
1

Towards Usefully Secure Email
Chris Masone and Sean Smith

Department of Computer Science
Dartmouth College

cmasone,sws@dartmouth.edu

Abstract— When users’ mental models don’t match the
way the underlying systems work, problems can arise.
For human-based security systems to be effective, we
believe that is important to identify the tasks involved at
which humans excel (and at which computers do not), and
then design the system accordingly. To demonstrate this
principle, we are building Attribute-Based, Usefully Secure
Email (ABUSE), a system that leverages users by enabling
them to build a decentralized, non-hierarchical PKI to
express their trust relationships with each other, and then
to use this PKI to manage their trust in people with whom
they correspond via secure email. Our design puts humans
into the system—to do things that humans are good at
but machines are not—at both the creation of credentials
as well as the interpretation of credentials. In this paper,
we discuss why secure email is an interesting proving
ground for our design ideas, set out the architecture of
the system, and relate our early experiences in testing our
user interface on real humans.

I. INTRODUCTION

In the current era of ubiquitous network connections,
a wide array of software has come into existence to
help users secure various aspects of their computer use.
As users work with these pieces of software, they must
constantly make decisions regarding the integrity and
authenticity of incoming information and requests for
personal data. This software often attempts to help users
protect themselves through a variety of user interface
elements — icons, dialog boxes, text elements and so
forth. Given the current state of affairs with respect to
computer security, it is clear that something has gone
awry.

Our own experience, as well as work done by other
researchers [1]–[3], supports the idea that problems often
arise when software behaves in a way contrary to the
mental model suggested by its user interface. Moreover,
when software attempts to help humans make decisions,
but is not capable of appropriately modeling how humans
make those decisions, it may provide information that
is insufficient, irrelevant, or even totally misleading. To

This research has been supported in part by the NSF (CNS-0448499)
and by Intel. This paper does not necessarily reflect the views of the
sponsors.

bring human mental models and the behavior of systems
into closer alignment, thus avoiding these problems, we
believe software must be designed to explicitly leverage
the people who use it; lay out the goals of the system,
identify the tasks involved at which humans excel (and
at which computers do not), and then design the system
accordingly.

To demonstrate this design principle, we have chosen to
build Attribute-Based, Usefully Secure Email (ABUSE),
a system that leverages users by enabling them to build
a decentralized, non-hierarchical PKI to express their
trust relationships with each other, and then use this
PKI to manage their trust in people with whom they
correspond via secure email. Our design puts humans
into the system—to do things that humans are good at
but machines are not—at both the creation of credentials
as well as the interpretation of credentials. By doing
so, we hope this system can overcome the failings of
approaches based on standard PKI.

Because “trust” is a heavily overloaded term across
several fields, Section II will present and explicate how
we mean to use this term. Section III will provide
background on S/MIME email, the application we have
chosen to use to explore human trust issues as well as
some motivation for that choice. Section IV discusses
the related field of Trust Management (TM) and why
it is not an appropriate solution for the problems we
consider. In Section V, we will discuss the ABUSE
architecture and our experiences designing one of the
system’s user interfaces. Section VI will discuss our
future work with the system, related work will follow
in Section VII and we will wrap up with concluding
remarks in Section VIII.

II. HUMANS AND THEIR TRUST

To borrow from both sociological literature and and
technical literature, we will consider trust to be the will-
ingness of an entity to undertake a potentially dangerous
action on behalf of a second entity as a result of a set
of shared expectations between the two [4], [5]. There
are two components to this set of expectations:



2

• Background expectations, the assumptions defined
by a “world known in common” [6], and

• Constitutive expectations, the parameters of the
particular situation [7].

According to [4], there are three ways to create this
context between two parties:

• Process: using reputation and prior experience.
• Characteristic: using innate attributes, e.g. family

background, gender or ethnicity.
• Institutional: using formal social structures, like

certifications or membership in a professional or-
ganization.

It may be interesting to apply this framework to the
myriad of methods in which humans interact through the
Internet. However, we believe it will be more instructive
and useful to apply this framework to some concrete ex-
amples from a single domain—email, since it’s become
the primary means of communication between humans
in Internet settings.

III. S/MIME EMAIL: A PARTIAL SOLUTION

To address email security and privacy concerns, many
organizations in the commercial, federal and educa-
tional sectors have deployed S/MIME [8], [9], a se-
cure email standard that leverages X.509 Identity Cer-
tificates [10] to provide message integrity and non-
repudiation via digital signatures [11], [12]. In addition,
these signatures often contain the sender’s Identity Cer-
tificate, so all information contained therein is avail-
able to the recipient. For example, a digitally signed
message sent by the first author would confirm that
“Dartmouth College” believes his email address to be
“Christopher.P.Masone@dartmouth.EDU”, his name to
be “Christopher P. Masone”, and give a date after which
Dartmouth no longer guarantees any of the above to
be true. The signature would also contain his public
key, which can then be used to validate the signature.
Pretty Good Privacy (PGP) is another PKI-based email
scheme which provides similar properties, but with more
sporadic adoption.

In terms of our trust model, S/MIME can do one of two
things for the recipient, depending on whether she has
experience with the sender. If she knows the sender a
priori, S/MIME can enable the recipient to leverage her
trust in an institution to assure herself of the sender’s
identity and thus apply her process-based trust to the
incoming message. If she has little or no prior experience
with the sender, then S/MIME allows the recipient to
extend some measure of institutionally-based trust to

the sender. At least, that’s the idea. However, both
the literature and personal experience show that issues
remain.

