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Abstract In theory, PKI can provide a flexible and strong way to authenticate users
in distributed information systems. In practice, much is being invested in realizing
this vision via client-side SSL and various client keystores. However, whether this
works depends on whether what the machines do with the private keys matches what
the humans think they do: whether a server operator can conclude from an SSL
request authenticated with a user’s private key that the user was aware of and
approved that request. Exploring this vision, we demonstrate via a series of
experiments that this assumption does not hold with standard desktop tools, even if
the browser user does all the right things. A fundamental rethinking of the trust,
usage, and storage model might result in more effective tools for achieving the PKI
vision.
ª 2004 Elsevier Ltd. All rights reserved.
Introduction

Because public-key cryptography can enable se-
cure information exchange between parties that
do not share secrets a priori, PKI has long promised
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the vision of enabling secure information services
in large, distributed populations.

In the last decade, the Web has become the
dominant paradigm for electronic access to in-
formation services. The Secure Sockets Layer is the
dominant paradigm for securing Web interaction.
For a long time, SSL with server-side authentica-
tiondwhere, during the handshake, the server
presents a public-key certificate and demonstrates
knowledge of the corresponding private keydwas
perhaps the most accessible use of PKI in the lives
of ordinary users.

However, in the full vision of PKI, all users have
key pairsdnot just the server operators. Within
rved.
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the SSL specification, a server can request client-
side authenticationdwhere, during the hand-
shake, the client also presents a public-key
certificate and demonstrates knowledge of the
corresponding private key. The server can then
use this information for identification, authentica-
tion, and access control on the services it provides
to this client.

An emerging client-side PKI exploits the natural
synergy between these two scenarios. Because the
Web is the way we do business and client-side SSL
permits servers to authenticate clients, we are
beginning to see some of the necessary building
blocks to achieve the client-side vision:

� Some modern operating systems (e.g., all
flavors of Windows and Mac OSX) include
a keystore and a set of Cryptographic Service
Providers (CSP) which can be used by any
application on the machine.

� Modern browsers which are designed to be used
across multiple platforms (e.g., Netscape/
Mozilla) now include keystores for a user’s
key pairs.

� Enterprises (and other distributed populations)
are arranging for users to obtain certified key
pairs to live in these keystores. Some popula-
tions are even making plans to distribute USB
tokens to users in order to store their key pairs.

� Providers of Web information services are start-
ing to use client-side SSL as a better alterna-
tive than passwords or to authenticate users.

Here at Dartmouth, we are deploying a client-
side PKI to enable users ( primarily from IE/XP
platforms, often shared) to access Web-based
academic information services (such as changing
class registrations and recording grades).

Using client-side PKI can alleviate the need for
users to remember multiple passwords for multiple
services. It also reduces the risk of an attacker
capturing a user’s password either by guessing or
via a keyboard sniffer.

Does it work?
In previous work, we have examined the effec-
tiveness of server-side SSL (Ye and Smith, 2002)
and of digital signatures on documents (Kain et al.,
2002). In this paper, we examine the question:
does this client-side PKI work?

� When browsers use a private key in contem-
porary desktop environments, is it reasonable
for the user at the client to assume that his
private key is used only to authenticate
services he was aware of, and intended?
� Is it reasonable for the user at the server to
assume that, if a request is authenticated via
client-side SSL, that client was aware of and
approved that request?

The perception of usersdnot only the users at
the client, but also the application authors and
administrators at the serverdplays a critical role
in determining whether client-side PKI works. If
the natural mental models of the system do not
match the actual system behavior, then users have
no basis to make reasonable trust decisions. In
security settings (such as client-side PKI), this
inability to reason about the system can thwart
the security efforts that the system’s designers
have implemented.

Our agenda
We wish to stress that we believe that PKI is
a much better way than the alternatives to carry
out authentication and authorization in distri-
buted, multi-organizational settings. PKI does not
require shared secrets or a previously established
direct trust relationship between the two parties.
Further, PKI permits many parties to make asser-
tions, and allows for non-repudiation of those
assertionsdBob can prove to Cathy that Alice
authorized this request to Bob.

However, rolling out client-side PKI and migrat-
ing existing information services to use it requires
considerable resources and effort. Weaknesses in
the underlying technology risk undermining this
effort. We provide a critical examination of the
current client-side PKI approach precisely because
we want the PKI vision to succeed.

This paper
In the next section, we examine the status quo.
Then, we pose the question which drives our
experiments. The later sections describe our ex-
periments. We conclude in the last section.

The current state of affairs

Web information services and web
applications

Currently, the Web is the dominant paradigm for
information services. Typically, the browser issues
a request to a server and the server responds with
material which the browser renders.

Language of the interaction
From the initial perspective of a browser user (or
the crafter of a home page), these ‘‘requests’’
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correspond to explicit user actions, such as clicking
a link or typing a URL; these ‘‘responses’’ consist of
HTML files.

However, the language of the interaction is
richer than this, and not necessarily well-defined.
The HTML content a server provides can include
references to other HTML content at other servers.
Depending on the tastes of the server operator and
the browser, the content can also include execut-
able code; Java and Javascript are fairly universal.
This richer content language provides many ways
for the browser to issue requests that are more
complex than a user might expect, and not
necessarily correlated to user actions like ‘‘click-
ing on a link.’’

As part of a request, the browser will quietly
provide parameters such as the browser platform
and the REFERER (sic)dthe URL of the page which
contained the link that generated this request.

In the current computing paradigm, we also see
a continual bleeding between Web interaction and
other applications. For example, in many desktop
configurations, a server can send a file in an
application format (such as PDF or Word), which
the browser happily hands off to the appropriate
application; non-Web content (such as PDF or
Word) can contain Web links, and cause the
application to happily issue Web requests.

