
PorKI: Portable PKI Credentials via Proxy
Certificates?

Massimiliano Pala, Sara Sinclair, and Sean W. Smith

Computer Science Department
PKI/Trust Lab, Dartmouth College

6211 Sudikoff, Hanover, NH 03755, US

{pala,sinclair,sws}@cs.dartmouth.edu

Abstract. Authenticating human users using public key cryptography
provides a number of useful security properties, such as being able to
authenticate to remote party without giving away a secret. However,
in many scenarios, users need to authenticate from a number of client
machines, of varying degrees of trustworthiness. In previous work, we
proposed an approach to solving this problem by giving users portable
devices which wirelessly issue temporary, limited-use proxy certificates to
the clients. In this paper, we describe our complete prototype, enabling
the use of proxy credentials issued from a mobile device to securely au-
thenticate users to remote servers via a shared (or otherwise not trusted)
device. In particular, our PorKI implementation combines out-of-band
authentication (via 2D barcode images), standard Proxy Certificates, and
platform attestation to provide usable and secure temporary credentials
for web-based applications.

Key words: Mobile Authentication, Usable Security, Website Authentication,
Proxy Certificates, PKI

1 Introduction

Usability is critical to the success of a secure computer system [19]. In particu-
lar, the user’s experience in performing common actions—such as authenticating
to the system—has a strong impact on their overall engagement with the sys-
tem [15]. Authentication schemes based on public key cryptography offer more
rigorous security guarantees than passwords, but the overhead costs of obtaining
credentials and configuring them for use on commodity machines makes PKI es-
sentially unusable in many domains. Moreover, there is no clear-cut way to use
a private key on a potentially untrustworthy workstation without exposing that
key to compromise.
? This work was supported in part by Intel Corporation and by the NSF, under grant

CNS-0448499. The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of any of the sponsors.



At the same time that these challenges prevent PKI from gaining wide adop-
tion among end users, we are becoming increasingly dependent on remote sys-
tems to store and process sensitive data (e.g., in the cloud). As this dependence
grows, so too does our awareness that password-based authentication is glaringly
insufficient.

This work. We therefore propose a novel approach to user authentication from
a client machine. Our solution—named PorKI because it enables long-term PKI
credentials to be portable across machines—leverages the user’s smart phone as
a credential repository, and generates limited-use proxy certificates for short-
lived key-pairs for use on potentially untrustworthy workstations. This paper
focuses on an implementation of PorKI targeted at authentication to web-based
resources; we also present software for the workstation that allows the user to
authenticate to websites using the proxy certificate she generates on her smart
phone.

Paper Organization. In Section 2 we summarize related work and briefly
survey existing mechanisms for user authentication on the web. We describe the
design of the PorKI system in Section 3, and discuss details of our implementa-
tion in Section 4. How to enable PorKI authentication in Web Applications is
discussed in Section 5. Finally, Section 6 provides our conclusions proposals for
future work.

2 Related Work

This is a brief overview of related work; for a more complete treatment, see the
earlier paper on the design of PorKI [14].

The predominant mechanism for authenticating users on the web is the classic
secret password, despite its vulnerability to phishing and other attacks. RSA’s
SecureID [12] adds an additional factor of authentication, although deploying
tokens may not be appropriate for all organizations. Smartcards and USB PKI
tokens face similar cost and logistical challenges; moreover, a compromised work-
station can take advantage of the access to the user’s keypair, even with user-
and system-level controls in place [7]. Instead of reducing the size of the Trusted
Computing Base (TCB) to fit a secure co-processing unit as in the SHEMP
project [6], our work uses an external device (i.e. a smart phone) as a personal
TCB.

Work by Wu et al [9] leverages a cell phone and a trusted third party to
protect credentials from the workstation. Different from our solution, their solu-
tion requires the user to input data to authenticate a specific session instead of
automatically generate short-lived strong proxy credentials while authenticating
to a remote server. Sharp et al. [13] augment the workstation interface with a
trusted browser on the user’s mobile device, which can then be used to securely
enter passwords or other sensitive information. Garriss et al. [5] present a system
with which a user can use a mobile device to verify the identity and integrity of



software on the workstation; after the verification process is complete, the user
may be more confident about sharing his credentials with the machine.