A. Familiar correspondents

S/MIME leverages X.509 ID certificates, which are
minted by a Certification Authority (CA), often local to
the user receiving the cert. In the above case, Dartmouth
College’s CA would have issued Chris his credential.
If Chris sends signed email to someone outside of Dart-
mouth, most email clients will actually warn the recipient
not to trust that message, unless she has configured her
software to trust Dartmouth’s CA [13]. The user is told
not to trust someone that she already does because of
a client configuration issue. To fix this, the recipient
would have had to install the Dartmouth CA’s certificate
as a “trust root” in her email client. Standard clients
come with a wide variety of trust roots pre-configured
but, with many organizations deploying their own PKIs
(especially educational institutions), this set is far from
comprehensive.

Another interesting issue arises from the fact that stan-
dard S/MIME clients treat all installed trust roots as
equal.1 When an S/MIME signature is deemed valid,
the client will display the same information to the user
regardless of which CA issued the credentials used to
sign the message! The first author leveraged this quirk,
along with Thawte’s Freemail CA and Dartmouth’s name
directory, to generate what appears at first glance to be
legitimately signed S/MIME email from the College’s
president. The Freemail CA will allow a user to get
a certificate for any email address over which he can
demonstrate control. Dartmouth’s name directory allows
users to choose any nickname, even one close to the
actual name of the President. Yes, the certificate used to
sign this message was not from Dartmouth’s CA, but this
is only evident after some extra effort (our Director of
Technical Services was reportedly taken in by our ruse).

In the case of familiar correspondents, S/MIME is sup-
posed to help users leverage their trust in an institution to
allow them to reliably extend their pre-existing process-
based trust to each other. However, as we have shown,
it is possible for an attacker to play several complex
systems off each other and thwart this design.

1At least, all that are allowed to identify users for the purposes of
signing email.



3

B. Unfamiliar correspondents

In large organizations, it becomes less likely that a
sender and recipient knew each other prior to contact.
Thus, an S/MIME signature verifying only the sender’s
name and email address would not be enough to help
the recipient make a good decision. The signature is
not expressive enough to allow humans to specify the
right properties for conclusions in human trust settings.
The authors, along with another colleague, previously
explored S/MIME expressiveness problems in [14]. The
following paragraphs summarize the classes from that
report.

The first class of issues arises when users expect that
a name, verified by a digital signature, equates to a
person. In Dartmouth’s Computer Science department,
for instance, our grant manager shares a name with
many other people in our Name Directory. They are
distinguishable only by middle initial (not helpful) and
department (since she is listed in a generic administrative
unit, also not helpful). We don’t care that mail is from
“Joan B. Wilson”2, we care that mail is from “the Joan
Wilson who manages grants for Computer Science at
Dartmouth.”

A second class of issues arises when a name, verified by
a digital signature, does not tell the user what they need
to know. A senior colleague has preached the need for
academic PKI to prevent a repeat of an incident at Yale
in which someone forged mail from the Dean, canceling
classes. Here at Dartmouth, we often receive “mail from
the Dean” that is not from the Dean at all, but from
one of the Dean’s administrative assistants. Standard,
hierarchical PKI doesn’t help at all in this case, because
a signature from “John Wilson” doesn’t help unless the
recipients know that “John Wilson” is the new assistant
to the Dean, and is allowed to speak for her on such
matters.

The final class of expressiveness issues shows up when
the same property does not mean the same thing in
different contexts. Take the case of a colleague who
moved to another university, and was asked for an
extension by a student who had an athletic event in
which he needed to participate. Our colleague, used
to Dartmouth where coaches are faculty or staff, gave
permission, pending an email from the student’s coach
confirming the event. “John Wilson”, who really was the
coach, sent mail to confirm. “John Wilson” was also a
student, happy to help his friend get out of work.

According to surveys we have conducted, problems such

2All names have been changed to some variant of “John Wilson”
for anonymity

as these (and the other examples in [14]) are currently
worked around by phone calls, searching the institution’s
website, checking a company directory, or just assuming
that everything is fine. The “unmotivated user” property
of security [1], which states that users will give up
on behaving securely if it is too difficult or annoying,
leads us to believe that the last case is the most likely.
Therefore, relying upon people to check up on every
suspicious email is not a winning strategy. Furthermore,
our experiences in penetration testing and discussions
with a security consulting firm [15] have shown that
a lot of organizational information (especially about
educational institutions) is accessible via the internet.
This makes it more likely that an outside attacker would
be able to craft messages that appear to be plausible,
despite not being an insider. Given this, it becomes clear
that a system which addresses the problems detailed
above as a part of the normal workflow is desirable.

In terms of our trust model, in the case of unfamil-
iar correspondents hierarchical-PKI-based S/MIME is
attempting to allow users to build institutional trust
between each other. What’s really going on here is that
membership in a subculture is being established, eg.
the “Member of the Dartmouth Community” subculture.
This allows some kind of sphere to be defined in which
the individual can be trusted. Standard S/MIME imple-
mentations can only establish membership in a fairly
large subculture. The members of this group are not
homogenous enough to clearly define an area in which
all members should be trusted. If we can build a system
that allows a smaller subculture to be defined (”Members
of the PKI/Trust Lab”, or ”Sean Smith’s PhD Students”),
this makes it more likely that users will be able to come
to useful trust conclusions.

Despite these issues, S/MIME has provided both mes-
sage integrity and non-repudiation, as well as the
sender’s public key, provided that the recipient trusts
the sender’s CA and that the sender’s private key has
remained private. S/MIME, therefore, is a good starting
point, and the public key in particular could provide a
way to hook further contextual information about the
sender into the message.

