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Abstract

Two extensions of the Linial, Mansour, Nisan
ACP learning algorithm are presented. TheLMN
method works when input examples are drawn
uniformly. The new agorithmsimproveontheirs
by performing well when given inputs drawn
from unknown, mutually independent distribu-
tions. A variant of the one of the algorithmsis
conjectured to work in an even broader setting.

1 INTRODUCTION

Linia, Mansour, and Nisan [LMN89] introduced the use
of the Fourier transform to accomplish Boolean function
learning. They showed that AC° functions are well-
characterized by their low frequency Fourier spectra and
gave an agorithm which approximates such functionsrea-
sonably well from uniformly chosen examples. While the
class ACPisprovably weak inthat it does not contain modu-
lar counting functions, from alearning theory point of view
itisfairly rich. For example, AC? containspolynomial-size
DNF and addition. ThustheLMN learning procedureis po-
tentially powerful, but the restriction that their algorithm be
given examples drawn according to a uniform distribution
isparticularly limiting.

A further limitation of the LMN agorithm is its running
time. Valiant's [Val84] learning requirements are widely
accepted as abaseline characterization of feasible learning.
They include that a learning a gorithm should be distribu-
tion independent and run in polynomia time. The LMN
agorithm runsin quasi-polynomial (O(2P%'097)) time.

In this paper we devel op two extensions of the LMN learn-
ing a gorithmwhich produce good approximatingfunctions
when samples are drawn according to unknown distribu-
tions which assign values to the input variables indepen-
dently. Call such adistribution mutually independent since
it isthejoint probability distribution corresponding to a set
of mutually independent random variables [Fel57]. The
running times of the new agorithms are dependent on the
distribution—the farther the distribution is from uniform
the higher the bound—and, as is the case for the LMN
algorithm, the time bounds are quasi-polynomial in ».
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A variant of one of our algorithms gives a more genera
learning method which we conjecture produces reasonable
approximations of AC? functionsfor a broader class of in-
put distributions. A brief outline of the general agorithm
is presented along with a conjecture about a class of distri-
butions for which it might perform well.

Our two learning methods differ in several ways. The
direct algorithmisvery similar to the LMN agorithm and
depends on asubstantial generalization of theirtheory. This
algorithm is straightforward, but our bound on its running
time is very sensitive to the probability distribution on the
inputs. The indirect algorithm, discovered independently
by Umesh Vazirani [Vaz], is more complicated but also
relatively ssimpleto analyze. Itstime bound isonly mildly
affected by changes in distribution, but for distributions
not too far from uniformit is likely greater than the direct
bound. We suggest a possible hybrid of the two methods
which may have a better running time than either method
alonefor certain distributions.

The outline of the paper is as follows. We begin with
definitions and proceed to discuss the key idea behind our
direct extension: we use an appropriate change of basisfor
the space of n-bit functions. Next, we prove that under
this change AC® functions continue to exhibit the low-
order spectra property which the LMN result capitalizes
on. After giving an overview of the direct algorithm and
analyzing itsrunningtime, we discusstheindirect approach
and compare it with the first. Finaly, we indicate some
directionsfor further research.

2 DEFINITIONS AND NOTATION

All sets are subsets of {1,...,n}, where asusua n repre-
sents the number of variablesin the function to be learned.
Capital |etters denote set variables unless otherwise noted.
The complement of aset X isindicated by X, although we
abuse the concept of complementation somewhat: in cases
where X is specified to be a subset of some other set 5,
X =S5 - X, otherwise X = {1,...,n} — X. Strings of
0/1 variables are referred to by barred lower case letters
(e.g. ) which may be superscripted to indicate one of a
sequence of strings (e.g. #/). z; refers to the ith variable
inastring z. Barred constants (e.g. O, ) indicate strings of
the given value with length implied by context.



Appeared at the 4th ACM Annual Workshop on Computational Learning Theory (COLT), 1991. 2

Unless otherwise specified, al functions are assumed to
have as domain the set of strings {0,1}". The range of
Boolean functions will sometimes be {0,1}, particularly
whenwearedealing with circuit model's, but will usualy be
{1, —1} for reasons that should become clear subsequently.
Frequently we will write sets as arguments where strings
would be expected, eg. f(X) rather than f(z) for f a
functionon {0, 1}". In such cases f(X) is ashorthand for
f(e(X)) where ¢(X) is a characteristic function defined
by ¢;(X) = 0if 7 € X and 1 otherwise. Note that the
sense of thisfunctionisoppositethe natural oneinwhich 0
represents set absence.

An AC? function is a Boolean function which can be com-
puted by a family of acyclic circuits (one circuit for each
number » of inputs) consisting of AND and OR gates plus
negations only on inputsand satisfying two properties:

¢ Thenumber of gatesineach circuit (itssize) isbounded
by afixed polynomial inn.

