈ {I0 ∩ I1},Q ⊆ D : (5)

Aut(A,X,P , I0), Trust(A,X,D, I1), Valid〈A, Cert(X,Y,Q, I2), t〉 ` Aut(A, Y,Q, I2)

∀X,Y, t ∈ {I0 ∩ I1},Q ⊆ D : (6)

Aut(A,X,P , I0), Trust(A,X,D, I1), Valid〈A, Tran(X,Y,Q, I2), t〉 ` Trust(A, Y,Q, I2)

As with Maurer’s deterministic model, for a finite set S of statements, S denotes the

closure of S under applications of the inference rules (5) and (6), i.e., the set of statements

derivable from S. The evaluation time t is the time that Alice is attempting to reason about.

Alice’s derived view at evaluation time t is the set of statements derivable from her initial

view at evaluation time t. Alice’s derived view is defined by the function ViewA(t) where

ViewA : t −→ S . Under the model, a statement s is valid at evaluation time t if and only

if s ∈ ViewA(t), and invalid otherwise.
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8.2.2 Semantic Sugar

The statements of our model (Definition 3) are intended to be more general than the state-

ments of Maurer’s deterministic model. This section explains the intuition for the defini-

tions of the model, and highlights some of the semantic difference between our model and

Maurer’s.

Authenticity of binding Maurer’s notion of “authenticity” establishes that entity X holds

the private key corresponding to the public key in X’s certificate. We extend authenticity to

establish that some entity X not only holds the private key corresponding to the public key

in X’s certificate, but also has the other properties P contained in the certificate. As noted

earlier, these properties may include attributes, roles, key attributes, or any other certificate

extensions such as Proxy Certificate Information extensions, extended key usage, etc.

Trust Maurer’s definition of trust limits trust vertically (i.e., how deep trust may prop-

agate) via the level parameter. Our definition of trust limits trust horizontally (i.e., how

wide the trust may span) via the domain concept. A trusted entity should only be allowed

to vouch (either via a certificates or trust transfer statement) for properties that it is autho-

rized to speak for. Again, the Dartmouth CA should not be allowed to assign DoD-specific

attributes to members of the Dartmouth community. Similarly, Alice should not be able to

delegate to Bob some property she does not possess or is not allowed to delegate. Entities

may be allowed to vouch for a specific domain for a number of reasons.

• In many cases, the assignment of a domain to a trusted entity is done out-of-band of

the PKI, and the users trust the entity a priori. Such a scenario is often the case with

an organization’s CA—users almost always trust their CA to vouch for the organi-

zation’s population. In our calculus, this fact is represented by the inclusion of the

CA’s authenticity and trust statements in every user’s initial view, i.e.,
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∀u ∈ U : Viewu = {Aut(u,CA,P , I), Trust(u,CA,D, I)} .

where U is the set of users in the organization, CA is the organization’s CA, and D

contains the ability to vouch for all u ∈ U . This is not a requirement of the calculus,

but often occurs in practice.

• In other cases, the assignment of a domain to a trusted entity is done implicitly.

Delegation scenarios are an example of this type of binding (such a scenario will be

explored further in Section 8.3). Typically, if Alice trusts Bob to delegate some of his

privileges to another entity, Alice would require Bob to have had the privilege in the

first place. In the model, this is represented by Bob’s trust statement having a subset

of the properties in his authenticity statement, i.e. for Q ⊆ P:

ViewA = {Aut(A,B,P , I), Trust(A,B,Q, I)} .

Certificates In Maurer’s deterministic model, certificates bind a name to public key. Our

notion of certificate not only binds a name to the public key, but also the rest of the cer-

tificate information. Real certificates are more complex than a name and public key. They

contain extensions, attributes, roles, usage policies, validity intervals, etc. and relying par-

ties often need this information to make reasonable trust decisions.

Trust Transfers Maurer’s recommendation is used to explicitly transfer trust in a PKI.

It is much like a certificate, although it can be transferred further, and may contain private

information. Our notion of a trust transfer is similar, although more generally applicable.

Our trust transfer statement can be used to model different types of transactions such as

when a CA names certifies a subordinate CA, or when Alice delegates some or all of her

properties to Bob. Moreover, a trust transfer may be an explicit statement (such as a certifi-
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cate) or an implicit statement (e.g., by activating a certificate extension such as the X.509

basicConstraints extension).

Validity Templates As discussed in Section 8.1.3, Maurer’s deterministic model does

not include checking for certificate validity as part of the calculus. However, it would be

impossible to allow for such checking for every type of certificate format, and still have a

calculus which is usable. Every time a new certificate format were released, the calculus

would have to be expanded in order to reason about the new format. The way our model

deals with this is through the use of validity templates: a meta-statement whose validity

checking algorithm depends on the argument type. Templates allow us to reason about

different certificate formats without having to handle every format’s specifics. As stated in

Definition 3, for the Valid〈〉 template to be true, a certificate or transfer should minimally

have a verifiable signature and be active. Additionally, the Valid〈〉 template should evaluate

the format-specific validity rules.

For example, assume that Valid〈A,C, t〉 is being evaluated, and C is an X.509 Identity

Certificate. In order for Valid〈A,C, t〉 to be true, the template instantiation should check

that C’s signature verifies, that C has not expired, that C has not been revoked (e.g., by

having in one’s belief set a properly signed, active copy of the Certificate Revocation List

(CRL) to which C points), that C’s key attributes allow the requested operation, that the

certificate chain length has not been exceeded, etc. If C were an X.509 Attribute Certificate,

Valid〈A,C, t〉 may also check that C was signed by an attribute authority.

Evaluating trust transfer statements is very similar. For example, if Valid〈A, T, t〉 is

being evaluated, and T is a trust transfer expressed implicitly in an X.509 certificate (i.e.,

by the basicConstraints extension being set to true), then the template instantiation

should check that T ’s signature verifies, that T has not expired, that T has not been re-

voked, that the basicConstraints extension is set to true, and that the value of the

176



pathLenConstraint extension has not been exceeded.

Inference Rules The first inference rule of the new model (rule (5)) is similar to the first

rule of Maurer’s deterministic model (rule (1)). They are both used to derive authenticity

statements. Rule (5) states how Alice may deduce the authenticity of the binding expressed

in Y ’s certificate:

• She believes entity X is bound to the set of properties P for some time interval I0.

• She trusts X to issue certificates for the domain D during the time interval I1.

• She has a copy of a valid certificate issued from X to Y which binds Y ’s public key

to a set of properties Q for some time interval I2.

• She believes X is allowed to speak for the set of properties in the certificate (i.e., Q

is in X’s domain).

• Her beliefs about X are active (i.e., Alice’s evaluation time t ∈ {I0 ∩ I1}).

The second inference rule of the new model (rule (6)) is similar to the second rule of

the deterministic model (rule (2)). Both rules are used to transfer trust between entities.

Rule (6) states how Alice may deduce the trustworthiness of Y :

• She believes entity X is bound to the set of properties P for some time interval I0.

• She trusts X to issue trust transfer statements for domain D during time interval I1.

• She has a valid trust transfer statement from X to Y which binds Y ’s public key to a

set of properties Q for some time interval I2.

• She believes that X is allowed to speak for the set of properties in the certificate (i.e.,

Q is a subset of X’s domain).
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• Her beliefs about X are active (i.e., evaluation time t ∈ {I0 ∩ I1}).

Note that the level parameter of Maurer’s deterministic model has been omitted in our

model. The use of validity templates allows relying parties to directly check the properties

in certificates and trust transfer statements for things like certificate chain length, delegation

depth, pathLenConstraint, etc. This way, relying parties may draw such conclusions

using the context of the certificate format rather than an artificial level parameter. However,

our replacement makes it difficult to map all of Maurer’s model into ours. We find this to be

acceptable since the level parameter is an artificial construct anyhow, and is not an inherent

part of PKI in general.

8.2.3 Examples

Working some examples will illustrate the basic concepts of our model. The examples are

based on the ones from Section 8.1.2 (and Section 3 in Maurer’s paper), although we extend

them to illustrate the new features of our model.

Example 3. Consider the PKI depicted in Figure 8.3. The figure indicates that Alice

(A) believes that X’s public key is bound to the set of properties P during the interval I0

(depicted by the solid edge from A to X). She trusts X and Y to issue certificates (the

dashed edges) over domains D0 and D1 respectively. (For simplicity, we set the lifespans

of the trust statements to match the authenticity and certificate statements, but this is not
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necessary.) Her view also contains two certificates: one from X to Y which binds Y ’s

public key to the set of properties Q during the interval I1, and one from Y to B which

binds B’s public key to the set of properties R during the interval I2. In order for Alice

to be able to use Bob’s (B) certificate (either the public key or the properties in R) at

evaluation time t, she needs to derive the statement Aut(A,B,R, I2) . Alice’s initial view

is the following set of statements:

ViewA =















Aut(A,X,P , I0), Trust(A,X,D0, I0), Trust(A, Y,D1, I1),

Cert(X,Y,Q, I1), Cert(Y,B,R, I2)















.

Suppose that evaluation time t ∈ {I0 ∩ I1}, Q ⊆ D0, and R ⊆ D1. The statement

Aut(A,B,R, I2) can be derived by two applications of rule (5):

Aut(A,X,P , I0), Trust(A,X,D0, I0), Valid〈A, Cert(X,Y,Q, I1), t〉 ` Aut(A, Y,Q, I1)

Aut(A, Y,Q, I1), Trust(A, Y,D1, I1), Valid〈A, Cert(Y,B,R, I2), t〉 ` Aut(A,B,R, I2).

Thus, Alice’s derived view at evaluation time t is given by:

ViewA(t) = ViewA ∪ {Aut(A, Y,Q, I1), Aut(A,B,R, I2)} .