IV. TRUST MANAGEMENT

At first glance, combining a Trust Management (TM)
system with S/MIME seems to be an appropriate way to
provide users with the extra contextual information that
we wish to provide. Li et al. define trust management
as “an approach to distributed access control and au-
thorization, in which access control decisions are based
on policy statements made by multiple principals” [16].



4

Depending on the system, digitally-signed policy state-
ments may be called credentials or attributes. These
credentials must come from some party who is qualified
to mint them. Also, when a request is made, credentials
must be bound to that request. TM systems typically
implicitly assume some type of public key infrastructure
to provide these properties. Upon receipt by a TM
engine, a request and its supporting credentials (possibly
combined with other policy statements pulled from a
local or remote credential repository) are then checked
against the resource owner’s trust policy (another set
of policy statements). If the request satisfies the policy,
authorization is granted.

Li and Mitchell defined a useful framework for dis-
cussing trust management systems, which “consists
of three aspects: language, deduction and infrastruc-
ture.” [16] A TM language, according to [16],

has a mechanism for identifying principals, a
syntax for specifying policy statements and
queries, and a semantic relation that deter-
mines whether a query is true given a set of
policy statements.

The deduction engine of a TM system implements these
semantics, while the infrastructure provides support of
the creation, maintenance and transport of policy state-
ments. Several of the TM systems discussed here lever-
age the “logical programming” paradigm, while others
choose not to base their approach on this model. In
all cases, parties involved in the TM system can make
assertions about the attributes possessed by other parties,
as was touched on above. Resource owners, then, can
express policies not only in terms of principals, but also
in terms of these attributes. For instance, my policy could
state that I trust the “Dartmouth” principal to grant a
“student” credential to all currently enrolled students,
and that anyone presenting such a credential issued by
“Dartmouth” can access my “fun stuff to do in Hanover”
files.

To implement a TM system atop email, we would need
to

1) choose a policy language,
2) attach some credentials to digitally signed mes-

sages,
3) build some kind of policy-checking engine into an

email client and, lastly
4) convince users to specify policies that accurately

capture their trust behavior when reading email.

Before we can intelligently discuss such an implementa-
tion, we must first survey existing TM systems in greater

detail.

A. Logic-Based Approaches

TM systems which leverage the “logical programming”
paradigm either use some Prolog-like language to spec-
ify policy statements or design a new policy lan-
guage that can be reduced to Prolog. We will illus-
trate this portion of the space by evaluating Delegation
Logic (DL) [17], the Role-based Trust-management (RT)
framework [16], [18], [19], SD3 [20], and Trust Policy
Language (TPL) [21].

DL, SD3 and RT are all TM systems based on Datalog, a
form of Prolog. They leverage the logical-programming
paradigm to prove that a request, along with appropriate
credentials, meets a given policy. SD3 and RT both
provide some facility for retrieving credentials from non-
local repositories, while DL does not. To use these
systems, a user would have to specify his trust policy
in one of these logical programming languages.

TPL is an XML-based TM language that can be reduced
to Prolog. Like SD3 and RT, it also provides some
facility for remote credential retrieval. Policy generation
is once again done by hand. Though XML is a more
accessible language than Datalog, a user would still need
to be comfortable with programming to use TPL.

B. Other Systems

Other systems, such as PolicyMaker [22] and REF-
EREE [5], define their own policy languages which allow
portions of policies to be defined by arbitrary programs
written in any of several other fully-programmable lan-
guages. The KeyNote [23] work, a follow-on to Policy-
Maker, specifies a simpler policy language that does not
allow the policy writer to include arbitrary code.

REFEREE provides a very simple syntax for defining
policy statements, based on s-expressions. However,
much of the expressiveness of the system is provided by
an invoke construct, which allows for the execution of
arbitrary code. PolicyMaker also has a simple syntax for
credentials and policies, and allows portions of policies
to be defined in one of a set of scripting languages, which
provide much of the expressiveness of the system. Thus,
to do much that is complex, a user must again be a
programmer.

KeyNote defines its own TM language. This language is
reasonably expressive, though policies cannot be as ex-
pressive as in either system that allows for the inclusion
of fully programmable languages. To use this system, a



5

user would have to learn the KeyNote TM language, and
then define his policy in those terms.

C. Commonalities

One common thread between all these systems is that
they require the resource owner not only to be capable
of writing computer programs, but also to be capable of
boiling their trust decisions down to a consistently and
mechanically applicable policy. This might be accept-
able when managing trust between organizations (in a
business-to-business type of relationship, for instance),
where systems are managed by trained administrators
and trust policies are often fully specified in contracts.
However, if we are trying to build a TM system atop
email to help regular end users decide how much to
trust incoming messages from people they don’t know,
we cannot expect these non-programmers to learn a
programming language just so that they can configure
their email software. While it may be true that a trained
administrator could construct some default policies to
apply to all users, the real value of an email trust man-
agement system would be in capturing each individual’s
trust policy.

It is rare that humans implicitly trust every word that
another human says. Usually, users choose to trust
certain kinds of people to talk about certain kinds of
things. Creating TM policies to govern this sort of thing
would require the TM system to be able to comprehend
incoming email. Doing Natural Language Processing
(NLP) of this kind for without a corpus of material
written by the sender is intractable [24]. Since we can’t
expect real users to program up their policies, can’t pre-
write them, and can’t design a useful system without
being able to comprehend arbitrary human language, a
TM approach to helping end-users decide email trust
does not seem appropriate.

D. In Sum...

Although S/MIME can verify that the message content
hasn’t changed, it only communicates institutional cre-
dentials at a very coarse granularity. TM is too compli-
cated for recipients—and requires NLP that works. On
the sender end, mechanical processes do seem sufficient
to provide the right credentials for the context of that
message and that sender. On the recipient end, mechan-
ical processes do not seem sufficient to turn whatever
credentials arrive into a reasonable trust decision.