¢ The maximum number of gates between an input and
the output (the circuit depth) is afixed constant.

A randomrestriction p, , isafunctionwhich giveninput z
maps x; to * with fixed probability p and assigns0'sand 1's
to the other variabl es according to aprobability distribution
q. If z representstheinput to afunction f then p,, , induces
another function f [ p which has variables corresponding to
the stars and has the other variables of f fixed to O or 1.
Thisis a generaization of the original definition [FSS81]
in which ¢ is the uniform distribution. The subscripts of
p ae generaly dropped and their values understood from
context.

The function obtained by setting a certain subset S’ of the
variables of f to the values indicated by the characteristic
function of asubset X C S isdenoted by f[S — X or,
when S isimplied by context, smply f[ X . For example, if
S ={1,3} and X = {3} then f[X isthefunction f with
variablez, setto 1 and z3 to 0.

We will use several parameters of the probability distribu-
tion ¢ throughout the sequel. We define u; = Pr[z; = 1],
where the probability is with respect to ¢q. Another param-
eter which we will use frequently is

5 = max(/pi, 1/(1— ).

We assume that thisvalue isfinite, since infinite 3 implies
some variableis actually a constant and can be ignored by
the learning procedure.

It is convenient to define a set-based notation for proba-
bilities also. For example, if X = {2} and it has been
specified that X C {1,2} then we will write ¢(X) for
q(z1 = 1 A 22 = 0). Ingenera, if X is specified to be
a subset of some set S then ¢(X') represents the marginal
probability that the variablesindicated by S take ontheval-
ues specified by ¢(X), and if S is not specified then ¢(X)
isjust ¢(¢(X)). Thusfor mutually independent ¢,

¢(X)=TT@—p) IT ws

1€EX ieX

3 AN ORTHONORMAL BASISFOR
BOOLEAN FUNCTIONS SAMPLED
UNDER MUTUALLY INDEPENDENT
DISTRIBUTIONS

3.1 RATIONALE

Given some element v of a vector space and a basis for
this space, a discrete Fourier transform expresses v as the
coefficientsof thelinear combination of basisvectorsrepre-
senting v. We are interested in learning Bool ean functions
on n bits, which can be represented as Boolean vectors of
length 27. Linial et a. used as the basis for this space the
characters of the group Z% in R. The characters are given
by the 2" functions

xa(X) = —ganxl,

Each v , issimply a polynomial of degree |A|, and {x 4 |
|A| < k} spans the space of polynomials of degree not
more than k. With an inner product defined by

(Loy=2" > @)

re{o,1}~

and norm || f|| = \/{f, f) the characters form an orthonor-
mal basis for the space of real-valued functions on » bits.
The Fourier coefficients of afunction f with respect to this
basisare smply f4 = (f,x4), theprojectionsof f onthe
basis vectors. Given a sufficient number m of uniformly
selected examples (27, f(27)), 3_7Ly f(2/)x a(27)/misa
good estimate of f4 [LMN89].

What happensif the exampl es are chosen according to some
nonuniform distribution ¢? If we blindly applied the LMN
learning agorithm we would actualy be calculating an
approximation to > g 1y f(#)x 4 (¥)q(7) for each A.
That is, we would be cal culating the expected value of the
product fy 4, withrespect toq rather than withrespect tothe
uniform distribution. This leads to the following observa-
tion: if we modify the definition of theinner product to be
with respect to the distribution ¢ on the inputs and modify
the basis to be orthonormal under this new inner product
then the estimated coefficients should on average be close
to the appropriate values in this new basis.

More precisdly, define theinner product to be
(haye= D [@g(@)q)
z€{0,1}n

and define the norm to bet

1fllg =/ {f5 f)g-

Let the basis vectors ¢4 be defined by orthonormalizing
the x 4, with respect to thisinner product (such a basis will

Typically, a subscript indicates that the norm is to be consid-
ered one of the Holder p-norms. We are using the subscript to
mean something different here.
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bereferred to as orthonormal in the ¢g-normor orthonormal
with respect to ¢). Then we expect that if alarge enough
number of samples m are drawn according to ¢,

fa= Zf(i‘jWA(i‘j)/m

ji=1
isagood approximationto f.4, the projection of f onto v 4.

Themainresult of Linial etal. [LMN89] isthat, for any AC°
function f, the Fourier coefficients of f with respect to the
X 'S become small for large | A|. Thus the LMN learning
algorithm consists simply of estimating the “low-order”
coefficients. We show that essentially the same property of
AC? functionsalso holdsfor the coefficients of a particular
1) basisorthonormal with respect to amutually independent
q. Thus, as with LMN learning, we can obtain a good
approximation to an AC® function f by estimating low-
order coefficients of f relativetothetransformedbasis. Our
learning procedure differs in that the estimated coefficients
are with respect to a basis which must aso be estimated.