Web applications
Surfing through hypertext documents constituted
the initial vision for the Webdand, for many users,
its initial use. However, in current enterprise
settings, the interaction is typically much richer:
users (both of the browser and server) want to map
non-electronic processes into the Web, by having
client users fill out forms that engender personal-
ized responses (e.g., a list of links matching
a search term, or the user’s current medical
history) and perhaps have non-Web consequences
(such as registering for classes or placing an
Amazon order).

In the standard way of doing this, the server
provides an HTML form element which the
browser user fills out and returns to a common
gateway interface (CGI) script (e.g., see Niederst,
2001, chapter 15).

The form element can contain input tags that
(when rendered by the browser) produce the
familiar elements of a Web form: boxes to enter
text, boxes with a ‘‘browse’’ tag to enter file
names for upload, radio buttons, checkboxes, etc.
For each of these tags, the server may specify
a name which names the parameter being collect-
ed from the user and a default value. The server
content associates this form with a submit action
(typically triggered by the user pressing a button
labeled ‘‘Submit’’), which transforms the parame-
ters and their values into a request for a specific
URL. If the submit action specified the GET
method, the parameters are pasted onto the end
of the URL; if the POST method was specified, the
parameters are sent back in a second request part.

However, the submit URL specifies an execut-
able script, not a passive HTML file, in the ‘‘Web
directory’’ at the server. When a server receives
a request for such a script, it invokes the script.
The script can interrogate request parameters,
such as the form responses, interact with other
software at the server side, and also dynamically
craft content to return to the browser.

Security mechanisms

In enterprise settings, the server operator may
wish to restrict content only to browser users that
are authorized. In a situation where the browser
user is requesting a service via a form, the server
operator may wish to authenticate specific attrib-
utes about the user, such as identity and the fact
that the user authorizes this request. The Web
paradigm provides several standard avenues to do
this.

Client address
For one example, the server may restrict requests
to client machines with specific hostname or IP
address properties.

Passwords
With basic authentication (or the digest authenti-
cation variant), the server can require that the
user present a username and password, which the
browser collects via a special user interface
channel and returns to the server. The server
requesting the authentication can provide some
text that the browser will display in the password-
prompt box. Alternatively, the server may also
collect such authenticators as part of the form
responses from the user.

With these various forms of password-based
authentication, the server operator would be wise
to take steps to ensure that sensitive data are
protected in transit. Some of the common ap-
proaches include offering the entire service
over an SSL channel, and having the form submitted
by the POST method, so the responses are not
cataloged in histories, logs, REFERER fields, etc.

Indeed, if neither the user nor server otherwise
expose a user’s password, and if the user has
authenticated that he is talking to the intended
server, then a strong case can be made that
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a properly authenticated request requires the
user’s awareness and approval. The password had
to come from somewhere!

Password-based systems have a number of risks.
Users may pick bad passwords or share them across
services; the authentication is not bound to the
actual service (i.e., we have no non-repudiation);
the adversary may mount online guessing attacks
(Pinkas and Sander, 2002 has recently considered
some interesting countermeasures here); users
may not check that they are connected to correct
server, making them vulnerable to bogus sites that
look similar (i.e. ‘‘Spoofing’’, Felten et al., 1997;
Ye and Smith, 2002; Ye et al., 2002).

Cookies
The server can establish longer state at a browser
by saving a cookie at the browser. The server can
choose the contents, expiration date, and access
policy for a specific cookie; a properly functioning
browser will automatically provide the cookie
along with any request to a server that satisfies
the policy. Many distributed Web systemsdsuch as
‘‘PubCookies’’, and Microsoft’s ‘‘passport’’ (Micro-
soft .Net Passport)duse one of the above mecha-
nisms to initially authenticate the browser user,
and then use a cookie to amplify this authentica-
tion to a longer session at that browser, for a wider
set of servers.

Cookie-based authentication can also be risky.
Fu et al., 2001 discuss many design flaws in cookie-
based authentication schemes; PivX (Unpatched IE
security holes) discusses many implementation
flaws in IE which allows an adversarial site to read
other sites’ cookies.

Validating user input

Besides authenticating the user, another critical
security aspect of providing Web services is ensur-
ing that the input is correct. Failing to do so can
lead to a number of issues. For example, an
adversarial user can exploit server-side script
vulnerabilities by carefully crafting escape sequen-
ces that cause the server to behave in unintended
ways. The canonical example here is a server using
user input as an argument in a shell command;
devious input can cause the server to execute
a command of the user’s choosing. Another exam-
ple occurs on the application level, where an
adversarial user can change the request data, such
as form fields or cookie values. The canonical
example here is a commerce server that collects
items and prices via a form, and allows a malicious
user to purchase an item for a lower price than the
vendor intended.
Standard good advice is that the script writer
thoroughly vet any tainted user input (Hamilton,
1999), and also verify that critical data being
returned have not been modified (Preventing HTML
form tampering, 2001).

Client-side PKI

When prodded, PKI researchers (such as ourselves)
will recite a litany of reasons why PKI is a much
better way than the alternatives to carry out
authentication and authorization in distributed,
multi-organizational settings. In practical settings,
many enterprises are adopting PKI technology
because it allows single sign-on, minimizes the
impact of keyboard sniffers, is trendy, and is being
heavily marketed by PKI vendors.

As we mentioned in the introduction, using
various keystores and client-side SSL is a dominant
emerging paradigm for bringing PKI to large pop-
ulations. Some organizations currently using
client-side SSL include Dartmouth College, MIT,
the Globus Grid project, IBM WebSphere, and many
suppliers of VPN software.