V. ATTRIBUTE-BASED, USEFULLY SECURE EMAIL
(ABUSE)

For the dual purposes of demonstrating our design phi-
losophy and helping users manage trust in secure email,
we introduce the Attribute-Based, Usefully Secure Email
(ABUSE) system. Rather than attempt to automatically
make trust decisions for users, the system is designed
to help them make more informed trust decisions about
email that they receive. We do this by allowing users to
create useful metadata about each other, access the store
of data about themselves, and attach selected attributes
to outgoing messages. Then we present this information
to recipients in an understandable fashion. Our design
goals are to

1) enable users to bind appropriate trustworthy asser-
tions about themselves to outgoing email,

2) enable users to understand trustworthy assertions
about senders of incoming email,

3) avoid push-back from users without ABUSE-saavy
clients,

4) minimize the administrative burden on everyone
involved,

5) avoid the need for an organization-wide “Attribute
Administrator”,

6) avoid limiting the attribute space (i.e. avoid pre-
defining a set of attributes and relationships),

7) leverage existing PKI and S/MIME infrastructure,
and

8) provide some support for attributes belonging to
users at outside organizations.

In the case of the email “from the Dean” discussed
earlier, the Dean’s assistant could have cryptographically
bound an attribute—given to him by the Dean herself—
to his message stating his relationship to her. Recipients
would then have been able understand the situation
without having to keep track of who works for the Dean.

A. Creating, Storing, Distributing and Displaying At-
tributes

In order to achieve the first three design goals above, we
need to design and build ways to create, store, distribute
and display ABUSE attributes without impacting users of
standard email clients. As we will discuss in Section V-
B, we envision ABUSE users creating attributes on their
own, without having to involve a system administrator.
Addressing this portion of the system, therefore, is basi-
cally a user-interface design problem, as is the attribute
display portion. Prior work has been done on designing
usable user interfaces for secure email [2], [3], which we



6

Fig. 1. A mock-up of a GUI for presenting ABUSE attributes to users. This display is based on the message reading window for BlitzMail,
Dartmouth’s own email system. The new features include the pane labeled “Security”, which allows users to see the verification status of the
message along with the name of the signer. Note that, in this example, although the signer and the sender do not match, a user who knows
“Sean W. Smith” will be aware that both addresses belong to the same person and thus be able to conclude that this mismatch is ok. The tray
on the right, containing attribute information, is also a feature we added. The coloring of the attributes denotes their verification status, and we
are using indentation to express the relationships between attributes in the same chain.

will discuss in Section VII. Additionally, there is a grow-
ing body of work on the general subject of usability in
security (HCI-SEC), which has also informed our work.
Garfinkel provides an excellent survey of the space in
Chapter 2 of his PhD thesis [3], and also sets out several
techniques for designing software to be both secure and
usable. When designing the user interfaces for ABUSE,
we will employ these strategies to ensure that users do
not simply ignore the system, but instead actually use it
to enhance their trust decisions. We have begun by using
an iterative design approach [25], testing our prototype
GUI for presenting ABUSE-enhanced messages to users
(shown in Figure 1) in a pilot user study, which is
discussed in Section V-F.

To facilitate future user studies, we are building ABUSE
into Dartmouth’s homegrown email client, known as
BlitzMail. The vast majority of email usage at the
college occurs through BlitzMail, and the users cross
all demographics, from students to faculty to staff. We
feel that the size and variety of this installed base will
provide us with a good volume of data, and that the
users’ familiarity with the client will allow us to avoid
worrying about users being confused with the general
email portion of the UI when designing our studies. We
believe the benefits of cleaner user studies are worth
taking on the challenge of integrating ABUSE with

BlitzMail.

In comparison to the iterative and subjective process
of user interface design, creating an infrastructure for
storing and distributing ABUSE attributes should be a
much simpler task. Arguments could be made for storing
attributes on the client-side, but some details of the
client platform upon which we are building our prototype
dictate that we should instead provide a central attribute
store, indexed by users’ public keys. A user’s client will
have to prove knowledge of their private key in order
to pull attributes out of the central attribute directory.
Then, the client will allow the user to choose which of
their attributes they wish to attach to a given message,
if any. The sender’s private key is then used to sign a
hash of the chosen attributes and the message, and this
signature is included with the rest of the ABUSE content.
To handle distribution of attributes without causing push-
back from users without ABUSE-enabled clients, we will
borrow an idea from Stream/CoPilot [3], and DKIM [26]
and put attributes into messages as MIME or RFC
2822 headers. We tested Mozilla Thunderbird, Microsoft
Outlook Express and Apple Mail to verify that these
popular clients simply ignore headers that they do not
understand, so users of non-ABUSE clients would likely
not be bothered by communicating with parties who
use the system. Forwarding behavior varied, with some



7

clients stripping out headers for encapsulated messages
and others maintaining them, but hiding them. We have
not addressed the issue of attributes in forwarded mail,
but as long as headers are maintained, this can be dealt
with.

