
DIGITAL SIGNATURES AND ELECTRONIC DOCUMENTS:
A CAUTIONARY TALE∗

To appear, Sixth IFIP Conference on Communications and
Multimedia Security, September 2002

K. Kain
Dartmouth College

Hanover, New Hampshire, USA

kunal@Dartmouth.edu

S.W. Smith
Dartmouth College

Hanover, New Hampshire, USA

sws@cs.Dartmouth.edu

R. Asokan
Virginia Tech

Blacksburg, Virginia

rasokan@vt.edu

Abstract Often, the main motivation for using PKI in business environments is to streamline
workflow, by enabling humans to digitally sign electronic documents, instead of
manually signing paper ones. However, this application fails if adversaries can
construct electronic documents whose viewed contents can change in useful ways,
without invalidating the digital signature. In this paper, we examine the space of
such attacks, and describe how many popular electronic document formats and
PKI packages permit them.

Keywords: PKI, digital signatures, e-commerce, e-government.

∗This work was supported in part by by the Mellon Foundation, by Internet2/AT&T, and by the U.S.
Department of Justice, contract 2000-DT-CX-K001. The views and conclusions do not necessarily represent
those of the sponsors.

1

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

2

1. The Problem

One of the most common uses of public-key cryptography is for digital
signatures. If Alice performs a private-key operation on an electronic object O

(usually via hash and padding functions) to yield a signature S(O), then those
who believe in the PKI can verify that S(O) came from O via Alice’s public
key—and thus conclude that Alice generated this signature.

Typically, O itself may consist of an object O1 and a field I indicating
intention, such as “Alice approves O1” or “Alice witnesses that O1 arrived by
some point in time.” In the process of signing, Alice takes O1, adds I , and signs
the result: indicating her approval or witness.

In the non-digital world, people must frequently take such action on paper
documents: e.g., signing forms and expense sheets and contracts; recording
when a bid or homework assignments was submitted. The last decade has seen a
revolution: these paper documents have migrated into electronic settings; rather
than dealing with a paper expense form, we deal with an Excel spreadsheet.
This change in media allows a revolution in the ease and speed of creating and
sharing documents, even between parties on opposite sides of the Internet.

The natural question arises: since we often need to sign paper documents,
and a PKI would permit a nice way to sign electronic objects, can we com-
pose the two, and indicate personal approval of a “virtual” paper document,
by digitally signing the corresponding electronic object? The ability to do this
composition is often a main motivating factor in deploying enterprise PKI (such
as ACES [15]); businesses and products exist to provide exactly these services
(we have surveyed some for this project [2, 3, 5, 9, 10]).

Typical electronic workflow tools replace a paper document with an elec-
tronic object O, that yields a virtual piece of paper when a party opens the
object. When Alice signs an object O, she commits to the virtual piece of paper
she sees when she views the object. By PKI, when Bob verifies S(O), he con-
cludes that Alice digitally signed O. By composition—if we accept that digital
signatures imply workflow approval—Bob concludes that Alice approves the
virtual paper document that O represents. Figure 1 sketches this scenario.

We decided to investigate whether this composition actually works. The
particular angle that struck us as questionable was the implicit assumption
that electronic objects generate semantically equivalent virtual documents each
time they are opened. If VB(O) can be made to be substantially different from
VA(O), then Bob’s conclusion about what Alice signed will differ from what
Alice thought she signed.

In Section 2, we discuss scenarios in which an adversary (perhaps Alice, or
perhaps the entity who gave Alice the document) can benefit by constructing
such objects. In Section 3, we discuss how popular workflow formats permit
the construction of such objects. In Section 4, we discuss how many common

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

DRAFT 3

PSfrag replacements

non-digital
world

digital
world

Alice Bob

1. Approves

2. Signs

4. Concludes that
Alice approved

3. Verifies against
Alice’s Public Key

VA(O) VB(O)

O O, S(O)

Figure 1. Current PKI/workflow integration attempts to capture the non-digital process of
signing paper, by digitally signing the corresponding electronic object. To “sign” the virtual
document VA(O), Alice digitally signs the corresponding electronic object O. If Bob receives O

and S(O) and verifies this signature, then he concludes that Alice approved the virtual document
VB(O) that he sees.

ways of integrating PKI with workflow can still appear to validate signatures
on such objects (although some packages resisted our attacks). In Section 5,
we consider some countermeasures.