Alice believes that the binding between Bob’s public key and the set of properties R in

his certificate is authentic during the time interval I2 . Alice may stop believing this fact

when Bob’s certificate expires or gets revoked. (Such events give rise to nonmonotonic-

ity [61], which will be discussed in Section 8.5.)
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Example 4. Consider the PKI depicted in Figure 8.4. The figure indicates that Alice

(A) believes that X’s public key is bound to the set of properties P during the interval I0

(depicted by the solid edge from A to X). She trusts X to issue certificates over domain

D0 (the dashed edge). (For simplicity, we set the lifespans of the trust statements to match

the authenticity and certificate statements, but this is not necessary.) Her view contains a

trust transfer from X to Y (the dashed edge), and two certificates (solid edges): one from

X to Y which binds Y ’s public key to the set of properties Q during the interval I1, and

one from Y to B which binds B’s public key to the set of properties R during the interval

I2. The trust transfer from X to Y could be an explicit statement issued by X indicating

that it trusts Y to issue certificates; in practice, it is more likely to be expressed implicitly

in the certificate issued from X to Y (e.g., by X setting the basicConstraints field

of Y ’s X.509 certificate or the “delegation” flag of Y ’s SDSI/SPKI certificate).

In order for Alice to be able to believe Bob’s (B) certificate (either the public key or the

properties in R) at evaluation time t, she needs to derive the statement Aut(A,B,R, I2) .

In this scenario, Alice’s initial view is the following set of statements:

ViewA =















Aut(A,X,P , I0), Trust(A,X,D0, I0), Tran(X,Y,D1, I1),

Cert(X,Y,Q, I1), Cert(Y,B,R, I2)















.

Since Alice does not trust Y to issue certificates directly, she must derive her trust in Y

using rule (6). Suppose that evaluation time t ∈ I0 and D1 ⊆ D0, we have:

Aut(A,X,P , I0), Trust(A,X,D0, I0), Valid〈A, Tran(X,Y,D1, I1), t〉 `

Trust(A, Y,D1, I1) .

Once Alice trusts Y , she can use rule (5) to establish the authenticity of the binding

expressed in Bob’s certificate at evaluation time t assuming t ∈ I1, Q ⊆ D0, and R ⊆ D1

(in addition to our previous supposition that t ∈ I0, and D1 ⊆ D0):
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Aut(A,X,P , I0), Trust(A,X,D0, I0), Valid〈A, Cert(X,Y,Q, I1), t〉 ` Aut(A, Y,Q, I1)

Aut(A, Y,Q, I1), Trust(A, Y,D1, I1), Valid〈A, Cert(Y,B,R, I2), t〉 ` Aut(A,B,R, I2) .

Thus, Alice’s derived view at evaluation time t is given by:

ViewA(t) = ViewA ∪ {Trust(A, Y,D1, I1), Aut(A, Y,Q, I1), Aut(A,B,R, I2)} .

Alice believes that the binding between Bob’s public key and his certificate properties

is authentic during the time interval I2. Alice may stop believing this fact when Bob’s

certificate expires or gets revoked.

8.3 Using Our New Model

The motivation for developing this new model was to give PKI designers a tool which can

be used to reason about a wide range of PKI systems. To this end, the appropriate measure

of success is the model’s ability to capture a number of different real-world scenarios. In

this section, we apply the model to an array of situations in order to illustrate its applica-

bility.

Modeling Multiple Certificate Families The new model’s certificate statement binds an

entity’s public key to some set of properties P for some lifespan I. The power of the new

model stems from the fact that it is agnostic with respect to the semantics of the properties

in P , and yet still builds a calculus which allows relying parties to reason about these sets.

The semantics of the property sets vary across certificate formats.

• In the standard X.509 Identity Certificate [41], the property sets may include the sub-

ject’s Distinguished Name, Alternative names, name constraints, her key attributes,
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information about where to retrieve CRLs, and any number of domain-specific poli-

cies. The property set may also include information as to whether the subject is

allowed to sign other certificates (i.e., via the basicConstraints field).

• X.509 Attribute Certificates (ACs) [30] contain a very different set of properties than

X.509 Identity Certificates. ACs typically use domain-specific properties which are

used by relying parties to make authorization decisions. Some common examples

of attributes include: identity, group membership, role, clearance level, etc. Other

differences include the fact that an AC’s subject may delegate to another party the

right to claim some of the delegator’s attributes, and that ACs may not be used to

form certificate chains.

• The X.509-based Proxy Certificate (PC) [126] is similar to an X.509 Identity Cer-

tificate, except that PCs have a Proxy Certificate Information (PCI) extension and

are signed by standard X.509 Identity Certificates. The PC standard allows any type

of policy statement expressed in any language (such as eXtensible Access Control

Markup Language) to be placed in the PCI. Thus, the set of properties for a PC could

contain a large family of policy statements.

• The SDSI/SPKI certificate format [22] takes an entirely different approach to cer-

tificates. The set of properties placed in a SDSI/SPKI certificate does not contain a

global name for the subject, as SDSI/SPKI uses the public key as the subject’s unique

identifier. (If there is any name at all, it would be part of a linked local namespace.)

Further, a SDSI/SPKI certificate contains attributes much like X.509 attributes, ex-

cept they are expressed as S-expressions as opposed to ASN.1. In contrast to X.509

ACs, SDSI/SPKI certificates are allowed to be chained.
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Indeed, the power of the new model is its ability to reason about all of these diverse

certificate formats and semantics using only one calculus.

Modeling Revocation Validity templates play an important role in our model: they allow

users to reason about different types of signed statements. As an example, consider the

case when Alice needs to make a trust decision about Bob. The instantiation of the validity

template used to check Bob’s certificate may require that Alice check a CRL to ensure that

Bob’s certificate is not included in the list of revoked certificates.

Thus, Alice’s first step is to make a trust decision about a signed CRL. CRLs contain

a list of revoked certificates, a lifespan (noted by the thisUpdate and nextUpdate

fields), and are signed by the organization’s CA. Formally, we can represent a CRL as a

kind of certificate which is issued by a CA X and contains a list of revoked certificates L,

and a lifespan I: Cert(X, ∅,L, I). Since CRLs do not contain a public key, we use the

empty set notation to indicate the absence of a key. In order for Alice to use the CRL at

evaluation time t, she needs to deduce that it is authentic, i.e., Aut(A, ∅,L, I) ∈ ViewA(t).

Assuming that Alice believes that the binding expressed in CA X’s certificate is authen-

tic, and that she trusts CA X to issue certificates over domain D, her initial view would

be:

ViewA = {Aut(A,X,P , I0), Trust(A,X,D, I0), Cert(X, ∅,L, I1)} .

If X is authorized to vouch for the revocation status of all the certificates in L (i.e.,

L ⊆ D), and all of the statements are active (i.e., t ∈ I0), then Alice can deduce the CRL’s

authenticity by applying rule (5):

Aut(A,X,P , I0), Trust(A,X,D, I0), Valid〈A, Cert(X, ∅,L, I1), t〉 ` Aut(A, ∅,L, I1).

For the CRL, the instantiation of the validity template Valid〈A, Cert(X, ∅,L, I1), t〉

must check that t ∈ I1, and that X’s signature is verifiable. If the conditions are met, we
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have Aut(A, ∅,L, I1) ∈ ViewA(t), which indicates Alice’s belief that L accurately repre-

sents the list of revoked certificates during the interval I1.

Once Alice believes the CRL, she must make a trust decision about Bob’s certificate:

Cert(X,B,Q, I2). Assuming that CA X can vouch for Bob’s certificate information (i.e.,

Q ⊆ D), and all of the statements are active (i.e., t ∈ I0), then Alice can deduce Bob’s

authenticity by applying rule (5):

Aut(A,X,P , I0), Trust(A,X,D, I0), Valid〈A, Cert(X,B,Q, I2), t〉 ` Aut(A,B,Q, I2).

In this case, the instantiation of the validity template Valid〈A, Cert(X,B,Q, I2), t〉 is

being used to establish the validity of a certificate, not a CRL. As before, the template

instantiation must check that t ∈ I2, and that X’s signature over Bob’s certificate verifies.

However, the instantiation should also check that Bob’s certificate has not been revoked,

i.e., Cert(X,B,Q, I2) /∈ L as well as any other certificate information which is relevant to

the requested operation.

Authorization-based Scenarios and Trust Management In many modern distributed

systems, access to some resource is granted based on authorization rather that authenti-

cation. Systems such as PERMIS [15] use the attributes contained in ACs to determine

whether an entity should have access to a resource (other Trust Management systems such

as KeyNote [7, 8] and PolicyMaker [65, 66] have their own certificate formats for express-

ing credentials). This approach simplifies the management of Access Control Lists (ACLs)

at the resource. For example, if Bob wants to access Alice’s file, he presents his AC to

Alice. Alice first decides if the AC is authentic, and if so, she examines Bob’s attributes to

check if he should have access (e.g., if the file is accessible to the group “developers”, then

Bob’s attributes must state that he is a member of the group).
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Maurer’s deterministic model cannot handle this scenario, primarily because it cannot

handle ACs. Under the deterministic model, if Alice were to deduce the authenticity of

Bob’s public key, she still has learned nothing about Bob (i.e., his attributes). All she has

established is that the entity named Bob really has the private key corresponding to the

public key found in the certificate.

There are a number of Trust Management (TM) languages which do handle this sce-

nario, such as Delegation Logic [60] and others [62]. These TM languages can not only

tell Alice that Bob has a certain set of credentials, but can also evaluate Bob’s credentials

and Alice’s policy to determine whether Alice should allow the file access. While TM lan-

guages are typically framework-specific (i.e., KeyNote, PolicyMaker, and SDSI/SPKI have

their own policy languages), there have been efforts to generalize across languages [131].

Since our model is aimed at reasoning about PKI systems, and not TM systems, such policy

evaluation is outside the scope of our model’s abilities. However, our model can be used to

model these different certificate and credential formats (e.g., ACs, credentials, SDSI/SPKI

certificates), as well as reason about the authenticity of the core trust statements.

Under our model, Bob would first present his AC to Alice (e.g., Cert(X,B,P , I)).

Assume that Alice can then derive the authenticity of the binding between Bob’s public

key and the properties in the certificate—i.e., Aut(A,B,P , I) ∈ ViewA(t). Since Bob’s

certificate is an AC, Alice needs to determine if an attribute placing Bob in the “developers”

group is in the set P . If so, then Bob is allowed to access the file.