B. Attribute Management

Our goals of minimizing the administrative burden on
users and avoiding the need for a dedicated administrator
are somewhat in opposition. We hope to balance the two
by allowing users to grant attributes to each other in a
manner similar to SDSI/SPKI [27], [28] and the PERMIS
project [29], in addition to the Greenpass [30] work done
here in our lab. Unlike PERMIS, but like Greenpass,
we use public keys to identify users, as opposed to
X.509 Distinguished Names. Unlike Greenpass, but like
PERMIS, we use chains of X.509 Proxy Certificates
(PCs) [31] to store attribute information. PCs are struc-
turally similar to X.509 Identity Certificates except that
they tend to be more short-lived and include some extra
extensions that allow for the specification of arbitrary
information. Chains of PCs can be created just like it is
possible to create chains of identity certificates. So, if
Alice possess an ABUSE attribute A (a chain of PCs)
and she wishes to grant to “Sean Smith” a new attribute
that chains off of A, she must create a new chain of PCs
B that consists of A with a single new PC tacked onto
the end. To do this, she acquires his public key, which is
available in Dartmouth’s LDAP, issues a PC containing
the specification of the attribute using his public key as
the subject of the certificate, creates B by attaching this
certificate to the end of A and inserts it into the ABUSE
directory specified above. Attributes can be verified by
recipients in the same way that identity certificate chains
are verified.

We envision bootstrapping the attribute generation pro-
cess by having a local trust-root grant a small set of
attributes to some high-level members of the organi-
zation. In a university environment, perhaps this set
would consist of the high-level administrators (Deans,
the President and so forth). Then, they could each grant
attributes to the people beneath them. For example, the
Dean of the Faculty could grant “Chairperson” attributes
to the chair of each academic department, who could
in turn handle granting attributes conferring professorial
status to members of their own department. In this way,
responsibility for maintaining portions of the attribute
space is divided among many people, but each individual
is only responsible for a small portion of the overall
space. Since attributes all chain back to a single trust
root, as long as a user’s client is configured to trust that
root, the client will be able to verify that the attributes are

Mail Server

Web 
Browser

ABUSE-
enabled 

client

Non-
ABUSE
Client

LDAP

ABUSE-
enabled 

client

Fig. 2. The various components of a single enterprise ABUSE system.
Users create attributes with a web browser and publish them to an
LDAP. Using an ABUSE-enabled email client, senders of email can
retrieve their attributes, attach them to outgoing email, and send them
along. Recipients with an ABUSE-enabled client can view this attribute
info in conjunction with the message, while non-savvy clients will
simply ignore the extra information.

valid. This is not unreasonable, since we are considering
an environment inside an institution, where all clients can
be configured to use a local Certification Authority (CA)
as their trust root.

Since we are planning to enclose attributes in X.509 cer-
tificates, it is natural to wonder why we chose not to use
X.509 Attribute Certificates (ACs) [32]. Unfortunately,
ACs are not widely supported among cryptographic
libraries, which would complicate implementation, de-
velopment and delopyment. There is software available
to add such support but, since PCs are sufficient for our
needs, we decided to avoid the added complexity.

C. Attribute Content

Some TM languages can only express certain kinds of
relationships between principals. We do not believe that
we can anticipate every relationship that a user would
want to express between herself and another user, so
defining a set of legal relations would be undesirable.
Other languages are sufficiently flexible, but imposing
significant structure on attributes would either make the
user interface for creating attributes more complex, or
require the system to convert back and forth from an
easily human-parsable format. Since we are not trying
to automatically reason about attributes in ABUSE, this
seems unnecessary.

D. Leveraging Existing Infrastructure

Our seventh goal, leveraging existing PKI and S/MIME
infrastructure is essentially a software engineering issue
which led us to choose Proxy Certificates (PCs) to
represent ABUSE attributes. While several TM systems



8

can work with standard X.509-based certificates, they
all require some software to convert the credentials to
an internal representation. Since our email client will
already include libraries to process X.509 certificates,
adding both conversion code and libraries to deal with
the new credential format seems extraneous. This same
logic eliminated SDSI/SPKI, SAML [33], XACML [34],
and XrML [35] from consideration for use in ABUSE; it
is likely that these technologies would work, but the extra
software engineering issues outweigh potential benefits.

E. Attributes From Outside Organizations

Our final goal of supporting attributes belonging to users
from outside the organization is also the least integrated.
We have focused first on getting ABUSE to work in a
single institution. Our plans for scaling ABUSE beyond
that limitation will be addressed in Section VI. Figure 2
shows the envisioned architecture of a single-enterprise
ABUSE system, while Figure 3 shows an ABUSE de-
ployment that spans multiple organizations.

F. A Pilot User Study for ABUSE-Enhanced Messages

Our pilot user study, which we performed only on the
GUI for presenting ABUSE-enhanced messages to user,
was modeled after the first round of testing related
in [36]. We recruited five Dartmouth students who knew
nothing about ABUSE, nor had any special knowledge
of computer security, three undergraduates (a Biology
major, a Government major, and a Sociology major) and
two Computer Science graduate students (researching
communication complexity and sensor networks). After
taking a short survey regarding their attitudes towards
computers, online privacy and security in general, the
subjects were briefed about the forgeability of standard
email (source addresses can be faked, content can be
changed in transit, etc.) and informed of the existence
of methods for verifying the sender of email. The par-
ticipants were then exposed to several messages, some
meant to look forged, some ABUSE-enhanced to make
them appear more legitimate, and some with ABUSE
attributes meant to show that they could not be trusted.
In each case, the subject was asked by the message to
perform some “dangerous” action: download and run
an application, give up private information, or allow a
student to skip an assignment. The subjects were given
as much time as they wanted to look at each message.
When ready, they had to choose whether to perform the
requested action, and give a reason for that decision.
Their choices and answers were anonymously recorded
by the web application used for the test.