1.1. Prior Work

Our work was motivated by planned deployment of real applications that
used digital signatures on electronic documents. We consequently began in-
vestigating the surprising extent to which these these document formats were
malleable, and to the surprising extent to which COTS PKI packages tolerated
this malleability.

However, these issues certainly have an older history. For one example,
Herzberg [8] considered signing the viewing program as well as the document.
For another example, we can consider Europe. The European Union’s electronic
signature directive [4] made electronic signatures at least as binding as paper-
based signatures. Germany actually had a digital signature act (1997) even
before the EU’s Directive;in fact the directive was adjusted to conform to the
German Digital signature Act [13]. Austria has also fully implemented the
directive[1]; and concretized the malleability problem by specifying that only
data formats may be used which have an “available specification” and which
exclude “dynamic changes” or “invisibilities.”

Pordesch [11, 12] has also considered these issues.

2. Attack Scenarios and Approaches

2.1. Motivating Scenarios

When performing vulnerability analyses, if one discovers some avenue to
cause the system to engage in unexpected ways, one typically encounters the

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

4

response that no one would ever do that. Consequently, we begin by pro-actively
addressing this concern.

Within our university, two applications motivating campus PKI are times-
tamped homework submission and signing of payroll and expense forms.

The timestamped homework application typically posits that a student
Alice submits homework to an automatic system Bob that appends the
current time, digitally signs the result, and forwards both on to the instruc-
tor Cathy. (One could also easily imagine a system using more advanced
timestamping techniques. [7].)

Suppose student Alice could construct an electronic document O that,
whenever it was viewed, first consulted a remote file or Web location,
and rendered a virtual document based on the contents of that remote file
R. Alice could then completely subvert the purpose of timestamping by
submitting O before the assignment deadline, but continuing to work on
R up to the time the project was graded. If the assignment is one where
the instructor Cathy posts sample solutions before grading, Alice could
guarantee herself high scores by preparing R to follow those solutions.

In the typical processing of expense forms, a submitter Alice sends a
form to an approver Bob, who then sends it to Cathy, who actually issues
checks. Suppose malicious Alice has two sets of numbers: a set S1 with
illegitimate expenses that Bob would not approve but which would result
in Cathy issuing a large check, and a set S2 with smaller numbers that
Bob would approve. If Alice could construct an electronic document O

that displays S2 when viewed by Bob but S1 when viewed by Cathy,
then Cathy will receive a Bob-approved expense form indicating S1, and
Alice will a larger reimbursement than she should.

In the above two examples, Alice benefits by obtaining Bob’s signature on
an electronic object that, when viewed in some contexts, displays a virtual
document that Bob would not have signed. Scenarios also exist where Alice
could benefit by being able to retroactively change documents to which she
previously committed. For example, Alice might submit a signed bid to provide
(or purchase) services, and might benefit from retroactively changing the terms
of that bid.

The domains of commerce, legal processes, and medical processes offer
many other examples.

2.2. Taxonomy of Approaches

We now sketch a rough taxonomy of ways an adversary might construct such
malleable documents.

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

DRAFT 5

Hidden Parameters. This avenue of attack works when the virtual document
that appears when someone views an electronic object O is not completely
determined by O alone, but instead depends in part on other parameters. One
way to characterize attack strategies is to consider these parameters. We offer
some:

Time. Can the virtual document usefully change depending on the time
the object is viewed?

Viewer Data. Can the virtual document usefully change depending on
the identity of the viewer, their machine, their operating system, or other
such context data?

Viewer Action. Can the virtual document usefully change depending on
actions the viewer takes?