On the application end, numerous players
preach that client-side SSL is a better way to
authenticate users than passwords. We cite a few
examples culled from the Web:

� The W3C: ‘‘SSL can also be used to verify the
users’ identity to the server, providing more
reliable authentication than the common
password-based authentication schemes’’
(Stein and Stewart, 2002).

� Verisign: ‘‘Digital IDs (digital certificates) give
web sites the only control mechanism available
today that implements easily, provides en-
hanced security over passwords, and enables
a better user experience’’ (Digital IDs and the
Netscape Enterprise Server 2.0).

� Thawte: ‘‘Most modern Web browsers allow
you to use a Personal Email Certificate from
Thawte to authenticate yourself to a Web
server. Certificate-based authentication is
much stronger and more secure than pass-
word-based authentication’’ (Personal certifi-
cates).

� Entrust: ‘‘. identify or authenticate users to
a Web site using digital certificates as opposed
to username/password authentication where
passwords are stored on the server and open to
attacks’’ (Buyer’s guide, 2001).

Recent research on user authentication
issues also cite client-side SSL as the desired
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(but impractical) solution (Fu et al., 2001; Pinkas
and Sander, 2002). The clear message is that Web
services using password-based authentication
would be much stronger if they used client-side
SSL instead.

At the server
How does this work?

As noted earlier, SSL permits the browser and
user to establish an encrypted, integrity-protected
channel over which to carry out their Web in-
teraction: request, cookies, form responses, basic
authentication data, etc. The typical SSL use
includes server authentication; newer SSL uses
permit the browser to authenticate via PKI as well.
The server operator can require that a client
authenticate via PKI, and can restrict access based
on how it chooses to validate the client certificate;
server-side CGI scripts can interrogate client-
certificate information, along with the other
parameters available.

At the browser
Different browsers take different approaches to
storing keys and certificates. Our experiment
focuses on the two browsers which are the most
commonly used: Netscape and Internet Explorer.

Netscape stores its security information in a sub-
directory of the application named .netscape
(.mozilla in Mozilla). There are two files of
primary interest: key3.db which stores the user’s
private key, and cert8.db which stores the
certificates recognized by the browser’s security
module. Both these files are binary data, stored in
the Berkeley DB 1.85 format. Additionally, the
information in these files is encrypted with a key-
phrase so that any application capable of reading
the Berkeley DB format is still required to provide
a password to read the plaintext or to modify the
files without detection.

A detailed description of the techniques used to
securely store user’s keys is beyond the scope of
this paper, but we point readers to Henson (Net-
scape certificate data info), Henson (Netscape key
database format), Huy et al. (2001), Mozilla (NSS
security tools) and Netscape Communications Corp
(2001) for details.

Internet Explorer relies on the Windows key-
store and CSP to store the private key. One
unfortunate result of this tight coupling between
IE and the OS is that versions of IE which run on
MacIntosh computers have no support for storing or
using private keys.

By default, Windows uses its own CSPs to store
the private key, which generate low-security keys
(i.e., not password-protected) by default. Many
organizations (such as the DoD and even Microsoft)
recommend against this behavior, noting that the
key is only as secure as the user’s account (Micro-
soft authenticode developer certificates). This
implies that if an attacker were to gain access to
a user’s account or convince the user to execute
code with the user’s privileges, the attacker would
be able to use the private key at will, without
having to go through any protections on the key
(such as a password challenge).

One way to remedy the lack of password pro-
tection is to ‘‘export’’ the private key, placing it in
a password-protected .pwl file (for IE 3 and
earlier) or a .pfx file which stores the key in
PKCS#12 (for IE 4 to current versions). Once the
key is exported, a user must then ‘‘import’’ it at
a higher security level: medium-security, which
prompts the user when the key is used; or high-
security, which requires a password to use the key
(assuming the user does not check the box marked
‘‘Remember password’’, which immediately de-
motes it to a low-security key; see Fig. 1).

While exporting and reimporting the private key
may seem like a cumbersome process, it has
become a standard practice in many organizations.
In fact, the DoD guidelines for the Defense Message
System outline the process in detail (DoD PKI Class
3 Certificates, 2003).

The question

We believe PKI is valuable and that secure Web
information services are important. We also re-
alize that any deployment will require consider-
able effort and user education (as we participate
in such a deployment here at Dartmouth). Hence,
we believe that it is important to ask: Does it
work?

Figure 1 The Microsoft CSP’s password-prompt dialog.
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Discussions of usability and security stress the
importance the system behaving as the user
expects (Yee, User interaction design for secure
systems), and the dangers in creating systems
whose proper use is too complex (Anderson,
1994; Whitten and Tygar, 1999). It is advertised
that by using client-side PKI, a client can assume
that his private key is used only to authenticate
services he was aware of and intended, and
a server operator can assume that the client was
aware of and approved that request. In the
common understanding of the Web, the user must
choose to click in order to issue a request. With the
protections promised by medium-security and
high-security CSPs, we additionally expect the
user to see and approve a warning dialog before
a private key is used.

If we encourage user populations to enroll in
client-side PKI, and encourage service providers to
migrate current services to use client-side SSL
authentication and to roll out new services this
way, have we achieved the desired goals: that
service requests are authenticated from user A
only when user A consciously issued that request?

To this end, we carried out a series of experi-
ments in order to evaluate the effectiveness of
using the browser and client-SSL as a component of
a client-side PKI. (However, some of our attacks
have a wide range of applications, and could
potentially be used to subvert other authentica-
tion schemes as well. We focus on PKI because it is
claimed to be the strongestdand in theory, it
could be.)

We were not focused on bizarre bugs (or
extremely carefully constructed applications),
but on general usability. If users on either end
follow the ‘‘path of least resistance’’dstandard
out-of-the-box configurations and adviceddo they
construct a mental model which matches actual
system behavior?