It will be convenient to have a hame for a basis which is
orthonormal with respect to a mutually independent dis-
tribution as opposed to an arbitrary distribution. We will
refer to such a basis as a ¢ basis and reserve ¢ for bases
orthonormal with respect to an arbitrary ¢. From now on a
Fourier coefficient f "4 Will be assumed to be the coefficient
of the basis vector ¢ 4 unless otherwise noted.

3.2 PROPERTIESOF THE ¢ BASIS

Let o; bethe standard deviation of the ;th variable z; when
samples are selected according to ¢ and note that u; as
previously defined represents the mean. Let z; = (#; —
wi)/oq thatis, z; isthe normalized variable corresponding
to #;. Then, due to the mutual independence of ¢, one
possible ¢ basisis given by Bahadur [Bah61]:

oA = H zi.
icA
This basis will be referred to as the ¢ basis; it isthe basis
which would be obtained by a Gram-Schmidt orthonormal -
ization (with respect tothe g-norm) of the y basisperformed
in order of increasing | A|.

The ¢ basis has a number of properties which make our
generalization of theLMN result possible. First, duetothe
nature of Gram-Schmidt orthonormalization, {¢4 | |A] <
k} spans the same space as {x, | |A| < k}, so linear
combinations of such ¢’s are simply polynomialsof degree
not more than k. Also, it follows immediately from the
above representation of ¢ 4 that for adl 4,5, and X C S,
Y CS,

¢A(X U Y) = ¢A05(X)¢AOS(Y)'
Likewiseit followsthat forany Sand A, B C S,
1 ifA=
5 0416000 1) = { § itraiee

XCs

Another useful property isthat for all A and 5,

pa(B)vVa(B) = ¢p(A)Vq(A).
This follows from the above representation of ¢4 after
notingthat o; = /p: (1 — ;). Finaly, Parseva’s identity

gives
.2
112 = ZfA
A

4 THE DROPOFF LEMMA

As noted above, Linia et a. have shown that the sum of
squares of coefficients of high-degreeterms (the high-order
power spectrum) of AC® functions becomes exponentially
small as order increases when the coefficients are relative
to the x basis. In this section we show that this also holds
for coefficients relative to the ¢ basis. We do this by gen-
eralizing the series of lemmas used in their proof.

Essentially, we prove that the following facts hold for
Fourier coefficients relativeto the ¢ basis.

1. Random restrictions of AC? functions have small
minterms and maxterms with high probability as long
asthedistributionfunction ¢ is mutually independent.

2. All the high-order Fourier coefficients of a function
with small minterms and maxterms are zero.

3. Thecoefficientsof an AC? functionare closely rel ated
to the coefficients of itsrestrictions.

4. Probabilistic arguments can be used to tie the above
factstogether and show that the high-order coefficients
of an AC? function must be small.

We present the proof of the Dropoff Lemma in this order.

41 RANDOM RESTRICTIONS

Thelinchpinof theLinial et a. result isHastad’'s Switching
Lemma [Has86]. This lemma states that when restriction
pp,q Of asuitable CNFfunction hasuniformg thenwithhigh
probability themintermsof therestricted functionare small;
a similar statement about a DNF function and maxterms
followsimmediately. Thussuch arandomly restricted CNF
formula can with high probability be rewritten as a DNF
formula having a small number of variablesin every term.
We generdlize thisto alemmawhich holdsfor any mutually
independent q. For uniformg, 5 = 2 and Lemma 1 reduces
to arestatement of Hastad’s Lemma.

Lemmal Let f bea CNF formulawithat most ¢ variables
in any clause and let random restriction p, , have mutu-
ally independent ¢ with parameters ;; and 8 as defined
previously. Then

Pr(f[p hasamintermof size > s] < (gpt/ In®,)°
where @, = (1 + 1/5)/2, the golden ratio.
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Proof Sketch: Our proof involves a lengthy reworking of
the Boppana and Sipser proof of Hastad’s lemma [BS90].
We give here only the details of our extension to a key
inequality in their proof; the remainder of our proof is
straightforward.

Let €' be an OR of variables, none of which are negated,
and let Y be asubset of these variables. Let ¢ beamutually
independent distributionand let p,, , bearandomrestriction
defined on the variablesin C'. Then we show that

Prlp(v)=%| Clp# 1] < ().
Indeed, because ¢ is mutually independent,
_ Prip(yi) = #]
Priov)y=%]cloz1] = [] oarm .
| | ] Hy Prlo(y) # 1]
From the definition of /5 it follows that for al i, u; <
(6 - 1)/6! SO
. -1
Vi Prip(y;) #1] > 1 - T(l—P)~
Thus, noting that 3 > 2,

Prip(yi) =+ p
Prip(yi) #1 — 1- 1

IN
s

Becauseitisaso truethat for al ¢, (1 — p;) < (6 —1)/8,
an analog to Lemma 1 can easily be proved for the case
where C' in the above proof isan AND. This gives:

Lemma?2 Let f bea DNF formulawithat most ¢ variables
in any term and let random restriction p,, , have mutually
independent ¢. Then

Pr(f[p hasamaxtermof size > s] < (8pt/Ind,)*.