Delegation Some systems allow users to delegate some or all of their properties to an-

other entity. Maurer’s deterministic model allows users to issue recommendations and cer-

tificates to other entities, but this is insufficient to capture the notion of delegation. Maurer’s

model allows Alice to vouch for Bob, but she is limited to vouching for Bob’s identity.

In our model, Alice can give some or all of her properties to Bob (possibly including
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identity), provided she has the properties in the first place (i.e., she can only give Bob the

properties in her domain). In the calculus, Alice would issue a certificate to Bob (i.e.,

Cert(A,B,P , I)).

If a relying party Charlie has established that the binding between Alice’s public key

and her properties is authentic, trusts Alice to delegate, and receives a delegation from

Alice to Bob, then his view will be:

ViewC = {Aut(C,A,P , I), Trust(C,A,P , I), Cert(A,B,P , I)} .

He can then derive the authenticity of the binding between Bob’s public key and the

delegated properties (i.e., the statement Aut(C,B,P , I)) by applying rule (5):

Aut(C,A,P , I), Trust(C,A,P , I), Valid〈C, Cert(A,B,P , I), t〉 ` Aut(C,B,P , I) .

Thus, we have Aut(C,B,P , I) ∈ ViewC(t) .

Modeling MyProxy The Grid community’s MyProxy credential repository [88] uses a

chain of certificates for authentication. When Bob (or some process to which Bob dele-

gates) wants to access a resource on the Grid, he generates a temporary keypair, logs on

to the MyProxy server, and requests that a Proxy Certificate (PC) [126, 133] be generated

which contains the public portion of the temporary keypair and some subset of Bob’s privi-

leges. The new PC is then signed with the private portion of the keypair described by Bob’s

long term X.509 Identity Certificate, thus forming a chain of certificates.

The situation is depicted in Figure 8.5. Entity X is the CA which issued Bob’s X.509

Identity Certificate, and T is the entity which will own the temporary keypair (possibly

Bob or some other delegated entity or process). Initially, Alice believes that the binding

between X’s public key and properties is authentic during I0, and she trusts X to issue
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Figure 8.5: The statement graph for the MyProxy system.

certificates and trust transfers for the domain D. X has issued Bob a certificate binding

his public key to the set of properties Q during I1. X has also issued a trust transfer to

Bob, so that he may use his private key to sign his PC. The trust transfer is not a sepa-

rate certificate in this scenario; it is an implicit statement which X makes by setting the

basicConstraints field in Bob’s X.509 Identity Certificate which allows him to sign

certificates. Finally, Bob has issued a certificate (the PC) to the entity possessing the tem-

porary keypair T for some subset R of his properties. The PC is valid over the interval

I2, which in practice, is on the order of hours. In order for Alice to accept Bob’s PC, she

must derive the statement Aut(A, T,R, I2) . This scenario can be reduced to an instance of

Example 4 in Section 8.2.3. Modeling SHEMP will be discussed in Section 8.4.1.

Discovering Requirements: Greenpass The Greenpass [34] system uses delegation to

give guests inside access to a campus-wide wireless network. Further, it relies on an X.509

certificate in conjunction with SDSI/SPKI certificates to express delegation. To gain some

insight as to why the designers chose this hybrid approach, we can model the problem with

the calculus.

Let us assume that a relying party Alice is a member of Dartmouth College, which

we denote C. Let us also assume that another member of C, named Bob, has invited his

colleague George from the University of Wisconsin (denoted W ) to come for a visit. Bob

would like to give George some guest access to the network, so that he can access some

resources protected by Alice. In order for Alice to grant access to George, she must make a

trust decision about George. Since there is no trust relationship between C and W (i.e., they
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are not cross-certified or participating in the Higher Education Bridge CA), Alice cannot

simply reason about George based on statements made by George’s CA. Since George is

Bob’s guest, Bob is in a position to vouch for George.

Initially, Alice’s view consists of her authenticity and trust beliefs about her CA, a

certificate issued by her CA to Bob, and a certificate issued by George’s CA to George:

ViewA = {Aut(A,C,P , I0), Trust(A,C,D, I0), Cert(C,B,Q, I1), Cert(W,G,R, I2)} .

Since Bob has a certificate issued by a CA which Alice trusts, she can deduce the

authenticity of Bob’s certificate information (assuming that t ∈ I0, Q ⊆ D, and Bob’s

certificate is valid), i.e.,

Aut(A,C,P , I0), Trust(A,C,D, I0), Valid〈A, Cert(C,B,Q, I1), t〉 ` Aut(A,B,Q, I1) .

Now, in order for Alice to grant George access to her resources, she needs to believe

the binding between George’s public key and the properties in his certificate, and then that

the properties grant him authorization. However, since Alice does not trust W (and has no

reason to), she has no reason to trust any of the properties about George expressed in his

certificate (namely, in the set of properties R).

Since George is Bob’s guest, Bob is in a position to delegate some of his privileges

to George. In order for Alice to believe this delegation, Alice first needs to believe

that Bob is in a position to delegate, and she then needs to believe that Bob actually

delegated to George. The first condition requires the CA to transfer trust to Bob (i.e.,

Tran(C,B,Q, I1) ∈ ViewA).2 The second condition requires that Bob issue a certificate

2In the Greenpass prototype, this trust transfer is expressed as a SDSI/SPKI certificate issued to Bob’s pub-
lic key and allowing him to delegate. It could also have been implicit, by setting the basicConstraints
field of Bob’s X.509 certificate, but this would require reissuing Bob’s certificate.
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which delegates some of his properties to George (i.e., Cert(B,G,S, I3) ∈ ViewA where

S ⊆ Q).

Assuming all of the preconditions are met, and the certificates and trust transfer are

valid, Alice can deduce Bob’s trustworthiness, and the authenticity of the certificate issued

from Bob to George, i.e.,

Aut(A,C,P , I0), Trust(A,C,D, I0), Valid〈A, Tran(C,B,Q, I1), t〉 ` Trust(A,B,Q, I1)

Aut(A,B,Q, I1), Trust(A,B,Q, I1), Valid〈A, Cert(B,G,S, I3), t〉 ` Aut(A,G,S, I3).

Thus Alice can reason about George because Aut(A,G,S, I3) ∈ ViewA(t) .

The last question that the system designer is faced with is: “what type of certificate for-

mat should be used for the certificate issued from Bob to George?” The first consideration

is that if George already has a public key, the system should reuse it. The second consid-

eration is that Alice is not concerned with George’s identity, but rather his authorization.

Finally, we need to reason about what type of certificate format would allow this type of

delegation scenario, and still make Valid〈A,C, t〉 evaluate to true. Proxy Certificates would

not allow George to have the public key of his regular certificate (i.e., Cert(W,G,R, I2))

also used in his Proxy Certificate, resulting in Valid〈A,C, t〉 never being true. An X.509

Attribute Certificate would not make Valid〈A,C, t〉 true unless Bob was an Attribute Au-

thority proper. This leaves us with the choice to use SDSI/SPKI certificates, which is what

Greenpass implemented.

Time Travel There may be times when a relying party would like to reason about an

event that has passed or one that has not happened yet (because some statements are not

yet active). Maurer’s model obviously breaks down due to the lack of the concept of time

in the calculus. In the new model, we can reason about such events by manipulating the

evaluation time t.
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For example, assume that a relying party Alice is trying to verify a signature that Bob

generated on April 21, 1984. (Note that Alice would need a mechanism such as a times-

tamping service [36] in order to know that the signature existed on April 21, 1984). Further,

assume that Alice believed that the CA X had an authentic binding between its public key

and certificate information, and that it trusted the CA during that time period. Last, Alice

would have to possess a certificate for Bob’s which was valid during that period.

More formally, let I0 be the time period from January 1, 1984 to December 31, 1984.

Let I1 be the time period from April 1, 1984 to April 30, 1984. Finally, let Q ⊆ D. Alice’s

initial view is given by:

ViewA = {Aut(A,X,P , I0), Trust(A,X,D, I0), Cert(X,B,Q, I1)} .

Now, at evaluation time t where t ∈ {I0 ∩ I1} (i.e., t is some time in April, 1984),

Alice can use rule (5) to derive the authenticity of the binding between Bob’s public key

and his certificate information:

Aut(A,X,P , I0), Trust(A,X,P , I0), Valid〈A, Cert(X,B,Q, I1), t〉 ` Aut(A,B,Q, I1).

Thus, Alice can use Bob’s public key to verify the signature (she could also use any

other of Bob’s properties in the set Q) because Aut(A,B,Q, I1) ∈ ViewA(t) when t is

some time in April, 1984. If she were to try and derive the same statement in May of 1984,

she would fail because Bob’s certificate expired after April, 1984. Since the evaluation time

t would be in May, 1984, we have t /∈ {I0 ∩ I1}, causing the preconditions for rule (5)

to be unsatisfied and the validity template instantiation to fail. Thus, Aut(A,B,Q, I1) /∈

ViewA(t) .
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Figure 8.6: The entities, trust relationships, and certificates in SHEMP.

8.4 SHEMP Correctness Proof

In order for a PKI system such as SHEMP to be considered correct, it must allow relying

parties to make reasonable trust judgments about targets. Minimally, a relying party Bob

must be able to establish the authenticity of the binding expressed by Alice’s certificate.

In SHEMP, entities use short-lived PCs in conjunction with standard X.509 identity certifi-

cates. Thus, in order for Bob to reason about the SHEMP-user Alice, he must establish the

authenticity of Alice’s PC.

8.4.1 Modeling SHEMP

As described in Chapter 5, the process of setting up SHEMP results in a number of entities,

trust relationships, and certificates which are depicted in Figure 8.6.3

Using our directed graph notation, it is possible to generate the statement graph of the

SHEMP system. SHEMP’s trust and authenticity relationships are shown in Figure 8.7,

3Figure 8.6 is identical to Figure 5.4 and is placed here for easy reference.
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and the trust transfers and certificates are shown in Figure 8.8.