Experiment 1: stealing keys

Historical vulnerabilities

This research began when we noticed some of the
weakness of client-side PKI and browser keystores
in the literature. Perhaps the most comprehensive
list of problems with Microsoft’s key storage
system over the years comes from Gutmann (How
to recover private keys for Microsoft Internet
Explorer). Three vulnerabilities in particular
caught our attention.

The first vulnerability applies to situations
where the private key is stored without password
protection (the Microsoft CSP’s default behavior).
With a tool such as the ‘‘Offline NT password &
registry editor’’, it is possible for an attacker to
access a user’s account in a few minutes, given
physical access to the computer on which the
account resides. Since the private key is not
password-protected, an attacker can use the
private key of the account’s owner at will for as
long as they are logged on. Additionally, an
attacker could export the key to a floppy disk
(password-protecting it with a password that the
attacker chooses), and then use tools like Gut-
mann’s or our modified version of OpenSSL to
retrieve the key offline.

The second vulnerability comes from the format
in which the private key is stored on disk once it
has been exported (in a .pwl or .pfx file).
Gutmann’s breakms tool performs a dictionary
attack to discover the password used to protect
the file and outputs the private key.

The third vulnerability involves the CryptEx-
portKey function found in the CryptoAPI, which
Gutmann raised concerns about back in 1998.
Specifically, with the default key generation
(i.e., no password protection) and an
exportable key, any program running under the
user’s privileges may call the CryptExportKey
function and silently obtain a copy of the user’s
private key.

In the Microsoft ‘‘low-security’’ model of client-
side PKI, it seems that one has to trust the entire
system (OS, IE, the CSP, etc.) for the client-side
vision to work. If an attacker compromises one
piece of the system (e.g., an executable with
a user’s privileges), then because of tight coupling,
the attacker can violate other parts the system
(e.g., the user’s private key).

Stealing low-security keys

We wondered if, with its new security emphasis,
Microsoft had fixed some of these vulnerabilities,
either directly or perhaps as a result of decoupling
IE and the OS.

We began our experiments with the low-security
keyda key which can be used by any application
running with the user’s privileges without warning
the user that the key is in use. Immediately, we
noticed that generating low-security keys is still
the Microsoft CSP’s default behavior.

We were curious to see if the latest versions of
the CryptoAPI and CSP have remedied the
CryptExportKey issue, perhaps by warning the user
when their private key is being exported. Our con-
clusion: ‘‘no’’. We were able to construct a small
executable which, when run on a low-security
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(default) key, quietly exports the user’s private
key with no warning.

Stealing IE medium-security and
high-security keys

The Windows CryptoAPI does permit users to
import keypairs at medium or high-security levels.
With both of these levels, use of the private key
will trigger a warning window; in the high-security
option, the warning window requests a password.
Consequently, the previous attack may not work;
when the executable asks the API to export the
key, the user may notice an unexpected warning
window. So our attack strategy had to improve.

API hijacking
Before we discuss the specifics of stealing medium
and high-security keys, a brief introduction to the
general method of API hijacking is in order. The
goal of API hijacking is to intercept (hijack) calls
from some process (such as IE) to system APIs (such
as the CryptoAPI).1

Delay loading
API hijacking uses a feature of Microsoft’s linker
called ‘‘delay loading’’. Typically, when a process
calls a function from an imported Dynamically Link
Library (DLL), the linker adds information about
the DLL into the process (in what is referred to as
the imports section). We present a brief overview
here (see Pietrek, 2000 for details).

When a process is loaded, the Windows loader
reads the imports section of the process, and
dynamically loads each DLL required. As each
DLL is loaded, the loader finds the address of each
function in the DLL and writes this information into
a data structure maintained in the process’s
imports section known as the Import Address Table
(IAT). As the name suggests, the IAT is essentially
a table of function pointers.

When a DLL has the ‘‘delay load’’ feature
enabled, the linker generates a small stub con-
taining the DLL and function name. This stub
(instead of the function’s address) is placed into
the ‘‘imports’’ section of the calling process. Now,
when a function in the DLL is called by a process
for the first time, the stub in the process’s IAT
dynamically loads the DLL (using LoadLibrary
and GetProcAddress). This way, the DLL is not
loaded until a function it provides is actually

1 Very recently, other researchers have suggested an attack
that replaces the original DLLs (OS Security, Inc.). However, the
countermeasures suggested for that attack don’t defend against
ours.
calleddi.e. its loading is delayed until it is
needed.

For delay loading to be used, the application
must specify which DLLs it would like to delay load
via a linker option during the build phase of the
application.

DLL injection
So, how does an attacker use delay loading on
a program for which he cannot build (possibly
because he does not have the source codedi.e.
IE)? The answer is to redirect the IAT of the victim
process (e.g. IE) to point to a stub which imple-
ments the delay loading while the process is
running.

The strategy is to get the stub code as well as
the IAT redirection code into an attack DLL, and
inject this DLL into the address space of the victim
process. Once the attack DLL is in the process, the
IAT redirection code changes the victim’s IAT to
point to the stub code. At that point, all of the
victim process’s calls to certain imported DLLs will
pass through the attack DLL (which imported DLLs
are targeted and which functions within those DLLs
are specified by the attack DLLdi.e. the attacker
gets to choose which DLLs to intercept). This
implements a software man-in-the-middle attack
between an application and certain DLLs on which
it depends.

The Windows OS provides a number of methods
for injecting a DLL into a process’s address space
(a technique commonly referred to as ‘‘DLL in-
jection’’). The preferred method is via a ‘‘Windows
Hook’’, which is a point in the Windows message
handling system where an application can install
a routine which intercepts messages to a window.