Finally we can state the principa result of this section,
which is abtained by successively applying Lemmas 1 and
2tothelowest levelsof acircuit (cf. [BS90, Theorem 3.6]):

Lemma3 Let f bea Boolean function computed by a cir-
cuit of size M/ and depth d, and let p, , have mutually
independent probability distribution ¢ with parameter 5 as
defined previously. Then

Pr[f[p hasamintermor maxtermof size > s] < M2~°*
where Pr[x] = (28s/In®,)~<.

42 SMALL MINTERMSAND MAXTERMSMEAN
VANISHING HIGH-ORDER SPECTRUM

Here we begin to relate the above results to the Fourier
spectrum of ACP functions. We show that if a function
has only small minterms and maxterms then its high-order
Fourier coefficients—even with respect to certain 1) bases—
vanish.

Lemma4 Let ¢ be any (not necessarily mutually indepen-
dent) probabilitydistribution,let v 4 beabasisorthonormal
in the g-norm such that {¢'4 | |A| < k} spans the same

spaceas {x, | |4] < k}, and let f, bethe Fourier coef-
ficient of ) 4. Thenif all of the minterms angl maxterms of
a Boolean function f have size at most vk, f4 = O for all
|A| > k.

Proof: It isnot hard to see that if the /% condition is met
then f can be computed by adecision tree of depth no more
than k [BI87]. Linial et a. [LMN89] further show that
the Fourier coefficients of the y basisfor such an f satisfy
the lemma. This means that f is in the space spanned by
{xa | |4] < k}. Sinceby definitionthelow-order v/ 4 span
the same space, our lemma followsimmediately. |

Finally, notethat the ¢ basis meetsthe criteriaof thelemma
due to the nature of the Gram-Schmidt orthonormalization
process which defines it.

4.3 RELATING COEFFICIENTSOF A FUNCTION
AND ITSRESTRICTIONS

Putting together the results thus far, we know that with
high probability the random restrictionsof an AC? function
have zero-valued high-order Fourier coefficients. Now we
show akey relationshi p between the coefficients of arbitrary
functions and their restrictions when the coefficients are
relativeto a¢ basis.

We begin with a lemma which alows a rewriting of the
definition of a Fourier coefficient and follow with the
coefficient-relating result.

Lemma5 Let f be any real-valued n-bit function, S any

set, and ¢ 4 orthonormal with respect to mutually indepen-
dent ¢. Then for any subset A,

fa= 37 FIX ansbans(X) ¢(X)
fa =Y F(2)0a(2) ¢(2)

FIX(Y)P 4n5(X)dans(Y)q(X)q(Y)

O

Lemma6 Let f, S and ¢4 be as above. Then for any

BCS, )
Y fhue =2 fIXpa(X)

ccs XC3
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Pr oof:

ZJ%UCIZ [Zf

ccs ccs [xcs3

= Y %
| S e(X)oc(r)

- ;fmmm-
| 3 ox(@or(€) ()

from which the Lemma follows by the orthonormality of ¢
on subsets. O

B¢C ( )]

FIY poc(X)e(Y) ¢(X)g(Y)

¢(X)q(Y)

44 BOUNDING HIGH ORDER POWER
SPECTRUM

We now use a series of probabilistic arguments to tie the
above lemmas together into the desired result. Although
the proofsare very similar to thosein [LMN89], weinclude
them for completeness. We begin with an easily proved
bound on the high-order spectrum of any function.

Lemma7 Let f be any real-valued n-bit function, p a
real in (0, 1), £ an integer, and p and & chosen such that
pk > 8. Let f4 beaFourier coefficient with respect to any
orthonormal basis. Then

~ 2 ~ 2
> faT < 2Es [ Y fa ]
|A|>% |ANS|>pk/2

where S is a subset chosen at random such that each vari-

able appearsin it independently with probability p.