Remote Control. Can the virtual document usefully change depending
on the existence or contents of a file controllable by the adversary? A
secondary issue here would be the proximity of this file to the viewer: a
strategy that permitted the file to be an arbitrary URL would require only
that the attacker control a web site, but also would require that the viewer
have a good connection to the Web (in some cases, we have been able
to overcome this restriction by using a 1x1-pixel image to pre-load the
required document in the viewer’s cache). Having the file to be closer to
the viewer may require the attacker to have greater access.

Note that a Web-based remote control attack can potentially be used to mount
a viewer-specific attack, if the viewer visits from a predictable host. (However,
we did not try this in our tests.)

Fraudulent Content. In our attack scenarios, the adversary devises a way
to usefully change the apparent content of a signed document. The question
then arises of when the adversary must determine this alternate content. Two
natural choices suggest themselves:

Pre-signature. The alternate content must be fixed at the time the sig-
nature is applied.

Post-signature. The alternate content may be chosen at some point after
the signature has been applied.

Nature of Change. Another parameter is how the display of alternate content
affects the “current” electronic document.

Static Content. The most powerful attack strategy is one where viewing
alternate content does not change the working object.

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

6

Dynamic Content. A strategy that requires the working object (e.g., the
Word document the viewer opened) to be modified as part of displaying
alternate content can still be effective, but only when the signature is
verified against the original object.

Dynamic Content and Signature. It is also conceivable that an attack
strategy might change signatures at the same time it changes the contents
of the object, perhaps by shipping pre-established object-signature pairs.

Other Angles. We intend the above simply as an illustrative taxonomy, not
as a complete one. In particular, we also want to leave open other avenues for
attack. For one example:

Spoofed Signature. In standard Web spoofing [6, 16, 17], the adversary
uses the richness of the user interface to create the illusion of the desired
result. When attacking signatures, the adversary might use a similar
technique: the document might modify itself and invalidate its bona fide
signature—but mimic the signature-verification user interface sufficiently
well that the user is still convinced the signature is valid.

3. Worflow Formats

No one is satisfied with ASCII text anymore.
In this section, we consider various popular formats for electronic documents,

and the potential to realize the above attack scenarios in these formats.
We note that this is an exploratory list, not an exhaustive one. (We just wanted

to see what we could find; by no means can we assert that this is complete list
of all attack strategies.)

3.1. Word
3.1.1 With Macros. Since release 6.0, Microsoft Word has permitted
users to add active content to documents via macros. In our first attempt, we
explored whether we could use Word macros to carry out a remote control, post-
signature attack. With some trial and error, this is easily done: with the opening
of the document, we associate a macro that replaces the current contents with
the contents of a remote file.

Private Sub Document_Open()

Set doc = Documents.Open(URL of file)

Set rng2 = doc.Range

Documents("signed.doc").Activate

Set rng = ActiveDocument.Range

rng.FormattedText = rng2.FormattedText

doc.Activate

ActiveDocument.Close

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

DRAFT 7

This works, but is brittle: the viewing party must either have macro security to
set to low or the attacker must be a trusted macro signer; furthermore, this is a
dynamic content attack that changes the file contents.

3.1.2 Fields. The security risks of Word macros are sufficiently well-
known that many users leave their Macro security setting at “high”; mounting
a signature attack via this vector is not particularly plausible—nor interesting.

Instead, we decided to look at approaches that did not use macros.
One set of promising techniques is the Insert Field feature in Word. From the

Insert menu, if one selects Field, one is given a rich set of fields and operators
with which to build active content.

For example, we can carry out a time attack by using the conditional IF
operator on the DATE field. In the fragment below, the author revises his
testimony after the 16th. (A more complex conjunction operation would give
us month and year checks as well.)

{ IF { DATE \@ "d" * MERGEFORMAT } < 16

"I did not have" "I did have"}

Installing field code is tricky: one cannot simply “type” the code into the field
box. For code such as the example, we first selected the IF operator from the
menu, then within the resulting code, we inserted the DATE field.

The above attack has the limitation of being pre-signature but the advan-
tage of being static content: the binary document appears to contain the entire
conditional, and does not appear to change depending on the branch taken.