Figure 8.7 depicts the Repository Administrator R, the CA C, the Platform Adminis-

trator P , the repository S, users Alice A and Bob B, and Alice’s machine named Matisse

M . The solid edges in Figure 8.7 indicate that all entities believe that the binding between

the CA’s public key and the CA’s properties (the set P) is authentic during the interval I0.

The dashed edges represent the fact that they all trust the CA to issue certificates and trust

transfers over domain D during the interval I0 .

Figure 8.8 depicts the entities, certificates, and trust transfers in SHEMP. The solid

edges represent the certificates—both identity certificates and attribute certificates. Since

the different certificates are binding different properties to the same entity, the properties

are represented as different sets. For example, the Repository Administrator R issues the

repository identity certificate which assigns the set of properties W to the repository S. The

Repository Administrator R also issues the Repository Attribute Certificate (RAC) which

binds security attributes of S (denoted as the set W ′) to S’s public key.4 Alice’s Key Usage

4In the SHEMP prototype, the identity certificate and attribute certificate also have the same identifier.
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Policy (KUP) is represented as an attribute certificate issued by the CA to Alice. For the

remainder of this section, we denote the sets of properties contained in attribute certifi-

cates with the prime. For instance, Cert(P,M,Y , I4) is M ’s identity certificate, whereas

Cert(P,M,Y ′, I4) is M ’s attribute certificate.

It should also be noted that Bob is not certified, as he is a relying party in this scenario.

In general, relying parties may be certified, but are not required to be under SHEMP. How-

ever, Bob must trust the CA and believe that the CA’s certificate is authentic in order to

believe any signed statements from the CA (as shown in Figure 8.7).

The trust transfer statements are represented by the dashed edges in Figure 8.8. For

simplicity, we assign the same lifespan to trust transfer and certificates issued to the same

entity.

8.4.2 Proving SHEMP is Correct

As described in Section 8.1.3, Maurer’s calculus allows relying parties to conclude false

statements, and thus cannot be used to reason about SHEMP. For SHEMP to be considered
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correct, we must show that it allows the relying party Bob to conclude about Alice what

he should, and disallows him from concluding things he should not. Specifically, Bob (B)

must be able to establish the authenticity of Alice’s (A) Proxy Certificate, and should not

be able to establish the authenticity of her certificate if any relevant statements have expired

or been revoked. More formally, at evaluation time t, Aut(B, T,Q, I5) ∈ V iewB(t) where

T is the temporary keypair described by Alice’s PC (i.e., PT is the public key contained

in A’s PC), Q is the set of properties described by the Alice’s PC (which includes the PCI

extension information about her current environment and KUP), and I5 is the PC’s lifespan

(on the order of hours).

Definition 5. We introduce one last definition which is specific to SHEMP (i.e., not part

of our calculus itself) before we state and prove the theorem. A public statement is a

statement that is accessible to all entities in the system (i.e., a statement that exists in every

entity’s view). Public statements include certificates (both identity and attribute) and trust

transfer statements. We define the set V iewp to be the set of all public statements in the

system. Figure 8.8 depicts the set of public statements under SHEMP:

Viewp =















































Cert(C,R,U , I1), Cert(C,P,V , I1), Cert(C,A,X , I3),

Cert(C,A,X ′, I3), Cert(R,S,W , I2), Cert(R,S,W ′, I2)

Cert(P,M,Y , I4), Cert(P,M,Y ′, I4), Tran(C,R,U , I1),

Tran(C,P,V , I1), Tran(C,A,X , I3),















































.

Theorem (Correctness) Let SHEMP-user A be a target, B be a relying party, T be the

key described by A’s PC, Q be the set of properties described in A’s PC, and X be the set

of A’s properties where Q ⊆ X . At evaluation time t, Aut(B, T,Q, I5) ∈ V iewB(t) if and

only if every statement in V iewp is active.

Proof Part I. Every statement in V iewp is active ⇒ Aut(B, T,Q, I5) ∈ V iewB(t).
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Suppose that every statement in V iewp is active. As discussed in Chapter 5 and illus-

trated in Figure 8.95, the repository S will sign A’s PC request if:

1. The requesting platform M and the repository mutually authenticate, i.e., they estab-

lish the authenticity of each other’s public key,

2. A successfully authenticates to S,

3. The attribute certificates are verified, i.e., the repository believes all of the attributes

are authentic, and

4. A’s policy along with the attributes allow the operation.

More formally, S will use A’s private key to sign her PC request and place

Cert(A, T,Q, I5) in V iewp if:

1. Platform Authentication. Aut(S,M,Y , I4) ∈ V iewS(t) and Aut(M,S,W , I2) ∈

V iewM(t).

2. User Authentication. A successfully authenticates to S,

3. Attribute Verification. Aut(S,M,Y ′, I4) ∈ V iewS(t), Aut(S, S,W ′, I2) ∈

V iewS(t), and Aut(S,A,X ′, I3) ∈ V iewS(t).

4. Policy Check. A’s policy along with the attributes allow the operation.

If any of the steps fail, then the repository will not sign Cert(A, T,Q, I5), and the

validity template Valid〈B, Cert(A, T,Q, I5), t〉 will always evaluate to false. This would

prevent the PC from being used in any applications of rule (5) or (6), thus making in

impossible for any relying party to deduce the authenticity of the PC.

5Figure 8.9 is identical to Figure 5.5, and is placed here for easy reference
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Next, we examine each of the conditions in detail.

Platform Authentication. Using the SHEMP model depicted in Figure 8.7 and Fig-

ure 8.8, S’s initial view is the set of statements contained in V iewp, plus its own ini-

tial beliefs (i.e., V iewS = V iewp ∪ {Aut(S,C,P , I0), Trust(S,C,D, I0)}). Since we

are supposing that all of the statements in V iewp are active, we have evaluation time

t ∈ {I0 ∩ I1 ∩ I2 ∩ I3 ∩ I4}. Recall that the CA’s domain is D, and assume that V ⊆ D

and Y ⊆ V . The statement Aut(S,M,Y , I4) can be derived by applying the rules (5) and

(6) as follows:

Aut(S,C,P , I0), Trust(S,C,D, I0), Valid〈S, Cert(C,P,V , I1), t〉 ` Aut(S, P,V , I1)

Aut(S,C,P , I0), Trust(S,C,D, I0), Valid〈S, Tran(C,P,V , I1), t〉 ` Trust(S, P,V , I1)

Aut(S, P,V , I1), Trust(S, P,V , I1), Valid〈S, Cert(P,M,Y , I4), t〉 ` Aut(S,M,Y , I4) .

If the validity template instantiations for X.509 certificates and trust transfers evaluate

to true (i.e., the certificates are properly signed, have the basicConstraints fields set,

etc.), then Aut(S,M,Y , I4) ∈ V iewS(t) . At this point, the repository S has authenticated

the client platform M .

Similarly, M can authenticate S by first noting that V iewM = V iewp ∪

{Aut(M,C,P , I0), Trust(M,C,D, I0)}. Since we are supposing that all of the statements

in V iewp are active, we again have t ∈ {I0 ∩ I1 ∩ I2 ∩ I3 ∩ I4}. Further, assume that

U ⊆ D and W ⊆ U . The statement Aut(M,S,W , I2) can be derived by applying the

inference rules (5) and (6) as follows:

Aut(M,C,P , I0), Trust(M,C,D, I0), Valid〈M, Cert(C,R,U , I1), t〉 ` Aut(M,R,U , I1)

Aut(M,C,P , I0), Trust(M,C,D, I0), Valid〈M, Tran(C,R,U , I1).t〉 ` Trust(M,R,U , I1)

Aut(M,R,U , I1), Trust(M,R,U , I1), Valid〈M, Cert(R,S,W , I2), t〉 ` Aut(M,S,W , I2) .

Again, if the validity template instantiations for X.509 certificates and trust transfers

evaluate to true, then Aut(M,S,W , I2) ∈ V iewM(t), meaning that the client platform M
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has authenticated the repository S. Now that the platforms have mutually authenticated,

the protocol of Figure 8.9 proceeds to step 2.

User Authentication. Since SHEMP is agnostic with respect to user authentication

mechanisms, user authentication is not modeled formally. However, this step must succeed

in order for the protocol to advance. As discussed in Chapter 5, the current prototype

continues after A has presented a valid password.

Attribute Verification. Steps 3-9 of the protocol essentially gather the necessary state-

ments needed to make the policy check. As the attributes certificates are gathered, the

repository S establishes their authenticity. As previously noted, V iewS = V iewp ∪

{Aut(S,C,P , I0), Trust(S,C,D, I0)}, and we are supposing that all statements in V iewp

are active. Further, let X ′ ⊆ D, V ⊆ D, Y ′ ⊆ V , U ⊆ D, and W ′ ⊆ U . At evaluation time

t, the authenticity of the attributes can be derived by using the inference rules as follows:

Aut(S,C,P , I0), Trust(S,C,D, I0), Valid〈S, Cert(C,A,X ′, I3), t〉 ` Aut(S,A,X ′, I3)

Aut(S,C,P , I0), Trust(S,C,D, I0), Valid〈S, Cert(C,P,V , I1), t〉 ` Aut(S, P,V , I1)

Aut(S,C,P , I0), Trust(S,C,D, I0), Valid〈S, Tran(C,P,V , I1), t〉 ` Trust(S, P,V , I1)

Aut(S, P,V , I1), Trust(S, P,V , I1), Valid〈S, Cert(P,M,Y ′, I4), t〉 ` Aut(S,M,Y ′, I4)

Aut(S,C,P , I0), Trust(S,C,D, I0), Valid〈S, Cert(C,R,U , I1), t〉 ` Aut(S,R,U , I1)

Aut(S,C,P , I0), Trust(S,C,D, I0), Valid〈S, Tran(C,R,U , I1), t〉 ` Trust(S,R,U , I1)

Aut(S,R,U , I1), Trust(S,R,U , I1), Valid〈S, Cert(R,S,W ′, I2), t〉 ` Aut(S, S,W ′, I2) .

If the validity templates for the X.509 certificates and trust transfers all evaluate to true,

then {Aut(S,A,X ′, I3), Aut(S,M,Y ′, I4), Aut(S, S,W ′, I2)} ∈ V iewS(t) , meaning that

the repository S is convinced of the authenticity of all of the relevant attribute certificates.