Proof: Clearly Es[|AN S]] > pk for every |A| > k. Thus
Chernoff boundstell us that

Pr{lAn 5| < pk/2 eTPH/®

1

5.
Thusfor each A at least half of the 5" swill satisfy | AN S| >
pk/2.

To this point we have not been much concerned with the
form of the output of the function f; in fact, severa of the
previouslemmas hold for any real-valued function. For the
sequel, we specify that f isBoolean and, furthermore, maps
to either 1 or —1. Itisthen the case by Parseval’s identity
that

<
<

and thus that the sum of any subset of the squared coeffi-
cientsof such aBoolean functionisbounded by unity. With
this fact in hand we can prove the following bound on the
summation of the previouslemma:

Lemma8 Let f bea functionfrom {0,1}" to {1, -1}, S
any set, ¢ aninteger in [0, n], and ¢ a mutually independent
distribution defining the basis for fA. Then

A~ 2
Z fa <
|ANS|>t

Pr[f X hasa minterm or maxterm of size > N

where X is an assignment to the variables in S chosen
accordingto q.

Proof:

S faee

BCS,|B|>tCCS
= ). Excs
BCS,||B|>t

2
Ex | Y Xy

|B|>t

T

|ANS|>t

77X 5]

where the second line followsfrom Lemma 6 and expecta-
tioniswithrespect to¢. Now sincethetermsintheexpecta
tion are never larger than unity, itis clearly bounded above

by the probability that 5 ° ) ; f[ p isnonzero. But then
application of Lemma 4 completes the proof. |

We can now provethe main result.

Lemma9 (Dropoff Lemma) Let f be a function from
{0,1}™ to {1, —1} computed by a circuit of depth d and
size M, and let k be any integer. Then

S < M,
[A|>E

Proof: From the previoustwo lemmas,

S

|A|>k

< 2Fg I;’(r[f[S‘ «— X has aminterm or

maxterm of size > \/pk/2].
But thislatter value isjust

2Pr[f[p hasaminterm or maxterm of size > /pk/2]
P

and by Lemma 3 isbounded above by 2172~ V?*/2 aslong

asp < (28+/pk/2/In®,)~4. Somesimplifyingarithmetic
givestheresult. |
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5 DIRECT LEARNING

As dluded to earlier, our direct learning agorithm, like
that of Linial et a., depends on the spectra property of
AC? functions proved above. That is, since the high-order
Fourier coefficientsrelativeto a ¢ basis are small, we need
only estimate low-order coefficients in order to derive a
close approximation to the desired function. As shown be-
low, thelinear combination of thelow-order ¢ basisvectors
defined by these coefficients is a function which is close
to the true function in the sense that the norm of the dif-
ference between the functions is small. Furthermore, the
sign of this approximating function will with high proba-
bility match the true function, where the the probability is
relative to the input distribution ¢.

Actually, since we assume that only input/output pairs are
given, the distribution ¢ must also be estimated and hence
the function is learned relative to an approximate basis. In
spite of this we are able to prove a bound on the running
time of our algorithmwhichis similar tothebound onLMN
learning. More specificaly, let fA f denotethe probability
that f(z) # f(z) when theinput z's are drawn according
to a mutually independent probability distribution ¢. Our
algorithm, given parameters e and é, producesan f such that
PrifAf > €] < é whentheagorithmis given accessto a
sufficient number of examples of the truefunction f drawn
according to ¢q. The algorithm runsin time and number of
examples quasi-polynomia inn and 1/ ¢, exponentid inthe
parameter 5 of ¢, and polynomial inlog(1/é).

In the sections that follow we first give the algorithm and
then prove the bound on its running time.

51 THEDIRECT ALGORITHM

Algorithm 1 Given m examples (2, f(#/)) of a function
f:{0,1}" — {1,—1} and aninteger k < n, determine f
asfollows:

i1 @l forl<i<n.

1)/ i (1= pg).

3. Define ¢/, = HieA 2L

4. Compute f) = =37, f(a)¢),(a7) for |A] < k

andOotherwise. If|f)| > 1let f, = sign(f},), where
sign isthe obviousfunctionwithrange {—1,0, 1}.

=3 fada(®).
6. Define f(z) = sign(g(z)).

1. Computey; = L 5"

2. Define 2}

5. Define g(#)

We intend primes (') to indicate values that are based on
an estimated probability distribution rather than the true
one. A twiddle (V) indicates that the value includes other
estimates. When a Fourier coefficient is based on an esti-
mated distribution it is written with the twiddle replacing

theusual hat (). Thusfi’4 rather than fz isused to represent

an estimate of the A" Fourier coefficient of f relativetothe
estimated basis ¢/, .

Notice that the restriction on the magnitude of 7/, can only
bring this estimated coefficient closer to the true coefficient
in the ¢’ basis, since al of the coefficients of a Boolean
function must be no larger than 1 in magnitude. The re-
striction aso plays a helpful rolein the lemmas to follow.

52 BOUNDSFOR ¢/6 LEARNING

Here we derive upper bounds on the vaues of m and &
required for the above algorithm to achieve specified error
bounds on an input distribution with a given 5. Our first
step is to generalize a lemma of Linial et a. [LMN89] to
the case of arbitrary distributionsgq.