Hijacking the CryptoAPI
Using the techniques above, we were able to
construct a couple of programs which, running
at user privileges only, allowed us to intercept
function calls from IE to the CryptoAPI. This is
particularly useful for stealing medium or high-
security private keys which display warning mes-
sages when used (in a client-side SSL negotiation,
for example).

The idea is to wait for IE to use the key (hence,
displaying the warning or prompting for a pass-
word), and then get a copy of the private key for
ourselvesdwithout triggering an extra window
that might alert the user.

The attack
Essentially, the attack code is two programs: the
parasitedan attack DLL with the IAT redirec-
tion code and the delay loading stubs, and the



ARTICLE IN PRESS
DTD 5

8 J. Marchesini et al.
grappling hookdan executable to register a hook
which is used to inject the attack DLL into IE’s
address space.

We implemented this attack as follows:

1. Get the parasite and grappling hook onto the
victim’s machine (perhaps through a virus or
a remote code execution vulnerability in IE).

2. Get the grappling hook running with the user’s
privileges. This installs a Windows hook which
gets the parasite injected into IE’s address
space.

3. The parasite changes IE’s IAT so that calls to
desired functions in the CryptoAPI (crypt32.dll
and advapi32.dll) are redirected to the para-
site.

4. At this point, we have complete control and
are aware of what IE is trying to do. For
example, if we specify CryptSignMessage
to be redirected in our parasite, then every
time IE calls this function (e.g. to do an SSL
client-side authentication), control will pass to
our code.

5. We know that the user is expecting to see
a warning in this case, so we take advantage of
the opportunity to do something nefariousd
like export the private key. In our current
demo, the adversarial code exports the private
key, so the warning window will say ‘‘export-
ing’’ instead of ‘‘signing’’ at the top.2

This could be remedied by hijacking the call
which displays the warning. In fact, this would
allow us to disable all such warnings, but we
did not implement this.

Non-exportable keys
The bottom line is that with a DLL and small
executable running with the victim’s privileges,
the private keydeven with medium-security or
high-security protectionsdcan be stolen if it is
exportable. The obvious solution is to make keys
non-exportable, and we verified that this counter-
measure prevents the attack.

Experiment 2: malicious use of keys
via content-only attacks

Since making keys non-exportable stops outright
theft, we had to revise our attack strategy. We
wondered if we could just use the key at will

2 In our demo, we fail the IE request, so the user sees
a ‘‘404’’ error.
without having to actually steal it, as this would be
just as devastating and would work against non-
exportable keys. So we began our second experi-
ment with the question: ‘‘Can we exploit the
complexity of the language of interaction in order
to use the key as we wish, even if we are limited to
just serving content to the browser? ’’

GET requests

The language of Web interactiondeven when re-
stricted to HTML only, and no Javascriptdmakes it
very easy for a server SA to send content to
a browser B, that causes the browser to issue an
arbitrary request r to an arbitrary server.

If one wants this request r to be issued over SSL,
we have found that a reliable technique is to use
the HTML frameset construction, itself offered
over server-side SSL. Fig. 2 sketches this scenario;
Fig. 3 shows some sample HTML.

Basic techniques
A frameset enables a server SA to specify that
the browser should divide the screen into a number
of frames, and to load a specified URL into each
frame. The adversarial server can specify any URL
for these frames. If the server is careful with
frame options, only one of these frames will be
visible at the browser. However, the browser will
issue all the specified requests.

This behavior appears to violate the well-known
security model that ‘‘an applet can only talk back
to the server that sent it’’ because this material is
not an applet.

Figure 2 To borrow client-side authentication, the
adversary needs to convince the browser’s user to visit
an SSL page at the evil server. Using the ordinary rules of
Web interaction, the evil server can provide content
that causes the browser to quietly issue an SSL request,
authenticated with the user’s personal certificate, to
the victim server.
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<html>
<frameset rows="*,1" cols="*,1" frameborder="no">

<frame src="f0.html" name="f0" scrolling="no">
<frame src="blank" name="b0" scrolling="no">
<frame src="blank" name="b1" scrolling="no">
<frame src="https://cobweb.dartmouth.edu:8443/cgi-bin/test.pl?

debit=1000&
major=None%3B%20I%27m%20withdrawing%20from%20the%20college"

name="f1" scrolling="no">
</frameset>
<noframes> no frames </noframes>
</html>

Figure 3 HTML permits an adversarial server to send a frameset to a browser. The browser will then issue requests
to obtain the material to be loaded into each frame. A deviously crafted frameset (such as the one above) appears to
be an ordinary page. If an adversarial server includes a form response in the hidden frame, the browser will submit an
SSL request to an arbitrary target server via GET. In many scenarios, browsers will use client-side authentication for
the GET; with the devious frameset, the user may remain unaware of the request, the use of his personal certificate,
and the response from the target.

Keyjacking: the surprising insecurity of client-side SSL 9
We stress that this is different from full-blown
cross-site scripting. SA is not using a subtle bug to
inject code into pages that are (or appear to be
from) other servers. Rather, SA is using the stan-
dard rules of HTML to ask the browser to itself load
another page.

Framesets and SSL
In previous work (Ye and Smith, 2002), we noticed
that if server SA offers a frameset over server-side
SSL, but specifies that the browser load an SSL
page from SB in the hidden frame, then many
browser configurations will happily negotiate SSL
handshakes with both serversdbut (in the cases
we tried) the browser will only report the SA
certificate.