Fields also offer promising hooks such as USERNAME. However, apparently,
only DATE and TIME are automatically updated upon document open; for
USERNAME to be updated to reflect the name of the current viewer, the viewer
must explicitly update fields. (although the attacker can configure the document
to do this when printing).

Fields can also be updated automatically by via macros, but that reduces us
to the previous case.

Sub UpdateAllFields()

Dim aStory As Range

Dim aField As Field

For Each aStory In ActiveDocument.StoryRanges

For Each aField In aStory.Fields

aField.Update

Next aField

Next aStory

End Sub

(We did not examine modifying Word documents via a binary editor to see
if we could cause fields to behave in an undocumented fashion.)

3.1.3 Links. Somewhat unexpectedly, Word also permits the user to
insert material from remote documents by reference. To do this, the user copies

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

8

text from one Word or Excel document (we have not tried other Office formats);
then, in the target document, the user selects Edit, then Paste Special, then Paste
Link, then pastes the text in as a link (unformatted text works nicely).

This approach permits a post-signature, remote control attack. Unfortu-
nately, this also appears to be a dynamic content attack—Word asks whether to
save the document.

A surprising side-effect of the existence of this feature in Word is that a
remote Web site can track each time one reads a document, and even plant
cookies. (The University of Denver [14] has also noticed this “feature”.)

3.2. Excel

3.2.1 Macros. As with Word, Excel also has powerful Macro capabil-
ities. Again, we decided not to explore this direction, because the risks are
already well-known.

However, the plausibility of Excel macros as an attack vector might be greater
than Word’s. Many organizations use macro-laden spreadsheets as standard
practice. For example, universities preparing grant proposals for the US Na-
tional Science Foundation (NSF) are required to download Excel spreadsheets
with Macros. Since these spreadsheets typically get routed throughout univer-
sity administrative staff, at least one large population is primed to always hit
the “accept macros” button.

3.2.2 Time and Date. In Excel, the user can associate functional behav-
ior with specific cells. This behavior has interesting potential for our purposes.

For example, an attacker can mount a pre-signature, time-based attack by
selecting Insert, then Function, then building an IF construct using NOW(). A
simple example:

IF(DAY(NOW())<16, 2000,20000)

Unfortunately, this is a dynamic content attack, since Excel appears to notice
the cell is “volatile” and asks whether the document should be saved.

3.2.3 Operating System. We can also use functions to mount viewer-
data attacks—although the most useful viewer data we could find was operating
system (or perhaps file path name).

For example:

IF(INFO("osversion")<>"Windows (32-bit) NT 5.00",

"I love Linus","I love Bill")

Again, this attack is pre-signature, but also is dynamic-content.

3.2.4 Links. The same techniques of Section 3.1.3 apply to Excel as
well: the attacker can copy data from a Word or Excel file under his control,

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

DRAFT 9

then Paste Special a link into an Excel cell. As before, this enables a remote-
control, post-signature, dynamic-content attack.

Unfortunately, this appears to trigger a warning each time the file is opened.
Options exist to disable this warning (Tools, then options, then Edit), but these
appear to remain with the installation of Excel, rather than traveling with the
file.

3.2.5 External Queries. Excel includes features to make explicit queries
to remote files. These features enable post-signature, remote control attacks
that have dynamic content.

From the Data menu, the attacker can select Get External Data and then set
up a query to a remote text file. The text file should be written with tab spaces
between words to specify different fields in the spreadsheet. By right-clicking
on the cell and selecting Data Range Properties, the attacker can configure the
query to update on open or even regularly (in the background).

Sometimes, this technique gives a warning and an external data toolbar pop-
up.

3.3. PDF

Adobe’s Portable Document Format (PDF) is fast becoming an alternative
to Word as the de facto standard for electronic documents.

Various tools exist to view PDF and to convert other formats into PDF;
however, using the official Acrobat 5 product, one can more directly explore
nuances in creating PDF documents.

With this flexibility—and with Acrobat’s use of Javascript with event-driven
actions—we were able to explore some interesting avenues (although we have
not been able to carry out a remote-control attack here).