Lemmal10 Let f beafunctionmapping{0,1}”to{1, -1}
and g an arbitrary functionon thesamedomain. Let ¢ bean
arbitraryprobabilitydistributionon {0, 1}", let the Fourier
coefficients berelative to thebasis ¢4 defined by ¢, and let
probabilitiesbe with rapect to¢. Then

Prif(z) # sign(g( <ZfA_gA
Proof:Pr[();ésgn(( <Pr|f(2 —g9(@)|>1 < s
E[(f(x) —g(2))?] < 3 _(f(x) = z) = |If =9l
and the lemma follows from Parse\/al s |dent|ty and the
linearity of the Fourier transform. |

Now for the remainder of this section let ¢ be a mutually
independent distribution on the inputsto the algorithm and
let unprimed Fourier coefficients be with respect to the ¢
basis defined by ¢. Then in the notation of our learning
agorithm, Lemma 10 saysthat fAf < S (fa — §4)% So
our goa becomes finding an m and % such that with prob-
ability at least 1 — 6 the algorithm produces a ¢ satisfying
S (fa — §4)? < e. While the details of this calculation
are a bit messy, the basic ideais not. Allocate half of the
¢ error to each of two jobs: taking care of the error in the
coefficients corresponding to sets smaller than k£ and larger
than k. The Dropoff Lemma is used to bound the error in
the latter and will aso fix k. Chernoff bound arguments
will give the value of m needed to bound the error due to
estimating the low-order coefficients and basis functions.

Because f/, = Oforall |A| > kand {¢/, | |A| < k} spans
the same space asthe corresponding set of ¢ 4, §4 Must also
vanish for al |A| > k. Thus the following lemma, which
follows immediately from the Dropoff Lemma, gives the

required bound on Z|A|>k(ﬁ4 —ga)?

Lemmall Let f beaBooleanfunctionwithrange{1, —1}
with corresponding {0, 1}- valued function computed by a
circuit of depth d and size M. Then

d+2
k> [5ﬁ|092 (4—M)] =Y <y

|A|>%
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The bound on the error in low-order coefficients is a bit
more involved. There are really two sources of error: the
estimate of the basis functions and the estimate of the co-
efficients relative to these functions. It seems simplest to
consider these sources of error separately. First, define
fa = f(@7)¢a(x?)/m and, asin the definition of [/,
restrict the magnitude of thisvalueto 1. That is, f4 rep-
resents the coefficient which would be estimated if thetrue
basis function was known. Since there are at most n* low-
order coefficientsfor n > 1, an m satisfying

Pr[EI|A|§ks.t. |fA—fA|>@ gg (1)
and
Pr[EI|A|§ks.t. |fA—gA|>H < é, (2)
8nk 2

guarantees that Pr[Z|A|§k(fA —§a)?) > ¢/2] < 6. Here
|fa — fa| representsthe error dueto estimating the Fourier
coefficients given perfect knowledge of the input distribu-

tion, |fA — ga| the error due to estimating the distribution.
An ineguality of Hoeffding [Hoe63] will be very useful for
finding the required m.

Lemma 12 (Hoeffding) Let X; be independent random
variablesall with mean E[X] such that for all i, « < X; <
b. Then for any A > 0,

|

For the moment we remove the unity restriction on fA’s
magnitude. Then E[f4]is fa, and using Lemma 12 tofi rJd
an m satisfying (1) requires only that the bounds on f4

be determined. By its definition, the magnitude of f4 is
bounded by ¢max = max |¢4(#)|, where the maximum is
over dl possible |A| < k and z. Itisnot hard to show that

for al i, || < B — 1, S0 ¢max < (B — 1)*/2. Then by
Lemma 12, m > 16n*(3 — 1)*e~1In(4n*/§) guarantees
that for any given |A| < k, Pr[|fa — fa| > \/¢/8nF] <
§/2n*. Hence such an m satisfies (1). Note finaly that
restricting the magnitude of f4 can only improve the like-
lihood that f 4 issufficiently near fa,since f4 € [—1,1].

Finding an m satisfying (2) is more involved. First,

rewrite g4 as Z|B|<k fjg(m,(/ﬁg) (@l inner products
in this section are with respect to ¢) and let A¢ =
MaX|a|<p,z |¢4(Z) — ¢'4(2)]. Then some agebra shows

that for |A|a|B| S kl |<¢Aa¢lB> - <¢Aa¢B>| S ¢max A¢
It followsthat for al |A| < k

>l < 2p—2\m/(b—a)®

1 m
= Z:;X — E[X]

1Fa—gal < |fa—Faloa dy)|+
ST Faloa.db)l
|BI<k,B#A
< Afa = Fal + 174 (64, 64) = (64,8

+(nk - 1)¢maxA¢
< Aﬁb + nk¢maxA¢~

Actually, careful consideration of the cases A empty and A
nonempty shows that the bound can be tightened to simply
nk¢maxA¢~