Policy Check. If S is successful in verifying all of the attributes, the protocol advances

to step 10. Since the policy and attributes themselves (i.e., not the certificate, but the at-

tributes in the certificate) are in XACML and XML, they are evaluated out of band by an
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XACML Policy Decision Point (PDP) and are not modeled formally. As with the user

authentication step, the policy check must be successful in order for the protocol to ad-

vance. In the SHEMP prototype, the PDP must return “Permit” in order for the protocol to

advance. (Section 8.4.3 explores this topic in more detail.)

Issuing a PC. If the protocol reaches step 11, then S uses A’s private key to sign A’s PC

request. In our model, this is represented by S generating the statement Cert(A, T,Q, I5)

and forming the set V iewp′ where:

V iewp′ = V iewp ∪ {Cert(A, T,Q, I5)} .

Last, for a relying party B to be able to use the PC, B must establish its authen-

ticity at some evaluation time t. If the protocol succeeded, then V iewB = V iewp′ ∪

{Aut(B,C,P , I0), Trust(B,C,D, I0)}. By the supposition, we have t ∈ {I0 ∩ I1 ∩ I2 ∩

I3 ∩ I4}. Additionally, assume that the PC is active (i.e., t ∈ I5), X ⊆ D, and Q ⊆ X . B

can derive the authenticity of A’s PC by applying the inference rules as follows:

Aut(B,C,P , I0), Trust(B,C,D, I0), Valid〈B, Cert(C,A,X , I3), t〉 ` Aut(B,A,X , I3)

Aut(B,C,P , I0), Trust(B,C,D, I0), Valid〈B, Tran(C,A,X , I3), t〉 ` Trust(B,A,X , I3)

Aut(B,A,X , I3), Trust(B,A,X , I3), Valid〈B, Cert(A, T,Q, I5), t〉 ` Aut(B, T,Q, I5) .

If the validity templates for the X.509 certificate, trust transfer, and SHEMP PC eval-

uate to true (we will explore the validity template instantiation for SHEMP PC’s in Sec-

tion 8.4.3), then Aut(B, T,Q, I5) ∈ V iewB(t) . 2

Part II. Aut(B, T,Q, I5) ∈ V iewB(t) ⇒ every statement in V iewp is active.

We show this by contradiction. Assume that Aut(B, T,Q, I5) ∈ V iewB(t) and there is

some statement s ∈ V iewp which is not active. At least one of the following is true:

• Case 1: s is one of the recommendations from C to one of the administrators (i.e.,

R and P ). It would thus be impossible to apply inference rule (6) (see Section 8.2),
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leaving it impossible for platforms to be able to authenticate one another. This would

stop the protocol from advancing to step 2, and hence make it impossible for S to

sign A’s PC. Therefore, Aut(B, T,Q, I5) /∈ V iewB(t), which is a contradiction.

• Case 2: s is one of the identity certificates issued by an administrator (either R or

P ) to a machine (either S or M ). It is possible to apply all of the inference rules in

this case, but the resulting statement of authenticity would be inactive. For instance,

assume that one of the identity certificates has a lifespan I and t /∈ I. It would be

possible to derive a statement of authenticity using the inference rules, but since the

resulting statement of authenticity has the same lifespan as the certificate (I in this

case), then the statement of authenticity is not active by definition.

As in the Case 1 above, this case makes it impossible for platforms to authenti-

cate one another, and stops the protocol before proceeding to step 2. Therefore,

Aut(B, T,Q, I5) /∈ V iewB(t), which is a contradiction.

• Case 3: s is one of the identity certificates issued by the CA C to one of the adminis-

trators. As discussed in Case 2 above, the statement of authenticity of the administra-

tor’s key would be inactive. Again, platform authentication could not occur, meaning

that the protocol would not proceed to step 2. Thus, Aut(B, T,Q, I5) /∈ V iewB(t),

which is a contradiction.

• Case 4: s is one of the attribute certificates. As with identity certificates, this case

makes the resulting statement of authenticity inactive. If S cannot establish the au-

thenticity of all of the attribute certificates, the policy check will fail in step 10,

halting the protocol. Thus, Aut(B, T,Q, I5) /∈ V iewB(t), which is a contradiction.

• Case 5: s is the statement Tran(C,A,X , I3). If A’s recommendation is inactive, then

the relying party B will be unable to apply inference rule (6), resulting in a failure to
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establish trust in A. Thus, Aut(B, T,Q, I5) /∈ V iewB(t), which is a contradiction.

• Case 6: s is A’s identity certificate. In this case, the relying party B is unable to

establish the authenticity of A. As before, the resulting statement of A’s authenticity

will be inactive. The last application of inference rule (5) cannot be made, and thus,

Aut(B, T,Q, I5) /∈ V iewB(t), which is a contradiction.

Therefore, every statement in V iewp must be active. 2

8.4.3 A Detailed Example: The SHEMP Signing Proxy

The SHEMP correctness theorem states that a relying party B will be able to reason about

A’s PC if and only if all of the public statements in the system are active and valid (i.e.,

the validity templates all evaluate to true). In Part I of the theorem, we show how a relying

party B can establish the authenticity of A’s PC. In this section, we elaborate and illustrate

how B can use A’s PC to reason about A and her environment in order to make an access

control decision.

Recall that our SHEMP prototype includes two applications: the decryption and signing

proxies. In this section, we will explore the signing proxy in detail, and use our calculus to

illustrate how it makes the decision to sign a message on A’s behalf.6

In this scenario, let the relying party B be the signing proxy service running on the

repository, and T be the temporary keypair described by A’s PC. As discussed in Chapter 6,

applications protect a resource with a policy. In this scenario, the resource is A’s long-term

private key and the policy is A’s Key Usage Policy (KUP). When A makes a request to

B to sign a message with A’s private key, A sends the message, the signature which was

generated with the private portion of T , and A’s PC. In order for B to sign the message

6We could have chosen the decryption proxy for this purpose; the decision to use the signing proxy was
completely arbitrary.
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with A’s long-term key, B must be able to derive Aut(B, T,Q, I5) ∈ V iewB(t) .

Using the model of SHEMP presented in Figure 8.7 and Figure 8.8, we let B’s initial

view be the set V iewp′ (see Definition 5) along with his initial beliefs, i.e., V iewB =

V iewp′ ∪ {Aut(B,C,P , I0), Trust(B,C,D, I0)} .

The first step is for B to convince himself of the authenticity of A’s identity certificate.

Assuming that all of the statements are active at evaluation time t (i.e., t ∈ {I0 ∩ I3}),

and that the CA C is authorized to speak for A’s attributes (i.e., X ⊆ D), then this is

accomplished by applying rule (5) as follows:

Aut(B,C,P , I0), Trust(B,C,D, I0), Valid〈B, Cert(C,A,X , I3), t〉 ` Aut(B,A,X , I3)

As discussed in Section 8.2, a number of conditions must be met in order for A’s X.509

identity certificate make the validity template instantiation for X.509 certificates evaluate

to true:

1. the certificate’s signature must verify,

2. the certificate must not have expired (we are assuming that t ∈ I3),

3. the certificate must not have been revoked,

4. the certificate chain length must not have been exceeded,

5. domain-specific constraints and extensions must be present, etc.

If the conditions are met, then B can deduce the authenticity of A’s identity certificate.

B’s next task is to decide whether it can trust statements signed by A’s long-term key (such

as her Proxy Certificate). Again assuming that all of the statements are active at evaluation

time t (i.e., t ∈ {I0 ∩I3}), and that the CA C is authorized to speak for A’s attributes (i.e.,

X ⊆ D), then this is accomplished by applying rule (6) as follows:
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Aut(B,C,P , I0), Trust(B,C,D, I0), Valid〈B, Tran(C,A,X , I3), t〉 ` Trust(B,A,X , I3)

Since A has an X.509 identity certificate, the trust transfer statement is an implicit

statement made be the CA by setting the basicConstraints extension. In order for

the X.509 trust transfer validity template instantiation to evaluate to true, it must verify that

the basicConstraints extension in A’s identity certificate is set.

Once B has established the authenticity of A’s identity certificate and trusts her to sign

certificates with her long-term private key, he can attempt to establish the authenticity of

her PC. Once again assuming that all of the statements are active at evaluation time t (i.e.,

t ∈ {I0 ∩I3 ∩I5}), and that A is authorized to speak for her PC’s attributes (i.e., Q ⊆ X ),

then this is accomplished by applying rule (5) as follows:

Aut(B,A,X , I3), Trust(B,A,X , I3), Valid〈B, Cert(A, T,Q, I5), t〉 ` Aut(B, T,Q, I5) .

Since Cert(A, T,Q, I5) is A’s PC, B has to determine whether the validity template

instantiation for a SHEMP PC evaluates to true. Concretely, the instantiation checks the

following:

1. the PC is properly signed by A’s long-term private key,

2. the PC has not expired,

3. the PC must be a properly formatted X.509 PC with the Proxy Certificate Information

(PCI) extension set (the X.509 PC standard mandates this) and adhering to the PC

naming convention described in the X.509 PC standard, and

4. Q ⊆ X must be true (we assumed it was, but in general, the template instantiation

needs to check). As discussed in the “Delegation” example from Section 8.3, A must
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only assign properties to the PC which it is allowed to assign. In this scenario, the

set of properties X is acting as A’s domain.

If the conditions are met, then B believes that the PC binds the temporary keypair T to

the set of properties Q during the interval I5. B can now make an access control decision

based on A’s current environment and her KUP.

Let O be the operation that the PC is being used for (message signing in this example)

and N be the policy protecting the requested resource (N is A’s KUP in this example).

Recall from Figure 8.8 that Y ′ is the set of platform attributes and W ′ is the set of repository

attributes. Last, recall from Chapter 5 that a signed PC contains N , Y ′, and W ′ in the PCI

extension (i.e., {N,Y ′,W ′} ∈ Q). We can model the Policy Decision Point (PDP) as a

function which takes an operation and attributes as inputs, and returns a boolean:

PDP : O × N × Y ′ ×W ′ −→ {0, 1} .