3.3.1 Time. Using some Javascript functions we were able to make
attacks similar to our time-based attacks on Word and Excel.

For example, one can use the form toolbar to create a form field, and then add
Javascript code in its calculate field to change the value of the field according
to the date.

var f = 9000

var g = util.printd("d", new Date())

if(g < X) f = 5000

event.value = f

The variable g here just gets the day out of the date value, and the X represents
some day against which we want to check the value of g. In this type of form
field, we can make it appear without a border—like an ordinary text. We can
also make it “Read-only” using the appearance tab.

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

10

3.3.2 Viewer Action. Above, we made a form that appeared to be text.
We can also make a form that is invisible—but which has Javascript associated
with viewer actions.

For example, when the mouse moves over the form, we can trigger Javascript
to change the value of another field. We click on the form creation tool on the
tool bar and use the mouse to create a box in the document by dragging it
across the screen to the size we want the form box to be. Then , we click the
mouse enters from the Actions bookmark, and select Run Javascript from the
drag-down menu. We could then use the Javascript to give some form named
“danger” another value.

event.value = 1

3.4. HTML mail

As with documents, people are not satisfied with just plain ASCII mail, and
instead want mail content to incorporate feature such as colors, different fonts,
and pictures. The MIME standard permits email to be formatted as HTML, and
consequently many popular clients (such as Yahoo Mail, Hotmail, iname.com,
and Mailcity) do this.

HTML email provides a rich breeding ground for a variety of attacks. To
test these techniques, one needs to discover how to convince one’s mail client
to send an arbtitrary HTML file as MIME mail; in Microsoft Outlook, when
sending new mail, one clicks on the view menu item, then selects source edit,
then selects the HTML tab.

3.4.1 Date. Using Javascript as a tool we carried out a variety of attacks
in this area.

For example, we can change the content of the document with a change
in date by using the document.write() method which allows us to write a
new page using HTML tags. With many mail clients (including Netscape and
Outlook), if the user attempts to look at the HTML source for this mail, they
only see the final HTML—and not the Javascript with the dynamic content.

<HTML>

<HEAD>

<TITLE>HTML Mail</TITLE>

<SCRIPT language=JavaScript >

function InitForm()

{

var today = new Date()

var day = today.getDate()

if (day > 8)

{

document.write("<PRE>
Kunal 4000
Sean 8000
</PRE>")

}

else {

document.write("<PRE>
Kunal 8000
Sean 16000
</PRE>")

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

DRAFT 11

}

}

</SCRIPT>

</HEAD>

<BODY onLoad="InitForm();">

<PRE>

</PRE>

</BODY>

</HTML>

We can similarly do changes based on time.

3.5. Remote Control and Viewer-Specific Attacks

Another type of attack that we can carry out is include, in the HTML, refer-
ences to inline images which reside on a remote system. This technique permits
post-signature remote-control attacks (since we can change the images after the
fact) as well as viewer-specific attacks (since our Web server can track which
user is requesting the images).

We successfully carried out this attack with an image that looked like text.

<HTML>

<HEAD>

<TITLE>HTML Mail</TITLE>

<BODY>

<PRE>

</PRE>

</BODY>

</HTML>

As noted, it is possible to get all kinds of information from already existing
methods from the browser type to the operating system being used.

We can do this at the client-side by using Javascript:
<HTML>

<HEAD>

<TITLE>HTML Mail</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function InitForm()

{

if (navigator.appName == "Microsoft Internet Explorer")

{

document.write("<PRE>
Kunal 4000
Sean 10000
</PRE>")

}

else {

document.write("<PRE>
Kunal 8000
Sean 16000
</PRE>")

}

}

</SCRIPT>

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

12

</HEAD>

<BODY onLoad="InitForm();">

<PRE>

</PRE>

</BODY>

</HTML>

Using Microsoft Outlook, which uses the Microsoft Internet Explorer to view
HTML mail, we were able to successfully carry out this test.