The study met with mixed success. One set of conditions
wound up essentially testing whether the students felt
that an intramural soccer game was a valid excuse for
an extension, which was not our goal. Another discov-
ered that our two graduate students are paranoid, and
claim they will never download and open an attachment
from email. However, in general, the subjects indicated
a greater inclination to trust messages with ABUSE
attributes that lent credence to the body of the message.
For instance, in the condition where they were shown
an ABUSE-enhanced message from an administrative
assistant in the office of their employer asking for some
personal information, they were willing to respond with
the data. When they were shown a plain MIME email
asking for that data, or an ABUSE-enhanced message
with attributes showing the sender to be just a fellow
employee, most declined to give up the information.

In general, in post-study interviews, the subjects felt
the extra information helped, though one indicated that
the information conveyed by ABUSE could usually be
found online or by some other channel. Another agreed,
but stated that she would be unlikely to actually check
those sources in real life, so having it right there next to
the message was useful. Some subjects indicated that
they would like to be able to get more information
about how the system worked, because the indenting
scheme didn’t really convey the idea that attributes are
chained. Rather they thought that a group of individuals
had all attested to the final attribute in the chain. The
interface currently only uses mouseover boxes to post
expiration dates for the ABUSE attributes. In our next
design we will add further information to the mouseovers
and consider representing the attributes as a graph to
better express how they relate to each other. Also, we
will redesign the study conditions so that we better
isolate usability information (instead of inadvertently
testing users’ beliefs about the relative import of student
activities).

The GUI tested is currently in the mockup phase. We
understand from some of our sociologist colleagues that
users are less likely to suppress criticism if they perceive
the interface as a prototype, so we expect to do several
more cycles of testing in this way. We have set up
the ABUSE credential store, however, and are currently
building the back end for delegating credentials from one
user to another.

VI. FUTURE WORK

There are two portions of this project that are still
pending: evaluation of a single-institution ABUSE sys-
tem, and expanding ABUSE beyond the borders of one



9

ABUSE-
Enabled
Client

Non-
ABUSE Client

Mail Server

HEBCA

Ontology
Mapper

Foreign ABUSE System

Fig. 3. An ABUSE system that spans multiple enterprises. As in the
simpler setup, users create attributes with a web browser and publish
them to an LDAP. Using an ABUSE-enabled email client, senders of
email can retrieve their attributes, attach them to outgoing email, and
send them along. ABUSE-enabled clients at external organizations that
read this mail will use HEBCA to help validate the incoming attributes,
use an ontology mapping service to help provide some local context
for these foreign attributes, and then present this information to the
user, along with the message. Again, non-savvy clients will simply
ignore the extra information.

organization.

A. Evaluating ABUSE

In addition to making heavy use of user studies during
the user interface design portions of building ABUSE,
we also plan to deploy our prototype to a large commu-
nity of users and collect feedback on their usage patterns.
As mentioned earlier, we are building ABUSE on top
of BlitzMail, due to its prevalence at the College. We
believe this will both allow us to conduct broader user
studies, as well as providing us with clearer results, due
to user familiarity with the basic user interface.

B. ABUSE Across Organizations

To take ABUSE beyond a single institution, we must
address both the issue of verifying attribute chains from
foreign sources and also that of mapping unfamiliar at-
tributes into a locally sensical context. Bridge Certificate
Authorities [37] provide a method of joining disparate
hierarchical X.509-based PKIs in a non-hierarchical way.
By making both ABUSE attributes and S/MIME digital
signatures on ABUSE-enabled emails “bridge aware”,
we can not only address the problem of verifying foreign
attributes, but also begin exploring the possibilities and
pitfalls of bridged PKIs. The Higher Education Bridge
Certification Authority (HEBCA) [38] has been set up

and deployed at Dartmouth, so we should be able to
evaluate our bridged applications as they work with real,
deployed infrastructure.

To help users make sense of attributes created at outside
institutions, we plan to apply some ontology mapping
results from the W3C’s Semantic Web project [39].
Ontology mapping uses machine learning techniques to
attempt to map one hierarchical classification structure
onto another [40], [41]. An organization’s attribute space
can be viewed as an ontology, since it is structured
like a tree, rooted at the local CA. We believe that
an ontology mapper could be trained on this “home
ontology” , and then treat incoming sets of attributes
as portions of a foreign ontology and attempt to perform
a mapping. While it is unlikely that this will provide a
perfect solution, we hope to be able to provide some kind
of confidence measure along with the mappings that we
perform.

VII. RELATED WORK

In addition to the TM work discussed at length above,
there are two other groups of related work: systems
directly related to trust in email, and general work on
usability in secure email.

A. Trust in Email

Both S/MIME, upon which ABUSE is built, and
PGP/MIME [42] can be considered work in this space.
Digital signatures can, in many cases, provide users
with enough context to decide whether or not to trust
an incoming message. However, as we have discussed,
there are cases that are not addressed by S/MIME and
work done by other researchers [1] has shown that
PGP/MIME clients are not usable by average users. To
our knowledge, only Role-Based Messaging [43], [44]
has attempted to address the same portion of the problem
space as our work.

Role Based Messaging (RBM) is a system that creates
role-based mail accounts. Users who have appropriate
credentials (where “appropriate” is defined by policy on
a per-role basis) can log into those accounts to read mail
sent to that role and also to send signed and encrypted
mail from that role. Mail may be encrypted to a role, not
simply to a specific user. Role membership is controlled
by a PERMIS [29] back end, in which X.509 ACs are
used to store role membership information. Policies can
be added to messages to further control what recipients
can do with them. A policy governs who can assign roles,
though this could be set up to allow any user to grant



10

roles to others. Also, these “role managers” can create
new roles within their organization, but they will not be
recognized by the system [45].

Recent RBM work has proposed Policy Based Man-
agement (PBM), which adds infrastructure to allow
organizations to advertise what kinds of policy languages
they support [46]. PBM also allows third parties to sign
off on particular implementations of particular policy
languages and enforcement models, so that an enterprise
can prevent (again, via policy) users from sending secure
messages to an external organization whose mail system
may not respect message permissions set by the sender.