Clearly the magnitude of A¢ depends on the error in the
estimate of 4. Intuitively, by driving the relative error in
w; small wedrive A¢ small. Thusdefinec,, asthesmallest
valuesuchthat for all ¢, |u; — | < ¢, min(u;, 1— i, ); that
is, ¢, istheleast upper bound on therelative error. Then by
considering the cases y; < § and z1; > 3 it can be shown
that for all ¢, both theratios |2/ /z;| and |z;/ z;| are bounded
above by 2¢, + 1 aslong asc, < % Hence the largest
possiblevalueof theratio ¢/, /¢ 4 for |A| < kis(2¢,+1)*,
and thus A¢ < [(2c, + 1)* — 1¢max. Findly, use of the
identity z < 1/j = (z + 1) — 1 < 25z for j a positive
integer showsthat if 2¢,, < 1/k then A¢ < e kdmax.

Thus ¢, < +/€/128k2n3 (3 — 1)2* implies that for all
|[A] <k, |fa—ga| < \/€/8n*. Letcq represent thedesired
boundonc,. Thensincel/5 = min(y;,1— p;) it follows
that 1 such that Pr[3d st. |y — pf| > ca/f] < 6/2 setis
fies (2). Noting that £'[f] = p, that 0 < ) < 1, and that
therearen different p}, application of Lemma 12 showsthat
the required m is bounded by 64k%n3 32k+2¢=1In(4n /6).
Thisisaways larger than the value required for (1), so we
have

Theorem 1 For any positive ¢ and 6 and any mutually in-
dependent distribution on the inputs, Algorithm 1 produces
afunction f withthepropertythat Pr{fAf > ¢] < § when-

ever
d+2
k> [smogz (4—M)] ,

m > 64k2n3’“52’“+21 In (47") .
€

Thus for fixed ¢, 6, and [, the agorithm requires
O(2rolylogn ) examples to adequately approximate AC°
functions.

The boundsfor LMN learning on uniform distributionsare
similar. TheLMN & boundispolylogarithmicin A/ and 1/¢
(O(log™3(M /¢))), and the m bound is quasi-polynomial
inn and 1/¢ (O(n?*/¢)) and logarithmicin 1/6.

6 INDIRECT LEARNING

6.1 OVERVIEW

Our approach tolearning AC° functionssampl ed according
to mutually independent distributionsresultsin a straight-
forward deterministic algorithm, but the analysis is quite
involved. We, and independently Umesh Vazirani [Vaz],
have noticed a clever randomized approach which would be
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somewhat more difficult to implement but admitsasimpler
analysis. Observefirst that for any givenvalue i in (0,1) it
iseasy to construct asmall fixed-depth circuit which, given
inputs drawn uniformly, produces 1's with probability ap-
proximately p. Thus for any given mutually independent
probability distribution on n-bit strings a set of » digoint
circuits can be constructed which given uniforminputswill
produce as output each n-bit string with approximately the
desired probability. Conversely, a randomized inverse of
each of these small circuits can be constructed such that
mutually independent inputsto the inverseswill produce a
nearly uniform output.

With thisbackground, theindirect uniformconstruction ap-
proach fallsout naturally. We are given aset of input/output
pairs(z, f(z)) wherethe z's are drawn according to amu-
tually independent distribution¢. The unknown function f
is computed by some ACP circuit . Also, there exists a
set of digoint AC? circuits C; which, given uniform y’s,
produce as output z's with distribution close to ¢. Call the
randomized inverses of these circuits C;°1. Then thereis
another AC® circuit G consisting of the obvious composi-
tion of the C;’sand F' such that, if G computes function g
thenfordl z, ¢(C7Y(z)) = f(&). Sincethe C; }(z) aread-
most uniformly distributed, a variant of LMN learning can
be used to obtain a good approximation to ¢ and therefore
indirectly to f.

6.2 ANALYSISOF UNIFORM CONSTRUCTION

Clearly if the circuits C; produce exactly the desired prob-
ability distribution ¢ on their outputsthen the LMN theory
appliesimmediately to uniform construction, sincethe Ci‘l
will produce an exactly uniformdistributionfor learning g.
Considering the forms of the bounds on & and m for LMN
learning, the analysis for this case reduces to determining
thesize and depth of thecircuit (¢ and thelength of itsinput.
This in turn reduces to determining how long the string
generated by the C{l isand ascertaining the size and depth
of the C;.