4. Methods of PKI/Workflow Integration

We now consider some sample approaches used in the field for signing virtual
documents.

4.1. External PKI

One approach is to use a PKI package that is completely oblivious to doc-
uments it is signing. For example, one might use PGP to sign and verify
documents sent as email attachments. For another example, we also obtained
a certificate from Digital Signature Trust [2] and used their CertainSend appli-
cation to sign, transmit, and verify signatures on electronic documents. With
these approaches, the above attack strategies on Word, Excel, and PDF work.

We also worked with S/MIME and found it vulnerable to the HTML email
attacks. Experimenting with Outlook and using its built-in signature and en-
cryption features, we were able to carry out the attacks proposed in Section 3.4
successfully.

4.2. Assured Office

Another approach is to use a PKI package that is explicitly integrated with
the document software. For example, the Assured Office product from E-Lock
Technologies [5] adds sign and verify buttons in one’s Office installation, and
uses a key pair resident in the user’s browser to sign documents.

Table 1. A summary of the attacks we tried

Types of attacks Data Format Used

Time/Date-Based Attacks Microsoft Word/Excel, Adobe Acrobat, HTML mail
Macro-Based Attacks Microsoft Word
Linked file Attacks Microsoft Word/Excel, HTML mail
Platform-Based Attacks Microsoft Word/Excel, HTML mail
Event-Based Attacks Adobe Acrobat

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

DRAFT 13

With this approach, all of the Word and Excel attacks we outline above still
work. Even the dynamic-content attacks work, because the signature is verified
at document open, before the changes have been made.

(E-Lock has recently been acquired by Lexign [9], and the Assured Office
product has been renamed ProSigner.)

4.3. Acrobat Signed PDF

Adobe Acrobat has two types of signature features built in.

4.3.1 Visible Signatures. In Adobe visible signatures, the document’s
signature is visible as an image that indicates whether the signature has been
verified and whether the document was modified since. Our time-based attack
of Section 3.3.1 still worked (although some versions with updates every second
seemed to change the document before the signature was verified).

In theory, we could also use the techniques of Section 3.3.2 to add mouse-
over action to the digital signature field—for example, to change a global value
when the user verifies the signature, so interesting things can happen after the
signature is verified.

The visible signature approach is also potentially vulnerable to plain old
spoofing: including an image that looks just like a valid, verified signature.

4.3.2 Invisible Signatures. In Acrobat’s invisible signatures, the signa-
ture is applied as an invisible tag. This technique extremely well against the
attacks we have proposed, as the image of the document can easily be matched
after a change in the file content with the previous image and the changes can
be easily noticed.

4.4. Utimaco

Another product we have recently discovered is the SafeGuard Sign&Crypt
for Office from Utimaco Safeware [3], in Germany. Although we have not
been able to obtain sample tools, we were pleased to notice that their online
documentation indicated they were concerned about “invisible dynamic con-
tent,” and the screenshots indicate they appear to sign and verify TIF images of
documents. We speculate that our attack strategies would not be effective here.

4.5. Silanis

Silanis [10] of Canada makes a ApproveIt package for Word and Excel doc-
uments. In our tests, ApproveIt seems to be aware of most of our attempts to
change document contents, and blocks the field contents to be updated. How-
ever, our tests also showed that ApproveIt still permits macro-based attacks.

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

14

5. Conclusions and Countermeasures

We consider several general approaches for potential countermeasures:

Inert Documents One approach is to carefully design a document format
that is inert: has no dynamic content. (This appears to be the approach
taken by Utimaco.) Given the surprising richness of document formats,
we would hesitate to certify any given one as inert. We also wonder
whether users would accept inert documents in their workflow process.

Application Awareness Another approach is to make the digital signature
tools highly application aware, and refuse to verify (or perhaps even
sign) documents that had malleable content. Acrobat Invisible Signatures
appear to move in this direction. The fact that Excel even flags certain
of our tricks as “volatile” and notices the document changes suggest an
avenue to correct those issues.

However, this approach would complicate the acceptable API that PKI
tools should offer to applications.