In addition to several other issues, RBM offers a solution
for the email trust problem. Users could all be granted
roles, and then choose the appropriate role from which
to send a message that needed to be trusted. It does
not appear that users could claim multiple roles at the
same time, but new, combined roles could feasibly be
created to handle that. Also, it is unclear whether the
nice audit feature provided by the chaining of ACs to
create ABUSE attributes is also provided by RBM. Most
importantly, while the authors mention “user friendli-
ness” as a design goal in one of their early papers,
recent correspondence indicates that usability has been
very much a second tier goal in their work thus far [47].
According to the authors, the have so far implemented
an RBM policy decision engine and a distributed RSA
algorithm that they plan to use to avoid having a single
point of compromise in their system architecture. They
plan to use Mozilla Thunderbird as a client platform
for RBM, but did not say much about the RBM user
experience beyond that.

We believe ABUSE’s focus on usability will make it a
more usable, and therefore deployable, solution to the
email trust problem than RBM.

B. Secure Email Usability

Both Garfinkel and Whitten have developed clients for
secure email that focus on usability [2], [3]. Whitten’s
”Lime” system was designed to help users understand the
key certification portion of a PGP/MIME email system.
Garfinkel’s Stream and CoPilot systems were built to
abstract signing and encryption away from users when
emailing with parties with whom they communicate on
a regular basis. Neither system focused on the problem
of providing more context for users trying to make trust
decisions regarding incoming messages.

VIII. CONCLUSION

In this paper, we have introduced Attribute-Based, Use-
fully Secure Email (ABUSE), which we are building
to exemplify our principle of leveraging humans in the
design of secure systems. We chose to address secure
email in particular due to several concerns about the
expressiveness of S/MIME email technology, including
cases in which names lack specificity, properties—not
names—influence trust decisions, and properties mean
different things in different contexts. ABUSE addresses
these first two concerns by enabling users to delegate
trustworthy attributes to each other, and then bind them
to S/MIME messages sent over email. Humans are
leveraged at both ends of the process: humans hand out
attributes to each other, and humans decide whether the
attributes bound to a message are enough to build trust
in the displayed content. The third concern is addressed
by bridging across distinct PKIs and by mapping foreign
attributes into a local context. Through development and
testing of ABUSE, we hope to answer two long-term
questions: whether issuing credentials in distributed way
will actually work, and also whether users will actually
understand these distributed credentials, enabling them
to make more accurate trust judgments about incoming
messages from unfamiliar senders.

REFERENCES

[1] A. Whitten and J. Tygar, “Why Johnny Can’t Encrypt: A Usabil-
ity Evaluation of PGP 5.0.” in 8th USENIX Security Symposium,
1999.

[2] A. Whitten, “Making security usable,” Ph.D. dissertation,
Carnegie Mellon University School of Computer Science, 2003.

[3] S. Garfinkel, “Design principles and patterns for computer sys-
tems that are simultaneously secure and usable,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, 2005.

[4] L. G. Zucker, “Production of trust: Institutional sources of
economic structure, 1840–1920,” in Research in Organizational
Behavior. JAI Press Inc., 1986, vol. 8, pp. 53–111.

[5] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and
M. Strauss, “REFEREE: Trust management for Web applica-
tions,” Computer Networks and ISDN Systems, vol. 29, no. 8–13,
pp. 953–964, 1997.

[6] A. Schutz, “On multiple realities,” in Collected papers 1: the
problem of social reality, M. Natanson, Ed. The Hague: Martinus
Nijhoff, 1962, pp. 207–259.

[7] H. Garfinkel, “A conception of and experiments with “trust” as a
condition of stable concerted actions,” in Motivation and social
interaction: Cognitive determinants, O. Harvey, Ed. New York:
Ronald Press, 1963, pp. 187–239.

[8] B. Ramsdell, “Secure/Multipurpose Internet Mail Extensions
(S/MIME) version 3.1 message specification,” July 2004, RFC
3851.

[9] ——, “Secure/Multipurpose Internet Mail Extensions (S/MIME)
version 3.1 certificate handling,” July 2004, RFC 3850.

[10] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509
Public Key Infrastructure Certificate and CRL Profile,” 1999,
RFC 2459.



11

[11] D. R. Kuhn, V. C. Hu, W. T. Polk, and S.-J. Chang, “Intro-
duction to public key technology and the federal PKI infras-
tructure,” http://www.csrc.nist.gov/publications/nistpubs/800-32/
sp800-32.pdf, NIST, February 2001.

[12] R. Nielsen, “Observations from the deployment of a large scale
PKI,” in 4th Annual PKI R&D Workshop, C. Neuman, N. E.
Hastings, and W. T. Polk, Eds. NIST, August 2005, pp. 159–
165.

[13] A. Kapadia, “personal communication,” aug. 29,, 2006.
[14] S. W. Smith, C. Masone, and S. Sinclair, “Expressing trust in

distributed systems: the mismatch between tools and reality,” in
Forty-Second Annual Allerton Conference on Privacy, Security
and Trust, September 2004, pp. 29–39.

[15] J. Beale, “personal communication,” sept. 3, 2006.
[16] N. Li and J. C. Mitchell, “RT: A role-based trust-management

framework,” in Proceedings of The Third DARPA Information
Survivability Conference and Exposition (DISCEX III). IEEE
Computer Society Press, Los Alamitos, California, April 2003,
pp. 201–212.

[17] N. Li, B. N. Grosof, and J. Figenbaum, “Delegation logic: A
logic-based approach to distributed authorization,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 6,
no. 1, pp. 128–171, February 2003.