Although many possible forms of the C; could be con-
sidered, we will assume that simple depth 2 DNF circuits
are used in order to minimize the increase in depth of ¢¢
over F'. With such circuitsany x of theform Z;:l a; 277,
wherea; € {0, 1}, can be easily constructed using at most
[ variablesand [ + 1 gates. The ideaisto create a circuit
with one AND for each j such that «; = 1, to have that
AND produce 1's with probability 2~/ , and to insure that
at most one AND produces a 1 on each input. Such acir-
cuit iseasy to construct; for example, thecircuit computing
21V (#1A22)V(F1A2A23A24) hasfour variables, one OR,
two AND’s, and produces 1's with probability 13/16.

Thusin the case of exact representation of ¢ by depth 2 C;
there must be some value [ such that for each variable z;,

T = Zé’:l a;277. Therefore (¢ has at most nl variables
and n(! + 1) more gates than F* and has depth d + 2.

Of coursg, evenif ¢ isknown exactly it may not bedesirable
or even possibleto represent it exactly withthe C;. Inthis
case the LMN theory must be extended a bit to cover the
case of nearly uniform distributions. Call a distribution
r on & v-uniform if for al z, |U(z) — r(2)| < v/27,
where U istheuniformdistribution /() = 2=". Thenthe
probabilities of the occurrence of some event with respect
to these distributions can be related in a simple way. In
particular, for any Boolean f and approximating g,

LA () # Sign(o ()]
< PIA) # Sgn(g(e))(L+ 7).

Also, the expected vaue of a Fourier coefficient computed
using examples drawn from a ~-uniform rather than truly
uniform distribution will differ from the true coefficient by
no more than v. Finally, as would be expected, the con-
vergence of the C;* to a uniform distribution as variables
are added isextremely rapid once each C; has at least log 3
variables, that is, once the probability of a1 for each C; is
in the vicinity of the appropriate value.

Putting these facts together with an analysis similar to that
used in proving Theorem 1 shows that if each of the C; has
a polylogarithmic number of variables and a similar num-
ber of gates then the distribution » induced by the C{l will
be near enough uniform for an adequate ¢ to be learned.
Specificaly, let { = 2max[2k?,log, 3] + 2 be the num-
ber of variables input to each C;, where k satisfies the
LMN bound modified to reflect the increase of 2 in depth
d and the logarithmic dependence of circuit size M on |.
Then the uniform construction method satisfies specified
¢/6 bounds as long as the number of examples is at least
64(nl)* 22 c=LIn(4n* /6).

7 COMPARISON OF APPROACHES

The primary advantage of our direct approach to learning
AC? functionsis probably its potential application to non-
independent distributions. While it is not at al clear how
a technique like uniform construction could be used on
an arbitrary distribution, our direct algorithm offers the
hope of wider applicability, as discussed in thenext section.
Also, the ¢ basis and its properties have proved useful in
extending another learning result from uniformto mutually
independent distributions[Bel91].

Another significant area of difference between the ap-
proachesisthe use of randomness. Uniform constructionis
arandom algorithm in terms of both learning and the func-
tion learned, while our direct algorithm and the function
learned are deterministic.

In terms of expected running times, both agorithms are
quasi-polynomial. Uniform construction would seem to
have a digtinct advantage when 3 for the underlying distri-
butionislarge. Onthe other hand, for moderate 3 thedirect
approach should befaster duetotheincreasein circuit depth
which uniform construction must contend with.
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An interesting implementation possibility is ahybrid of the
two approaches. Variables with means far from uniform
would be handled via uniform construction methods—be
expanded by an appropriate C';- ! _and those closer to uni-
form would be unchanged. Then the direct learning al-
gorithm rather than LM N would be applied to the resulting
strings, which would now be nearly independent rather than
nearly uniform. If only afew variablesarefar fromuniform
then increasing the depth of the circuit at these few points
might not affect overall circuit depth. Thus the hybrid ap-
proach potentialy avoids the primary sources of run time
blowup in the individua methods.

8 OPEN QUESTIONS

An averaging argument added to a fundamental idea of
Vdiant and Vazirani [VV85] shows that for every AC°
function f and every distribution ¢ on the inputs there is
a low-degree polynomial which is a close approximation
to f with respect to ¢ [BRS90, Tar91]. Unfortunately,
this is only an existence proof which does not give rise
immediately to a computationally feasible agorithm for
finding such polynomials. The obvious question isto find
such an algorithm.

Given an unknown distribution ¢ and examples of afunc-
tion f drawn according to ¢ we can use something like
an approximate Gram-Schmidt process to orthogonalize,
relative to ¢, a low-degree basis. We can then estimate
the low-degree coefficients of function f. We conjecture
that for many natural distributionsthis will be a good ap-
proximation. For what distributionsis this true? It is not
truefor al distributions, Smolensky [ Smo] has produced a
counterexample.

Itisnatural to define ACP distributionsto be those obtained
in the following way. Transform uniformly drawn input
variables y to new variables z viaan AC? circuit C. The
induced distributiononthe z iscaled AC°. Doesthe above
variant work for AC? distributions?
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