PorKI’s system for establishing a trusted channel of communication between
devices—via the mobile device’s camera and a 2D barcode displayed on the
workstation—is similar to that of the Grey System [8]. In their work, the au-
thors use the discovery functionality of Bluetooth and barcode images to securely
transfer ephemeral keys or self-signed certificates. In our work, we leverage their
technique to allow pairing of the devices over IP network (i.e., without requir-
ing the Bluetooth discovery properties)—but we differ by providing support for
standard proxy credentials (proxy certificates) for web-based applications.

2.1 Proxy Certificates

The problem of exposing a user’s credentials when accessing services on public
or shared computers is well-known. As the sharing of strategic resources grows
beyond a single campus or organization (e.g. in computing grids), the need grows
to provide simple ways to use short-lived or ad-hoc credentials demands for
usable solutions.

We think that the usage of a mobile device and the possibility to easily trans-
fer proxy-credentials to the shared device provide a better security paradigm and
a more usable solution.

To allow for simple authentication delegation, the IETF standardized Proxy
Certificates allows a user to issue herself a certificate which enables only a subset
of the permissions present in her long-lived identity certificate. Proxy Certificates
use the X.509 standard with the prescriptions described in RFC 3820 [18]. Proxy
Certificates bind a public key to a subject name, as normal identity certificates
do. The use of the same format as X.509 public key certificates allows Proxy
Certificates to be compatible with existing protocols and libraries which signifi-
cantly eases implementation. However, unlike a public key certificate, the issuer
(and signer) of a Proxy Certificate is an End Entity (EE) or another Proxy
Certificate rather than a Certification Authority (CA). Therefore, Proxy Certifi-
cates can be created dynamically without requiring the normally heavy-weight
vetting process associated with obtaining EE certificates from a CA. Intuitively,
this approach is safe because it only permits the EE to delegate a subset of its
own identity and privileges to this new, temporary keypair.

As the standard mandates, the subject name of a Proxy Certificate is scoped
by the subject name of its issuer to achieve uniqueness. This is accomplished by
appending a CommonName relative distinguished name component (RDN) to
the issuers subject name. This means that the subject of the proxy certificate
(or Distinguished Name) has to include the user’s original one plus an additional
CommonName (CN) field whose value is, usually, set to “Proxy”. Moreover, the
user can include only a subset of her own identity certificate permissions into her
proxy credentials. That is, let φ be the set of original permissions in the user’s
certificate χ and φ′ the set of permissions present in the proxy certificate χ′.
Then the set of allowed permissions ψ is a subset of the one present in the user’s
certificate χ as restricted by the proxy certificate’s permissions, i.e. ψ = φ∩φ′. In



particular, the user can limit the validity period, the Key/Extended Key usage,
and embed a usage policy.

By using proxy certificates, temporary strong short-lived credentials can be
easily issued (matching temporary, short-lived key-pairs). This approach limits
the exposure of the user’s credentials to a very short temporal window, thus
allowing their usage also on shared computing devices as their expiration guar-
antees that they can no longer be used beyond the intended period. Although
this approach has been deployed within some communities, such as scientific grid
computing, its main drawback is that revocation of these type of certificates is
very inconvenient. Therefore, such approaches(e.g., [2]) completely avoid pub-
lishing revocation information. Moreover, although requesting a new certificate
is a quite frequent operation (because of the limited validity period), the process
can be either quite cumbersome on the user part or rely on very lightweight
authentication procedures.

Although already standardized, proxy certificates are not yet widely adopted
outside specific communities of users, such as grid computing.

3 System Design

Suppose Alice wants to authenticate to a remote relying party Bob through a
client workstation W that neither Alice nor Bob trust completely. Alice could
use a PKI-equipped USB token—but this requires that W contain drivers for
this token, and (what’s worse) can expose Alice’s key to malicious use by W [7].

PorKI enables Alice to do this without exposing her identity private key—
but without having to do any complicated work or assuming anything special
hardware properties of W . In particular, our work combines the usability and
ubiquity of mobile devices, the security of out-of-band communication for secure
key management, and the compatibility of legacy X.509-based authentication
with proxy-credentials delegation.

In PorKI, the main idea is to generate and transfer ad-hoc proxy credentials
(i.e., the proxy certificate and the corresponding private key) from a mobile de-
vice (such as a smart phone) toW (e.g., a shared lab computer or an internet-cafe
terminal). These newly generated credentials can be used to securely authenti-
cate Alice to Bob via standard protocols (e.g., SSL, TLS, or DTLS) applications
already use. By using the proxy keypair, the Alice’s long-term one is kept safe
on the mobile device and never transferred to the shared device W .