[18] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a role-
based trust management framework,” in Proceedings of the 2002
IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, Los Alamitos, California, May 2002.

[19] ——, “Beyond proof-of-compliance: Security analysis in trust
management,” Journal of the ACM, vol. 52, no. 3, May 2005.

[20] T. Jim, “Sd3: A trust management system with certified evalua-
tion,” in SP ’01: Proceedings of the 2001 IEEE Symposium on
Security and Privacy. Washington, DC, USA: IEEE Computer
Society, 2001, p. 106.

[21] A. Herzberg, Y. Mass, J. Michaeli, D. Naor, and Y. Ravid, “Ac-
cess control meets public key infrastructure, or: Assigning roles
to strangers,” in Proceedings of IEEE Symposium on Security and
Privacy, May 2000, pp. 2–14.

[22] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust
management,” in Proceedings of IEEE Symposium on Security
and Privacy, May 1996, pp. 164–173.

[23] M. Blaze, J. Figenbaum, J. Ioannidis, and A. D. Keromytis, “The
KeyNote trust-management system version 2,” September 1999,
RFC 2704.

[24] H. Cunningham, “Information Extraction, Automatic,” Encyclo-
pedia of Language and Linguistics, 2nd Edition, 2005.

[25] D. A. Norman, The Design of Everyday Things. Basic Books,
1988.

[26] E. Allman, J. Callas, M. Delaney, M. Libbey, J. Fenton, and
M. Thomas, “DomainKeys Identified Mail Signatures (DKIM),”
April 2006, Internet Draft, http://www.ietf.org/internet-drafts/
draft-ietf-dkim-base-01.txt.

[27] R. Rivest and B. Lampson, “SDSI - A Simple Distributed Secu-
rity Infrastructure,” April 1996, http://theory.lcs.mit.edu/∼rivest/
sdsi10.html.

[28] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylnen, “SPKI Certificate Theory,” September 1999, RFC 2693.

[29] D. Chadwick, “The PERMIS X.509 role based privilege manage-
ment infrastructure,” in Proceedings of 7th ACM Symposium on
Access Control Models and Technologies (SACMAT 2002), 2002.

[30] N. Goffee, S. Kim, S. Smith, W. Taylor, M. Zhao, and J. March-
esini, “Greenpass: Decentralized, PKI-based Authorization for
Wireless LANs,” in Proceedings of 3rd Annual PKI R&D Work-
shop. NIST/NIH/Internet2, April 2004.

[31] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson,
“Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate
Profile,” 2004, rFC 3820.

[32] S. Farrell and R. Housley, “An Internet Attribute Certificate
Profile for Authorization,” 2002, RFC 3281.

[33] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and
protocols for the OASIS security assertion markup language

(SAML) v2.0,” 2005, http://docs.oasis-open.org/security/saml/v2.
0/saml-core-2.0-os.pdf.

[34] T. Moses, “eXtensible Access Control Markup Language
(XACML) version 2.0,” 2005, http://docs.oasis-open.org/xacml/
2.0/access control-xacml-2.0-core-spec-os.pdf.

[35] “XrML frequently asked questions,” http://www.xrml.org/faq.asp,
visited on Sept. 30, 2006.

[36] S. Brostoff, M. A. Sasse, D. Chadwick, J. Cunningham,
U. Mbanaso, and O. Otenko, “RBAC What? Development
of a Role-Based Access Control Policy Writing Tool for
E-Scientists,” in Workshop on Grid Security Practice and
Experience, Oxford, UK, July 2004, pp. V21–38. [Online].
Available: http://www.cs.kent.ac.uk/pubs/2004/2067

[37] R. Houskey and T. Polk, Plannning for PKI. Wiley, 2001.
[38] “Educause — educause major initiatives — higher education

bridge certification authority,” http://www.educause.edu/HEBCA/
623, visited on Jan. 24, 2007.

[39] “W3C semantic web,” http://www.w3.org/2001/sw/, visited on
Sept. 30, 2006.

[40] P. Bouquet, L. Serafini, and A. Zanobini, “Semantic Coordina-
tion: A New Approach and an Application,” in 2nd International
Semantic Web Conference, October 2003, pp. 20–23.

[41] A. Doan, J. Modhavan, P. Domingos, and A. Halevy, “Learning to
Map Between Ontologies on the Semantic Web,” in Proceedings
of The Eleventh International WWW Conference, May 2002.

[42] M. Elkins, “MIME security with pretty good privacy (PGP),”
October 1996, RFC 2015.

[43] D. Chadwick, G. Lunt, and G. Zhao, “Secure Role-
based Messaging,” in Eighth IFIP TC-6 TC-11 Conference
on Communications and Multimedia Security (CMS
2004),Windermere, UK, unknown 2004. [Online]. Available:
http://www.cs.kent.ac.uk/pubs/2004/2069

[44] G. Zhao and D. Chadwick, “Evolving messaging systems
for secure role based messaging,” in 10th IEEE International
Conference on Engineering of Complex Computer Systems
(ICECCS’05), June 2005, pp. 216–223. [Online]. Available:
http://www.cs.kent.ac.uk/pubs/2005/2231

[45] G. Zhao, “Personal communication,” apr. 12, 2006.
[46] G. Zhao and D. Chadwick, “Trust infrastructure for policy based

messaging in open environments,” in 14th IEEE International
Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE-2005), Linkping University,
Sweden, June 2005. [Online]. Available: http://www.cs.kent.ac.
uk/pubs/2005/2233

[47] G. Zhao, “Personal communication,” apr. 11, 2006.