Finally, B can use the PDP function with the information in the PC to decide whether

he should sign the message with A’s long term key by calculating PDP (O,N,Y ′,W ′) .

If the PDP function returns true, then B signs the message with A’s long term private key

and returns the message to A.

8.5 Chapter Summary

In this chapter, we introduced Maurer’s framework for reasoning about PKI systems, and

showed how the model is inadequate for dealing with real-world PKIs. Drawing on our

own experience with such systems, we introduced a model based on Maurer’s which we

used to reason about a number of systems, including SHEMP. We used the model to show

that SHEMP allows relying parties to make reasonable trust judgments, and thus satisfies

the final criterion of Chapter 3.
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While our new model makes it possible to reason about a number of different types of

PKIs and has been useful in practice, it is not perfect. There are a number of interesting

potential future directions for this research. Since they are not relevant to SHEMP, we give

them only brief mention in this chapter.

First, our model does not describe how well the properties in the certificates match the

real world properties of certificate’s subject. A similar issue arises in the field of program

verification. One might determine how well the program fits the specification. However,

this does not answer the question “Is my specification any good?” Such approaches yield

a program which is at most as correct as the specification. In determining authenticity of a

binding between a set of properties and a public key, the relying party trusts the attributes

at most as much as it trusts the issuer. If an issuer is careless (or malicious), and binds false

properties to Bob’s public key then, under the new model (and in the real world), Alice

will accept false properties about Bob. As an alternative view, we might consider whether

the building blocks of a particular certificate scheme are in fact sufficiently articulate for

relying parties to make the correct decision, or consider the size of the fraction of the

space where relying parties make the wrong decisions. Further investigation into this issue,

perhaps including automated formal methods, is an area for future work.

Second, the inclusion of time in the new model makes it nonmonotonic: true statements

can become false over time. Nonmonotonicity can have a fatal side effect: a relying party

may deduce authenticity when it should not. Some statement may have expired or been

revoked, and the relying party has not received the revocation information yet. Li and

Feigenbaum [61] introduce a concept of “fresh time” which could be used either in the

certificate’s properties, or possibly as an explicit parameter to make the system monotonic.

Using fresh times in our model is another area for future work.

Last, certification and trust transfer statements in our new model are similar to Jon

Howell’s “speaks-for-regarding” operator [42]. However, our statements go beyond How-
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ell’s because they are applicable to a number of certificate formats (not just SDSI/SPKI),

and they allow cases where transfers of trust are expressed implicitly (e.g., via the X.509

basicConstraints). If a relying party Alice receives multiple certificates about Bob,

and she successfully deduces their authenticity (i.e., the authenticity of the bindings they

contain), then Alice may hold multiple sets of properties assigned to Bob. What kind of set

operations should we allow on these sets of properties? Howell disallows the relying party

to use the union operation, but allows intersection. Considering the universe of allowable

set operations is another area for future work.
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Chapter 9

Summary and Conclusion

This research began when we discovered numerous problems with the current client-side

approach to deploying PKI. As part of Dartmouth’s PKI lab and participants in a large

campus-wide PKI roll-out, we felt it was necessary to ask the fundamental question: “Does

it work?” Before we spend hundreds of man-hours and thousands of dollars, do we have

any reason to believe that once we are finished, Bob will be able to conclude that Alice is

aware of and intended requests sent in her name?

As we illustrated in Chapter 2, the answer is “no.” The problem is that common desk-

tops are inherently unable to protect users’ private keys. Fundamentally, the TCB on stan-

dard desktops is too large, and a very small amount of malicious code running with user

privileges can effectively give an attacker access to a user’s private key. In addition to se-

curity concerns, the current client-side approach has mobility issues as well, often making

users sacrifice security in order to gain mobility. Moreover, the current client-side paradigm

makes it impossible for users, administrators, and application developers to render accurate

mental models of the system. Taken together, these shortcomings in security, mobility, and

usability make it impossible for relying parties to make reasonable trust decisions.

Starting with the problems of the current approach, we derived criteria for making desk-
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tops usable PKI clients. As we established in Chapter 3, any solution which claims to make

desktops usable for PKI must address security, mobility, and usability. Above all, the solu-

tion must allow relying parties to draw the trust conclusions they should, and disallow them

from drawing ones they should not. There are numerous solutions which address some of

the criteria, but a successful solution must address all of them.

Starting with the approach employed by the Grid community (i.e., the MyProxy online

credential repository), we designed a system which makes desktops usable PKI clients:

SHEMP. In Chapter 5, we discussed the design and implementation of the SHEMP sys-

tem. In Chapter 6, we presented two concrete applications that we built with SHEMP: the

decryption and signing proxies. These applications demonstrate that SHEMP can be used

to build a real-world PKI. The proxies give organizations and application developers the

full set of PKI primitives: authentication, decryption, and signing. Finally, we presented a

number of application designs which take advantage of SHEMP’s features to consider the

user’s environment when making decisions.

SHEMP meets the criteria we established in Chapter 3. In Chapter 7, we offered a se-

curity analysis of SHEMP, illustrated how it minimizes the risks and impacts of a private

key disclosure, and how it can defend against the keyjacking attacks of Chapter 2. We

discussed how SHEMP maintains security while providing mobility through the use of en-

vironmental attributes and Key Usage Policies. Finally, we showed that SHEMP is usable

by presenting the results of our usability study and performance analysis. The results indi-

cate the SHEMP’s policy framework can be used to accurately capture a mental model of

the system given the right tools, and that SHEMP’s overhead is imperceivable by humans.

Finally, SHEMP allows relying parties to make reasonable trust judgements. In Chap-

ter 8, we introduced a tool for evaluating PKIs: Maurer’s calculus. We showed how and

where Maurer’s approach (specifically, his deterministic model) fails to capture the messi-

ness of the real world. We introduced our new model which is rooted in Maurer’s, and
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overcomes Maurer’s limitations. We demonstrated how our model can be used to reason

about a number of real-world systems. We concluded by applying our model to SHEMP in

order to show that SHEMP allows relying parties to make reasonable trust judgements.

Our contributions include the discovery of the problem, the design and implementa-

tion of the SHEMP system, and the extended version of Maurer’s calculus. In addition

to making desktops usable for PKI, our contributions to the PKI designer’s toolbox al-

low designers to test for insecurities, construct PKI systems which fit their specific threat

model, and formally reason about PKI systems in general. Individually, these are all useful

capabilities, even outside of the context of this thesis.

9.1 Below the Surface

The keyjacking results of Chapter 2 suggest that the reason current desktops are not usable

as PKI clients is that system designers are forced to operate under the assumption that the

entire desktop is trusted. Even if system designers are careful, the construction of modern

systems makes this assumption necessary. As we have discussed in depth, the TCB for

modern desktop PKI clients includes the entire desktop: the OS and numerous applications,

some of which are inseparable from the OS.

The experiments in Chapter 2 show that when just one malicious executable is intro-

duced into the TCB (i.e., runs on the desktop), the security of the entire system can be

undermined. Additionally, the experiments show that it is difficult for users to generate

accurate mental models of how, when, and why their private key is being used. SHEMP

solves these issues by shrinking the TCB, allowing it to vary with time, giving users a

medium to express their key usage desires in a way that is applicable to their domain (as

opposed to the “low”, “medium”, and “high” Microsoft key policy choices), and giving

relying parties relevant information about the current environment.
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SHEMP shrinks the TCB by getting private keys off of the desktop altogether, and

placing them in a safe place: the repository. By taking advantage of secure hardware, the

repository can shrink the TCB further by protecting the private keys as well as the repos-

itory application software itself. Since the repository application is orders of magnitude

smaller than a general purpose OS, SHEMP greatly shrinks the number of lines of code in

the TCB. Furthermore, SHEMP can shrink the TCB on each client by using secure hard-

ware at the client, if available. Finally, although humans do not directly contribute to the

TCB in the standard sense, placing the keys under the jurisdiction of one entity (the Repos-

itory Administrator) versus an entire user population also serves to reduce the number of

entities that must be trusted in order for the system to function and remain secure.

When users need to access to their private key, they log on to the repository, generate a

temporary keypair, and have the repository use their long-term private key to sign a Proxy

Certificate containing the public portion of their temporary keypair. The desktop must now

be trusted as long as the Proxy Certificate is valid, albeit to a lesser extent, since the keypair

on the desktop is not as important as the long-term private key. Nevertheless, the net effect

of issuing a Proxy Certificate is an expansion of the TCB. Rather than picturing the TCB

as a static security perimeter around specific parts of the system, we view it as a dynamic

entity which has a small size in the steady state, and expands only when needed. The short

lifespans of the Proxy Certificates keep pressure on the TCB to shrink, and as we discussed

in Chapter 7, the total TCB for an organization using SHEMP is never larger than the total

TCB for the same organization using the current client-side PKI approach.

Rather than consider the TCB some abstract entity which only security analysts are

interested in, SHEMP attempts to make the TCB concrete and accessible to parties which

rely on it most. The attribute certificates assigned to the client desktops and the repository

contain attributes which are essentially domain-specific statements expressing the state of

the TCB which the user is operating in. Using these attributes, a relying party can take into
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account the state of the TCB when making decisions, and decide for themselves how much

trust should be placed in the requester. Additionally, the SHEMP policy language allows

users, administrators, and application developers to govern their resources (such as private

keys or critical application operations) in such a way that takes the TCB into account.

Under the surface, SHEMP is really about managing the TCB for a PKI system. Many

of these core concepts involving the TCB’s size are not novel, dating back to the Orange

Book days. Furthermore, some of the benefits to applications discussed in Chapter 6, such

as Multi-Level Security, also date back to the Orange Book. SHEMP applies new tech-

nologies such as Proxy Certificates to old techniques. One novel technique employed by

SHEMP is viewing the TCB as a dynamic entity rather that a static “security perimeter.”

By allowing the TCB to vary with time, SHEMP can maintain a very small TCB until it is

necessary to expand it.