In our work, we identified three main components, i.e. (1) the mobile device
application, (2) the shared device extension that manages PorKI’s operations,
and (3) Proxy Certificates enabled services and applications. In this section we
focus on the description of the first two components. We provide considerations
on leveraging the information embedded in the user’s proxy credentials in sec-
tion 4.

PorKI in a Nutshell. The user activities required to issue proxy-credentials
via PorKI is depicted in Fig. 1. The mobile device is paired with the shared one



(1)

(2)

(3)
permanent
private key

permanent
private key

temporary
private key

Fig. 1. User interactions with PorKI: first (1) the user pairs the mobile device and the
shared workstation using the former’s camera to read the barcode displayed on the
latter. Next (2) she has the option to modify the parameters according to which the
proxy certificate with be generated; when she taps the send (highlighted) button, the
credentials are transferred. The user can now (3) use her short-term credentials in the
browser on the shared workstation to authenticate to web resources.

(e.g., Internet station) via barcode images generated on the latter that carry the
channel authentication information needed to secure the communication between
the devices. Once a secure communication channel has been established between
the two devices (via this pairing), trust measurements about the shared one (eg.,
TPM attestation) are transferred to the mobile device and embedded into the
proxy credentials. Then, the new certificate and keypair are transferred back to
the paired device together with the full chain of certificates up to the trust root.

As described later in 3.2, we extended the Firefox browser to act as the
PorKI-enabled application on the shared device. Once PorKI is activated and
the proxy-credentials are transferred to the browser on the shared device, the user
can authenticate herself to web applications by using her new proxy-credentials.

3.1 Smart Phone Application

PorKI leverages the possibility to securely store the user’s long credentials into
a mobile device that the user is acquainted with. In particular, as phones and
other smart devices like iPods or PDAs are very popular, we leverage the user’s
familiarity with these devices in order to provide usable proxy credentials.

Assumptions. To securely pair the mobile device with the shared one (W ), we
assume that:



– The shared resource W has a display capable of displaying images of 400 by
400 pixels. Since we use black and white images, the display does not need
color capabilities.

– The mobile device is capable of taking VGA resolution pictures. Although
it is possible to use lower resolutions for detecting the barcode displayed on
the shared resource, the usage of VGA resolution reduces the detection error
rates and increases the usability of the mobile application. We notice that
today even low-cost mobile phones carry camera with higher resolution.

– The mobile resource is capable of contacting the shared resource via IP (e.g.,
over wifi, 3G, or EDGE networks).
As the third assumption is quite important, it requires further discussion. To

transfer the shared device’s trust measurement and the proxy credentials back
to the shared device, PorKI needs a secured communication channel between the
two devices. In our previous work [14], we focused on the usage of bluetooth [1]
as the out-of-band channel for transferring the user’s proxy credentials, but this
proved to be too restrictive as most of the shared resources (eg., desktop comput-
ers) do not come with bluetooth capabilities. Therefore, we divided the pairing
process into two separate phases. During the first one, we transfer only the
information needed to establish the secure communication channel (a symmetric
128-bit key) by using barcode images as the out-of-band channel. During the
second phase, we establish the secure channel and transfer the information back
and forth the two devices.

In other words, we use the out-of-band communication only for transferring
the shared resource’s (W) network address and the encryption/integrity key
to securely pair the devices (i.e., setup the encrypted communication channel).
Subsequent data transfers happen via IP communication. This assumption is
reasonable as the two devices are physically in the same location and, in many
cases, share the same LAN segment. Although this approach cannot be applied
to every possible scenario (e.g., because of the presence of firewalls), we think it
is the least restrictive assumption possible.