So, we wondered what would happen if SB
requested client-side authentication. In Mozilla
1.0.1/Linux (RedHat 7.3 with 2.4.18-5 kernel),
using default options, the browser will happily
use a client key to authenticate, without informing
the user. In IE 6.0/WindowsXP, using default
options and any level key, the browser will happily
use a client key to authenticate, without informing
the user, if the user has already client-side
authenticated to SB. If the user has not, a window
will pop-up saying that the server with a specified
hostname has requested client-side authentica-
tion; which key, and is it OK? In Netscape 4.79/
Linux (RedHat 7.3 with 2.4.18-5 kernel), using
default options, the browser will pop-up a window
saying that the server with a specified hostname
has requested client-side authentication; which
key, and is it OK? Then the browser will authenti-
cate.

The request to SB can easily be a GET request,
forging response of a user to a Web form.
POST requests

Some implementors preach that no sane Web
service should accept GET response to Web forms.
However, services that use POST responses are
also vulnerable. If we extend the adversary’s tools
to include Javascript, then the adversarial page
can easily include a form element with default
values, and an onload function that submits it,
via an SSL POST request, to SB.

Fig. 4 sketches this code. Sending this page via
a hidden frame further hides the request and the
response. Again, browsers will use the user’s
personal certificate to authenticate this request.

Implications

As we noted earlier, it is continually touted
that client-side SSL is superior to password-based
authentication.

Suppose the operator of an honest server SB
offers a service where authorization or authenti-
cation are important. For example, perhaps SB
wanted to prove that its content was served to
particular authorized parties (and perhaps to
prove that those parties requested itdone thinks
of Pete Townshend or a patent challenge), or per-
haps SB is offering email or class registra-
tion services, via form elements, to a campus
population.

If SB had used server-side SSL and required basic
authentication or some other password scheme,
then one might argue that a service can be
executed in a user’s name only if that user
authorized it, or shared their password.

However, suppose SB uses ‘‘stronger’’ client-side
SSL. With Mozilla, NSS security tools and default
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<html>
<head>
<SCRIPT LANGUAGE=javascript>

function fnTemp()
{

document.myform.submit();
}

</script>
</head>
<body onload="fnTemp()">

<form name="myform" method="post"
action="https://cobweb.dartmouth.edu:8443/cgi-bin/test.pl">

<input name="debit" value="1000">
<input name="major" value="Hockey">
<input type="submit" value="Submit Form">
</form>
</body>
</html>

Figure 4 A web page such as this uses Javascript to cause the browser submit an SSL request to an arbitrary target
server via POST. In many scenarios, browsers will use client-side authentication for the POST. If an adversarial server
specifies that this page be loaded into a hidden frame, then the user may remain unaware of the request, the use of
his personal certificate, and the response from the target.
options, a user’s request to SB can be forged by
a visit to an adversarial site SA. With IE and default
options, a user’s request can be forged if the user
has already visited SB.

We note that this authentication-borrowing
differs from the standard single-sign-on risk that,
once a user arms their credential, their browser
may silently authenticate to any site the user
consciously visits. In our scenario, the user’s
browser silently authenticates to any site of the
adversarial site’s choosing.

We could not demonstrate a way for the
adversary, using the tools of sending standard
HTML and Javascript to users with standard brows-
ers, to forge a response to a file upload input tag
(see further discussion below) or to forge REFERER
fields (although telnet links look promising).

Browser configurations

The answer to our question for this experiment
was: ‘‘Yes, with most standard out-of-the-box
configurations, we can use the key without the
user’s permission.’’ The seemingly natural defense
to such attacks is to properly configure the browser
to avoid them, and indeed actions such as disabling
Javascript help.

Experiment 3: malicious use of keys
via API attacks

IE on Windows is by far the dominant client
platform. In trying to establish such a proper
browser configuration for IE, we noticed that IE
would only prompt for a password (on our high-
security key) once per visit to a particular domain.
Specifically, we would visit site A, perform a
client-side authentication which prompted us for
the password, leave site A, and then returndonly
we were never prompted for the key’s password
again. Furthermore, we could not find any browser
configuration which would enforce this behavior
(even the DoD guidelines leave browsers suscepti-
ble DoD PKI Class 3 Certificates, 2003), and we
eventually discovered that Microsoft considers
the advertised behavior to be a bug (Microsoft
Knowledge Base Articled821574).

The inability to configure our browser so that
the advertised behavior of a high-security key
(which reads ‘‘Request my permission with a pass-
word when this item is to be used’’) led us to
believe that the flaw must be at a lower level. So
we began our third experiment with the question:
‘‘Can we use some of our previous techniques such
as API hijacking to understand what is happening
and then to use the key?’’

The default CSP is broken

The first step was to convince ourselves that IE was
really using our high-security key to perform
client-side authentication without requesting our
permission, and watching network traffic with
a sniffer confirmed our suspicion. We then attemp-
ted to reproduce the behavior we observed. Using
API hijacking, we were able to attach a debugger
to IE and watch the parameters it passes to the
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CryptoAPI. Reverse engineering in this way allowed
us to build a standalone executable which made
the same sequence of calls to the CryptoAPI as IE
does and uses the same parameters.

Our program opens the same keystore IE uses
during a CryptAquireContext. Our code sits in
an infinite loop taking a line of input from the
command line. It then mimics the sequence of
calls that IE makes to the CryptoAPI in order to
get data signed: CryptCreateHash, Cryp-
tHashData, and CryptSignHash. Since our
key is a high security, the first call to Crypt-
SignHash prompts for a password, as expected.
However, no subsequent calls prompt for a pass-
word, even if the data are completely different.
Thus, the CSP is failing to ‘‘request my permission
with a password when this item is to be used’’.