9.2 Future Directions

We close this thesis by discussing some potential avenues for further research. While there

are a number of potential applications and environments where SHEMP could prove to

be useful, we are focused more on open-ended research questions than on concrete de-

velopment tasks. In this section, we discuss some possible approaches for expanding the

SHEMP framework itself, enabling new programming paradigms, and applying our calcu-

lus to a number of other areas.

Shrinking SHEMP A new project in our lab involves using SHEMP as a personal key

repository instead of a repository for an entire user population. Under this type of scenario,

some device of Alice’s (e.g., her smart phone or PDA) would run the SHEMP reposi-

tory and house her private key. As Alice approaches a client machine in her domain, her
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personal repository and the potential client connect and the client gets a Proxy Certificate

signed by the private key in Alice’s personal repository. The new Proxy Certificate contains

the environmental information, as before.

Using the SHEMP architecture in such a manner shrinks the PKI TCB even further,

as the repository now houses only one user’s key. This approach allows Alice to use PKI

applications on a number of different types of client machines without having to port those

applications to her personal repository’s (possibly constrained) platform. As with the stan-

dard SHEMP approach discussed throughout this thesis, this approach allows Alice to op-

erate from clients with different levels of trustworthiness.

One argument against SHEMP is that the more clients have secure hardware, the less

need there is for a system like SHEMP. The argument is that, if all clients have secure

hardware, then the current client-side PKI vision may not be so bad. There are at least

two responses to this argument. First, secure clients (e.g., clients using Intel’s LaGrande

Technology [120]) will likely still run big, bloated applications, and these applications will

expand the TCB. While hardened clients are an improvement, they will still have security

issues. Second, the small version of SHEMP presented in this section fits nicely into an

environment where clients are hardened with secure hardware. Alice can use applications

on multiple machines without having to export and re-import her key or port applications

to run on her personal repository. Furthermore, the SHEMP approach keeps the PKI TCB

small, and allows it to vary with time.

Repository Networks Under the current model of SHEMP, when a user Alice needs

to use her private key, she begins by using the SHEMP client software to log on to the

repository which holds her key. If Alice’s key ever needs to move to a different repository,

then Alice will have to export and re-import her key. As we have discussed throughout

this thesis, migrating private keys in such a manner presents an opportunity for private key
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disclosure.

If there were a method to safely migrate users’ private keys between repositories,

SHEMP would become a more flexible platform. A SHEMP repository may want to allow

key migration in a number of scenarios. For example, a busy repository may wish to tem-

porarily offload some of its clients to an underutilized repository. As another example, there

may be some number of organizations that participate in a federation, and would like allow

their users to move freely between the organizations and still have access to their private

keys. Finally, Alice may want to ask any repository for her key, and have it automatically

arrive there.

One possible solution may involve treating repositories as nodes in a peer-to-peer net-

work. In other work, we have explored putting the Gnutella peer-to-peer protocol inside of

an IBM 4758 [70], as well as building peer-to-peer networks of Semi-Trusted Mediators

(SEMs) [129].1 From a high level, the peer-to-peer protocol can be used to locate keys in

different repositories, the secure hardware authentication mechanisms (such as attestation

and outbound authentication) can be used to mutually authenticate the repositories, and a

secure transport protocol such as Sacred [102, 103, 104] could be used to safely transport

the private key between repositories. SHEMP’s current policy framework currently ac-

counts for differing repository security levels, and is thus already robust enough to handle

key migration scenarios. Connecting repositories in this way could lead to some interesting

future work.

Security-context Aware Computing As a second future direction for SHEMP, we con-

sider the scenario where a user Alice is using application X , and X relies on some mobile

code components such as Common Object Request Broker Architecture (CORBA) objects

to perform some operations. We assume that X is written to take advantage of the SHEMP

1Recently, we ported the SEM prototype to run on our Bear/Enforcer platform. That work has been
submitted for publication.
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system, namely its policy mechanism. Concrete examples of such applications were given

in Chapter 6, but to briefly recount, the X gathers attributes about Alice’s current operating

environment and presents them, along with X’s policy, to a Policy Decision Point (PDP)

for evaluation.

In this scenario, the CORBA objects which actually implement the operations for X

may have their own policy. In order to make an security decision, application X must

collect the environmental attributes along with X’s own policy, as before. However, it must

also gather the policies from the CORBA objects for evaluation to determine whether the

operation is allowed to occur in the given environment. SHEMP’s current PDP is already

equipped to take multiple policies into account when making policy decisions.

Such an approach allows application developers to construct systems by using compo-

sition, while at the same time giving module developers have a method to control the set

of operations visible to the client application. This allows both application and module

developers to take Alice’s security context into account when making decisions.

Attestation Protocol Verification As a final potential future direction, we consider an

application not of SHEMP directly, but of the calculus discussed in Chapter 8. The SHEMP

toolkit includes possibly using secure hardware, not only for protecting code and data, but

also for giving relying parties a reason to believe that code and data have not been tampered

with. As discussed in Chapter 4, modern secure devices use a feature known as attestation

for these purposes (the IBM 4758 refers to this as outbound authentication).

While such protocols have a great deal of utility, they are often quite complex, involving

multiple parties using multiple keypairs to make signed statements about the trustworthi-

ness of multiple entities. Reasoning about such complexity is often best left to formal meth-

ods. This concept is not novel; Sean Smith has applied a version of Maurer’s calculus to the

outbound authentication protocol of the IBM 4758 [116]. Applying the calculus of Chap-
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ter 8 could serve to illustrate issues with the calculus as well as provide formal verification

about attestation protocols which have not been scrutinized with formal techniques—such

as the TCPA/TCG attestation protocols.

9.3 Conclusion

The goal of this thesis was to make desktops usable for PKI. In the course of this research,

we made the following contributions:

• We discovered architectural flaws within Microsoft’s Cryptographic API, and devel-

oped a suite of attacks to exploit those vulnerabilities. We concluded that modern

desktops have a large TCB, and as a result, are unsuitable for use as PKI clients.

• We established criteria for making desktops usable as PKI clients, and designed and

implemented a system which meets that criteria: SHEMP.

• We took a new approach to reasoning about the TCB. We adopted the view that the

TCB should be treated as a dynamic entity, rather than some static security perimeter.

• We implemented applications which use Proxy Certificates for decryption and sign-

ing. Previous uses of Proxy Certificates were limited to authentication and dynamic

delegation.

• We developed a formal framework for reasoning about PKI systems in general, and

illustrated how it can be used to reason about systems like SHEMP. We then used it

to prove that SHEMP is correct.

Using our new tools and the knowledge they provided, we were able to design, imple-

ment, and reason about a system which makes desktops usable as PKI clients.
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Appendix A

SHEMP Reference Manual

This appendix contains instructions for setting up the SHEMP system. All of the informa-

tion found in this appendix can be found in the documentation included with the SHEMP

source code.

A.1 SHEMP Overview

A.1.1 Quick Start

Use the shadmin/shadmin.pl script to set up the installation (e.g., mint/import certs, gen-

erate user accounts, etc.). Then go the appropriate directory—repository or shutil, and

execute the script found in that directory.

A.1.2 SHEMP Background

The SHEMP system is the central component of my PhD dissertation. Very briefly, it is an

attempt to allow users to use their private keys without having to store them on the desktop.

SHEMP achieves this through the use of short-lived keypairs and Proxy Certificates.
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SHEMP borrows concepts from many places. Many of the ideas found in SHEMP

come from the Grid computing community. While it is not necessary, some familiarity

with Proxy Certificates and the MyProxy credential repository would be useful. Second,

SHEMP makes use of XACML, and in particular, the SunXACML project’s implemen-

tation. Last, the SHEMP prototype for my dissertation was built on the Bear/Enforcer

platform, and uses the TCPA/TCG hardware to protect secrets.

The project is written mostly in Java, and uses the Ant build system. If you just want

to run the code, you need the Java 1.5 JRE and the openssl command line tool. If you plan

to build the code yourself, you additionally need the JDK 1.5 or greater and the Ant build

system. Lastly, the project uses the Java CoG grid toolkit, which is redistributed in the

SHEMP packages.

A.1.3 The SHEMP distribution

The are essentially three flavors of SHEMP distribution to date: a client-only package, a

repository-only package, and a package that contains both. The core SHEMP distribution

contains the following:

certs/ This directory is initially left empty. As the system
is installed, certificates get placed in this
directory.

doc/ Contains documentation for SHEMP. You will find big
picture documentation here, such as the SHEMP design
and programmer’s guide. You will also find Javadoc
documentation in the ’apidoc’ subdirectory.

lib/ The jars that make SHEMP work. In all distributions,
you will find:

cog-jglobus.jar -- the CoG toolkit
common.jar -- SHEMP common classes
jce-jdk13-117.jar -- the BouncyCastle JCE
log4j-1.2.7.jar -- Apache logging classes
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sunxacml.jar -- Sun’s XACML classes
tools.jar -- SHEMP tools classes

If you have the repository package, you will have:

repository.jar -- the SHEMP repository classes

If you have the client package, you will have:

shapi.jar -- the SHEMP API classes
shutil.jar -- a sample SHEMP application

shadmin/ This folder contains the SHEMP administration tool
Perl script: shadmin.pl. The tool is useful for
minting certificates, and adding new machines/accounts
to the system. It also handles things like building
the users’ policy statements.

src/ Contains all of the source necessary to build SHEMP
and an Ant buildfile.

tools/ Contains a number of command-line utilities developed
in the course of making SHEMP.

The repository install contains the above directories, plus:

repository/ This directory holds the repository start script and
a number of repository-specific subdirectories.

The client install contains the core directories, plus:

shutil/ This directory hold a sample SHEMP application called
the SHEMP Utility. It demonstrates how to use the
SHEMP API (the Shapi class) to build an application
that uses a SHEMP repository.

A.2 The SHEMP Repository

In SHEMP, the repository is where all of the magic happens. Before you run the script in

this directory, you need to be sure that the repository is set up. The first thing to do is use

the shadmin.pl tool to establish a Repository Administrator. Once an admin is recognized,

the admin needs to issue a repository identity certificate and RAC (all handled by the ’add
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repository’ command in shadmin.pl). Last, the admin needs to add users to the system by

using the ’add user’ command in shadmin.pl. This command will generate a keypair for

the user on the repository, generate a Certificate Signing Request for that keypair, and add

a new user account on the repository for the user (the SHA1 password hashes for the user

passwords are in ./etc/passwd).