Identify and Sign Parameters Herzberg [8] once proposed signing both
a document and the program that views the document. One might extend
that to explicitly identify and sign all hidden parameters; however, it has
been observed that this may not be a feasible solution.

Verification Cleanrooms Alternatively, one might design “safe” places,
free of predictable influences, where a document might be verified. For
example, our remote-control Web attacks can be detected if the verifier
has a slow or non-existent Web connection. (Of course, this notion of
moving verification to a trusted safe place runs counter to the standard
intuition of moving signatures there.)

We note that some products we tested resisted many of our attacks. and that
the US appears to lag behind Europe with regard to laws and standards in this
area. We would urge application deployers to carefully examine their tools.

What additional lessons do we draw from this?
First, this work offers more data points in support of standard security ca-

nards:

The composition of apparently reasonable systems in not necessarily se-
cure. What other things are dangerous to simply sign?

As we saw before with web spoofing, the surprising functionality and
interoperability of common desktop tools yields many opportunities for
malicious behavior.

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

DRAFT 15

Second, by a simple exploration, we’ve stopped our university from deploy-
ing a fatally flawed signature/workflow integration; we offer this paper as a
caution for others considering digital signatures on paperless transactions.

Acknowledgments

We thank our colleagues in the Dartmouth PKI Lab for the support, and the
anonymous referees for their helpful comments.

References

[1] C. Brenn. Summary of the Austrian Law on Electronic Singatures. http://rechten.kub.
nl/simone/brenn.htm

[2] Digital Signature Trust. CertainSend Security: A Brief Technical Overview. http://www.
trustdst.com/prod_serv/certainsend/tech_overview.html

[3] D. De Maeyer. Interoperability at Utimaco Safeware: Digital Transaction Security. http:
//www.utimaco.de/eng/content_pdf/pkic.pdf

[4] DIRECTIVE 1999/93/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of
13 December 1999 on a Community framework for electronic signatures. http://europa.
eu.int/ISPO/ecommerce/legal/documents/1999_93/1999_93_en.pdf

[5] E-Lock Technolpgies. E-Lock Technologies Assured Office. http://www.elock.com/
pdf/ao_entrust.pdf

[6] E. Felten, D. Balfanz, D. Dean, and D. Wallach. “Web Spoofing: An Internet Con Game.”
20th National Information Systems Security Conference. 1996.

[7] S. Haber and W. Stornetta. “How to Time-Stamp a Digital Document.” Journal of Cryptology.
2:99-111. 1991.

[8] A. Herzberg. Personal communication.

[9] Lexign Incorporated. The Lexign Suite. http://www.lexign.com/resources/white_
papers.htm

[10] D. McKibben. Silanis Technology: Signature Technology for E-business. http://www.
silanis.com/download/whitepapers/silanis_gartner.pdf

[11] U. Pordesch. “Der fehlende Nachweis der Präsentation signieter Daten.” DuD—
Datenschutz und Datensicherheit. 2/2000.

[12] U. Pordesch and A. Berger. “Context-Sensitive Verification of the Validity of Digital Signa-
tures.” Multilateral Security for Global Communication (Müller, Rannenberg, eds.). Addison-
Wesley-Longman, 1999.

[13] A. Rossnagel. “Digital Signature Regulation and European Trends.” http://www.

emr-sb.de/news/DSregulation.PDF

[14] R.M. Smith. “Distributing Word Documents with a locating beacon.” SecuriTeam. August
2000. http://www.securiteam.com/securitynews/5CP13002AA.html

[15] U.S. General Services Adminstration. Access Certificates for Electronic Services. http:
//www.gsa.gov/aces/

[16] Z. Ye, S.W. Smith. “Trusted Paths for Browsers.” USENIX Security. 2002.

[17] E. Ye, Y. Yuan, S.W. Smith. Web Spoofing Revisited: SSL and Beyond. Technical Report
TR2002-417, Department of Computer Science, Dartmouth College. February 2002.

Appeared at the Sixth IFIP Conference on Communications and Multimedia Security, Sep 2002.