The magic button

In all of our explorations of the various IE config-
uration options, we came across one button (in
‘‘Internet Options’’) labeled ‘‘Clear SSL State’’.
API hijacking showed that this button will make IE
call CryptRelaseContext in the CryptoAPI,
resulting in a password prompt the next time
the key is used. We also found that restarting the
browser will result in a prompt the next time
the key is used (in contrast, we were initially
surprised that restarting the Web server did not
result in another prompt).

These are more extreme measures than simply
configuring the browser to behave reasonably, but
they were the best we could find, and are recom-
mended by Microsoft Knowledge Base Articled
290345.

Exploiting the CSP to get around the
magic button

Armed with a little information as to how the CSP
and IE work, we were curious to see if there was
a way to defeat the magic button and browser
restarts. Our goal was to make a programdrunning
only with user privilegesdwhich waits for IE to
prompt the user to arm his high-security key with
the password, and then use the key to sign
arbitrary messagesdeven after IE has been closed,
or SSL state has been cleared.

Using our previous technique of API hijacking,
we reused the grappling hook from the attack in
Experiment 1. However, the parasite is slightly
different than the one mentioned in Experiment 1.
In this attack, the parasite will spawn an agent
process (called iexplorer.exe; the real IE is
iexplore.exe) which communicates with the
parasite over a named pipe. When IE goes away,
the agent will persist and be able to use the key
without prompting for the password.

The initial stages of the attack are identical to
the one in Experiment 1. The attacker begins by
getting the grappling hook and parasite on the
victim’s machine. Once the code is in place,
the grappling hook begins executing which will
get the parasite injected into IE address space.
Upon injection, the parasite changes IE’s IAT so
that calls to desired functions in the CryptoAPI
(advapi32.dll and crypt32.dll) are redirected to
the parasite.

Once the parasite is set up, it watches for IE to
makeaspecific sequenceofcalls:CryptAcquire-
Context,CryptCreateHash,CryptSetHash-
Param, followed by two calls to CryptSignHash.
This sequence indicates that IE is using a private key
for the first time, which will result in a password
prompt. As each of these calls occur, the parasite
intercepts the call before the CryptoAPI has
a chance to handle it, packs all of the arguments
into a binary data structure, and passes them to the
agent over the namedpipe. The idea here is that the
agent is mirroring the exact sequence of calls (with
the exact arguments) that IE is making.

Of particular interest is the second call to
CryptSignHash as this is the call that spawns
the password prompt. When this call occurs, the
parasite does not actually let the call pass through
to the CryptoAPI; it has the agent sign the data
instead. The result is that the agent is the program
which is requesting the user password, so it may
use the key indefinitelydwith no further pass-
word prompts. IE gets the correct signature, so the
SSL handshake continues as normal. Examining the
‘‘Details’’ of the signing operation show that
‘‘iexplorer.exe’’ is using the private key instead
of ‘‘iexplore.exe’’; this subtle name change is the
only means of detection.

At this point, the user can close IE and the agent
still has an ‘‘armed’’ key, which it can use in-
definitely. Our example agent puts itself into
command line mode, allowing us to sign and
decrypt arbitrary messages with the victim’s key.
A real attack would most likely have the agent act
as a Trojan where it binds to a port and awaits
remote signing and decryption commands.

The punchline: no configuration prevents
this attack

We were unable to find any browser configuration
which stops this attack because the problem is
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below the browserdit is with the CSP. The attack
is possible because the system is designed with the
assumption that the entire system is trusted. If one
small malicious program with user privileges (such
as can happen by a user clicking on an unknown
attachment) finds its way into the system, the
security can be undermineddeven with high-
security non-exportable keys, and even assuming
everyone does the right thing, no matter how
awkward: browser users clear SSL state or kill the
browser after each session, and server application
writers use forms with hidden nonces.

Experiment 4: malicious use of keys
on a USB token

Many in the field suggest getting the private key
out of the system altogether and placing it in
a separate secure device of some sort. Taking the
key to a specialty device (such as an inexpensive
USB token) would seem to reduce the likelihood of
key theft as well as shrink the amount of software
which has to be trusted in order for the system to
be secure. Specifically, at first glance, it would
appear that the just the device and the software
which provides access to the device (i.e., its CSP)
need to be trusted.

We had a couple of these devices (the Aladdin
eToken and the Spyrus Rosetta USB token), so we
decided to have a critical look at these. Since the
keys on the devices we had were non-exportable,
key theft seemed impossible (assuming we leave
‘‘rubber hose cryptanalysis’’ and hardware attacks
out of our attack model), but we wondered if we
could use the key as in the previous attacks.

Spyrus Rosetta USB
The Spyrus CSP was the most verbose one in all of
our experiments. It was the only CSP which
prompted every time the key is used. In our
opinion, these devices work too welldit was not
uncommon to get multiple password prompts while
loading one page. (This suggests a further line of
inquiry: why does the actual usage of a client
private key in such a session depart so radically
from the user’s perception of it? That is: visiting
a site ‘‘once’’ should generate one warning, not an
endless barrage.)

While this is the CSP which allows users to
render the best mental model, the model it
renders is not a particularly usable one. Our
hypothesis is that we could simply ask for the
password outright, and would probably get it be-
cause users are so trained to enter their password
for this device. We could probably just hide in the
noise.

Upon contacting Spyrus about the issue, they
pointed us to the ‘‘Spyrus Rosetta CSI library’’. The
library supports a ‘‘Policy Console’’ feature which
allows the CSP to use the key for a user-specified
time interval without asking for permission. This
feature clearly enhances the usability of the
device.