Once the certificates and user accounts are set up, the Repository Admin can tweak

some parameters in the ./conf/shemp.conf file. This file contains some sensitive information

(like the keystore password), so it should be guarded with whatever is available: file perms,

Bear/Enforcer security policy, etc.

Once everything is configured, execute the ./repository command, and the repository

will start and bind to the specified port.

The ./keys directory contains two Java keystores: ’keystore’ for the machine keystore

and ’userstore’ for the user keys. You can view these with the ’keytool’, which is a part of

the Java (JRE and JDK) distributions from Sun.

The ./utils directory contains a number of TPM utilities by IBM (as well as one exten-

sion by me: readpubek). These could be used to put the PUBEK hash in the repository’s

identity certificate, for example. Use you imagination.

A.3 The SHEMP Utililty (Shutil)

The Shutil is a small program to demonstrate how to build SHEMP applications by using

the SHEMP API. Before you can run the Shutil, a Platform Administrator needs to set

up the platform (via the ’add platform’ command in the shadmin.pl tool). The setup in-

volves establishing an identity certificate for the platform as well as the Platform Attribute

Certificate which lists the platform’s attributes.

Once added, the Platform Admin also needs to set up the scripts in the ./utils directory.
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createTempKey.sh is executed when a user requests a Proxy Cert, the first step of which is

to generate a temporary keypair on the platform. createTempKey.sh has the responsibility

of creating that keypair. BE CAREFUL—harmful commands in that file will be executed.

File system polymorphism is pretty cheesy, but the only way to generate TPM keys without

writing a Java JNI driver was to use this script. destroyTempKey.sh should clean up the

temporary key and Proxy Cert. This script is called when a user logs off. In the ./utils

directory, you will also find tpmtools.tar.gz which contains a number of useful TPM tools

from IBM (and one from me).

The last part of configuration involves tweaking the ./conf/shutil.conf file to suit

your needs. This file should be protected by the best available methods (file perms,

Bear/Enforcer security policy, etc.) as it contains sensitive information.

Once configured, run the ./shutil (or ./shutilGUI) script and you’re off.

The ./keys directory contains the Java ’keystore’ which holds the platform’s keys—used

in the platform authentication (i.e., client-side SSL) step.

A.4 The SHEMP Administration Tool (Shadmin)

This SHEMP Admin tool (shadmin.pl) is by far the most useful utility in the SHEMP

distribution. It glues a number of programs together (openssl, keytool, acbuilder, and kup-

builder) so that administrators (Certification Authorities (CAs), Platform Admins (PAs),

and Repository Admins (RAs)) can get SHEMP up and running without having to deal

with all of the tools individually. SHEMP uses quite a few certificates, so a centralized

utility to mint and manage them is crucial. You can edit some of the global variables at the

top of the script to suit your needs.

The general sequence of steps to set up SHEMP is as follows:

1. Set up a CA. shadmin.pl can use openssl to mint a self-signed cert. It creates a
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subdirectory called ’ca’ which contains the private key. Alternatively, you could use

a real CA, in which case, you need to obtain the CA’s cert (in PEM format) and place

it in the ’certs’ directory.

2. Set up a repository. This involves a number of sub-steps:

• Generate a keypair for the RA, and get the RA’s cert signed. shadmin.pl cre-

ates a directory called ’requests’ which is used to store the Certificate Signing

Requests (CSRs). The private key for the RA is in the ’radmin’ subdirectory.

The CSR needs to be given to the CA, or if using a self-signed CA cert, the CA

menu contains a ’Certify Admin’ option which will sign the RAs CSR, and put

the signed cert in the ’certs’ directory.

• Add a repository. This step generates a keypair and CSR for the repository, as

well as the Repository Attribute Certficate (RAC). The name for the repository

should be the ’least spoofable’ name possible (e.g., MAC address, TPM’s public

key hash, etc.). shadmin.pl will have the RA sign the repository’s CSR and

RAC, and will place the signed certificates in the ’certs’ directory.

• Add a user. shadmin.pl will generate a keypair and CSR for the new user, and

place the CSR in the ’requests’ subdirectory. The CA needs to sign this CSR,

as well as generate a singed Key Usage Policy for the user. If you are using a

self-signed CA cert, shadmin.pl will sign the CSR with the CA’s private key,

call the kupbuilder to set up the KUP for the user, sign the KUP with the CA’s

private key, and place the signed certificates in the ’certs’ directory.

• Import the signed user cert into the repository.

3. Set up a platform. This is very similar to the first two steps outlined above:

• Generate a keypair for the PA, and get the PA’s cert signed. The PA’s CSR
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gets written to the ’requests’ subdirectory, and the private key for the PA is in

the ’padmin’ subdirectory. The CSR needs to be given to the CA, or if using

a self-signed CA cert, the CA menu contains a ’Certify Admin’ option which

will sign the PAs CSR, and put the signed cert in the ’certs’ directory.

• Add a platform. This step generates a keypair and CSR for the platform, as well

as the Platform Attribute Certificate (PAC). The name for the platform should

be the ’least spoofable’ name possible (e.g., MAC address, TPM’s public key

hash, etc.). shadmin.pl will have the PA sign the platform’s CSR and PAC, and

will place the signed certificates in the ’certs’ directory.

A.5 SHEMP Tools

In the ’tools’ directory, you will find a number of tools which were developed during the

course of working on SHEMP. All of the certificates are assumed to be in PEM format.

A.5.1 acbuilder

This is a command line utility used to make the attribute certificates (ACs) which describe

platforms and repositories (i.e., the PACs and RACs). These ACs need to have the same

subject DN as the machine’s identity certificate. The program is called by the shadmin.pl

tool each time a repository or platform is added. The program prompts the user for ¡at-

tribute,value¿ pairs to add to the AC, and generates an AC which follows the attrcert.dtd

DTD in the shadmin directory.

Usage: acbuilder <subject_cert_file> <issuer_cert_file> <output_file>

<subject_cert_file> The name of a file which contains an X.509
identity certificate for the subject (which
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should be either a platform or repository).
The DN is peeled out of the subject_cert_file
and placed in the AC.

<issuer_cert_file> The name of a file which contains an X.509
identity certificate for the issuer (which
should be either a Platform Administrator or
a Repository Administrator. The DN is peeled
out and placed in the AC. The shadmin.pl
tool will sign the <envelope> element of the
AC with the private key of the issuer, and
place the signature in the <envelopeSignature>
element of the AC.

<output_file> File to write the unsigned AC to.

A.5.2 cyptoaccessory

This is a little Swiss-army RSA crypto utility implemented in Java. It implements signing,

verification, encryption, and decryption using the Java keystore and the RSA algorithm. In

addition to being useful for testing, the time taken to perform the crypto operations serve as

a baseline for SHEMP’s performance testing. It is menu-driven; there are no command-line

arguments.

A.5.3 extractkey

This is a very small program to take an X.509 certificate, pull the public key out, and write

the base64-encoded key to a file. In SHEMP, this program’s functionality is used to send a

public key to the repository for inclusion in a Proxy Certificate.

Usage: extractkey <certfile> <keyfile>

<certfile> Name of a file containing an X.509 certificate
in PEM format.

<keyfile> Name of a file to write the base64-encoded
public key.
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A.5.4 kupbuilder

This program is used to manufacture Key Usage Policies (KUPs) for SHEMP users. As

with the acbuilder tool, this program is called by the shadmin.pl program directly. The

core of the KUP is an XACML policy with the user as a Target, and up to three rules:

generate (which governs Proxy Certificate generation), encrypt (which governs the use of

the SHEMP encryption proxy service), and sign (which governs the SHEMP signing proxy

service).

For each of the three operations (generate, encrypt, and sign), the program asks

if it should construct a rule for the action. If so, it prompts for a number of ¡at-

tribute,value,issuer cert¿ 3-tuples. The issuer cert should belong to either the Platform

Administrator or Repository Administrator; DN is pulled out of the issuer cert, and placed

in the policy.

In English, the XACML policy states that, in order for the ’action’ to be allowed, the

entity in the ’issuer cert’ must say (in an AC) that the ’attribute’ has the ’value’. In order

for an action to be allowed, all of the 3-tuples must be satisfied.

Once, the XACML policy is created, it is placed in the KUP ¡envelope¿, the Certifica-

tion Authority signs the ¡envelope¿, and the signature is placed in the ¡envelopeSignature¿

element. The result follows the kuptemplate.dtd DTD in the shadmin directory.

Usage: kupbuilder <subject_cert_file> <issuer_cert_file> <output_file>

<subject_cert_file> The name of a file which contains an X.509
identity certificate for the subject (which
should be either a platform or repository).
The DN is peeled out of the subject_cert_file
and placed in the KUP.

<issuer_cert_file> The name of a file which contains an X.509
identity certificate for the issuer (which
should be the Certification Authority). The
DN is peeled out and placed in the KUP. The
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shadmin.pl tool will sign the <envelope>
element of the KUP with the private key of the
issuer, and place the signature in the
<envelopeSignature> element of the KUP.

<output_file> File to write the unsigned KUP to.
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PDP (Policy Decision Point), 81
PKCS#11, 3
PKCS#12, 21
PKI (Public Key Infrastructure), 1

RA (Registration Authority), 83
RAC (Repository Attribute Certificate),
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SDSI/SPKI (Simple Distributed Security
Infrastructure/Simple PKI), 50

SELinux (Security Enhanced Linux), 79
SEM (Semi-Trusted Mediator), 53
shadmin (SHEMP Admin), 95
SHEMP (Secure Hardware Enhanced
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SHUTIL (SHEMP Utility), 100
SSL (Secure Sockets Layer), 12

TCB (Trusted Computing Base), 4
TCG (Trusted Computing Group), 69
TCPA (Trusted Computing Platform Al-

liance), 69
TPM (Trusted Platform Module), 69
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TTP (Trusted Third Party), 53

XACML (eXtensible Access Control
Markup Language), 81
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