Aladdin eToken
The Aladdin eToken did not give us any option as to
how often we wanted to be prompted for a pass-
word, and experiments showed that the Aladdin
CSP’s default behavior seems to follow a policy of
one password authentication per application. This
is virtually the same behavior we saw with the
default Microsoft CSP and the high-security key. In
fact, it is a bit worse than the default CSP in that
the ‘‘Clear SSL State’’ button has no effect on the
token whatsoever. Within a few minutes, we were
able to replicate the attack in Experiment 3,
allowing us to use the key even after the intended
application (e.g. IE) has been shut down.

Upon discussing the issue with Aladdin, they
suggest setting a ‘‘Secondary Authentication’’ to
prompt upon application request. This does
indeed prompt for authentication each time the
key is used. As discussed previously, the result
is possibly multiple password prompts per page
load.

The trust boundaries do not shrink
Unfortunately, just putting the private key on
a token isn’t enough. The token’s CSP is still
interacting with the whole system (the OS and
CryptoAPI), and the entire system still has to be
trusted. Putting the private key on a token gives
some physical security and makes it harder to steal
the key (physical violence notwithstanding), but it
doesn’t protect against malicious use, and it
doesn’t increase usability.

Conclusions

For client-side PKI to be usable, it must behave as
expecteddit must only allow transactions which
the client is aware of and approved. If we trust the
entire desktop, and users ‘‘clear SSL state’’ or kill
their browsers after each session, and application
writers include and verify hidden nonces, then we
might conclude that client-side PKI works. But
these are not reasonable assumptionsdand as
we’ve demonstrated, relaxing them even a little
yields security trouble.
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Usability

It should be easy for a browser user to perceive
and approve of the use of their private key; it
should be easy for an application writer to build on
this. To cite just a few design principles: (Yee,
User interaction design for secure systems)

� ‘‘The path of least resistance’’ for users should
result in a secure configuration.

� The interface should expose ‘‘appropriate
boundaries’’ between objects and actions.

� Things should be authenticated in the user’s
name only as the ‘‘result of an explicit user
action that is understood to imply granting.’’

One might quip that it has hard to find a princi-
ple here that the current paradigm does not
violate.

In order for client-side PKI to work, these
principles should apply to both the client user, as
well as the IT staffer setting up a Web page.

The minimum trust boundary

Clearly, we would like to find the minimum number
of components which have to be trusted, as this
shrinks the number of potential targets. How can
we shrink the trust boundary so that buggy desk-
tops which have almost weekly ‘‘Critical Security
Updates’’ are not the cornerstone of our secure
systems? Trusting just the kernel doesn’t solve the
problem. Trusting a separate cryptographic token
doesn’t solve the problem.

We do not have a clear answer yet, but we
discuss some of our initial thoughts.

Trusted paths
One natural area for further attention is a trusted
path. Our earlier work (Ye and Smith, 2002) built
trusted paths from the browser to the user. We
also need trusted paths in the other direction
(e.g., a Web equivalent of the ‘‘secure attention
key’’) and an easy way for Web service writers to
invoke that. This may not be as much of a stretch
as one might think; already, the standard browsers
depart from the HTML specification and require
that a user type a value into a file input tag.
(Without this feature, malicious servers can pro-
vide content that quietly uploads a file of their
choosing.)3 Wouldn’t an authenticate input tag

3 Actually, some versions of Safari on OSX appear to be
susceptible; we plan further tests.
be much easier than trying to work through
cryptographic hidden fields? Adding another level
of personal certificate that only was invokable via
such a tag (and perhaps even signed something)
would help. Indeed, in the online literature, we
see that earlier versions of Netscape provided
a signed form facility in Java that forces some
user involvement (Netscape form signing, 1999)
(this feature is gone in current versions of Net-
scape, and IE never provided native support); we
also see some brief discussion for authentication
tags (Lawrence and Leach, 1999).

Until then, ongoing work (Pinkas and Sander,
2002) in using reverse Turing tests to defeat
robotic probing could assist a server in setting up
a trusted path.

Another area for further attention is the user’s
mental model of Web interaction. For this new
authenticate tag (or even current warning
windows) to be effective, the screen material to
which it applies should be clearly perceivable by
the user. Even adopting the ‘‘Basic Authentica-
tion’’ model of letting the server demanding the
authentication provides some descriptive freetext
might help. Instead of ‘‘hostname wants you to
authenticate,’’ the browser window might give
some context, e.g., ‘‘.in order to change your
class registrationdare you sure?’’. (Netscape’s
Signed Forms went in this direction, but it permit-
ted the server to provide HTML content that can
enable some types of signature spoofing.)

To rephrase a point from our earlier work (Ye
and Smith, 2002), the community insists on strict
access controls protecting the client file system
from server content, but neglects access controls
protecting the user’s perception of the client user
interface.

Tokens with UI
On a system level, we recommend that further
examination be given to the module that stores
and wields private keys: perhaps a trustable sub-
system with a trusted path to the user. As a device
which has a very rich and complex interaction with
the rest of the world, browsers can often behave in
unexpected and unclear ways. Such a device
should not be the cornerstone of a secure system.

Many researchers have long advocated that
private keys are too important to be left exposed
on a general-purpose desktop. We concur. How-
ever, in light of our experiments, we might go
further and assert that the user interface govern-
ing the use of the private key is too important to
be left on the desktopdand too important to
be left to the sole determination of the server
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programmer, through a content language not de-
signed to resist spoofing.

Rethinking

Our experiments show that the natural mental
model which arises for client-side PKI is not
representative of the actual system’s behavior.
This fact, coupled with the underlying assumption
that all of the system’s components are trusted,
creates opportunities for a number of devastating
attacks. Much work is being done in many places to
try to bring PKI to users; considerable investment
of effort is being focused on the client-side PKI
paradigm. We humbly suggest that some of this
investment might be better spent rethinking the
basic model.
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