The User Interface. In PorKI, we designed the user interface in order to
minimize the steps required by the user to issue and transfer the proxy credentials
among devices. The application workflow is as follow:
1. The User starts the application and take a picture of the barcode image

displayed on the shared resource display
2. The application automatically decodes the information from the image and

establishes the secure communication channel (via TLS)
3. The User selects one of the stored credentials on the mobile device and sets

the validity period of the proxy credentials via a simple bar selector
4. The mobile application generates the new keypair and issues the new proxy

certificate.
5. The mobile device sends the proxy credentials in an encrypted PKCS#12

file to shared device over the authenticated communication channel
It is to be noted that the required level of interaction with the mobile device ap-
plication is sensibly low (steps 1 and 3). In fact, compared to other solutions that



id-porki OBJECT IDENTIFIER ::= { id-pkix 50 }

-- Object Identifier for the porkiDeviceInfo extension

porkiDeviceInfo ::= SEQUENCE {

retrievedAt GeneralizedTime,

-- time when the Info has been collected

retrievedBy INTEGER,

-- identifier for the component which gathered

-- the device information

data SEQUENCE OF OCTET STRING }

Fig. 2. ASN.1 notation for the porkiDeviceInfo extension that is used in the proxy
certificate to store the shared device information.

require pairing the two devices via bluetooth, our approach based on barcode
images proved to be quite effective.

Proxy Credentials. By being able to directly issue proxy credentials (as op-
posed to have to request them from a third party), it is possible to embed
the shared device’s authentication information in the proxy certificate. For this
purpose, we identified a new extension (i.e., porkiDeviceInfo) that allows for
unstructured content to be embedded. In our application, we include a simple
XACML assertion that carries information about the shared device that have
been gathered by the shared device’s PorKI application (i.e., the Firefox ex-
tension). The ASN.1 notation for the extension syntax is reported in Figure 2.
This extension carries several fields. The retrievedAt is the time at which the
measurement is performed. The value of this field can be used to evaluate the
freshness of the information. In particular, it is possible to use cached values
if the measurement is sufficiently recent, thus allowing for shorter communica-
tion between the paired devices if a recent pairing has recently took place. In
retrievedBy we store the identifier of the component that performed the mea-
surement. We identify with 0 the mobile device—the core of trust for PorKI. The
browser extension is identified by 1, while any external component is identified
by 2. Currently, the trust measurements are performed directly on the shared
device and then transferred to the mobile device. In future versions of PorKI,
we envisage gathering more reliable information about the shared device by
performing a remote attestation of the platform [17]. If a remote attestation
is performed by the mobile device, a higher level of trust for the performed
measurements can be adopted by the web application. In this case, the presence
of the retrievedBy field allows the relying party (e.g., the web application) to
raise or lower its confidence in the porkiDeviceInfo contents. Ultimately, if the
remote attestation cannot be performed (e.g., because of the lack of the TSS
stack on the shared device), the current mechanism based on self-attestation on
the shared device can be used as fallback option.



certIssuingLocation ::= SEQUENCE {

latitude UTF8String,

-- latitude information

longitude UTF8String,

-- longitude information

elevation INTEGER,

-- elevation (in meters) information

levelOfAccuracy INTEGER

-- level of accuracy (in meters)

}

Fig. 3. ASN.1 notation for the certIssuingLocation extension. The information car-
ried in this extension can be used for authentication, authorization and auditing pur-
poses.

Location-Aware Certificates. In PorKI, we enabled the possibility to em-
bed location information in the proxy-credentials. In fact, if the mobile device
provides support for GPS or GSM positioning, the information is embedded in
the proxy certificate in the form of another extension. For this, we identified
the certIssuingLocation extension as defined in Figure 3. Because the level
of accuracy of GPS/GSM positioning is usually very low inside buildings, the
location information includes the levelOfAccuracy field which has to be taken
in consideration when the location information is consumed. Also in this case,
because the mobile device is the source of trust in PorKI, the location informa-
tion embedded in the proxy credentials can be considered trustworthy under the
assumption that the device is not subject to a GPS spoofing attack. Although
we notice that this attack is easy to carry out [16] and that there is no protection
against it in current GPS receivers, it is possible to detect GPS spoofing attack
by combining and analyzing location information gathered through both the
GSM and the GPS networks. On mobile devices that do not provide the pos-
sibility to access a second source of location information (e.g., PDAs), several
proposals have been made on how to fix this problem [4, 10]. We hope that the
next generation of GPS receivers will provide also authentication information to
allow applications to recognize the level of trustworthiness of the signal (e.g., by
using information about the time, noise level and strength’s of the GPS signal,
reported accelerations’ sanity checks).

In PorKI, both authentication and authorization engines of web applications
could use the location information to grant or restrict access to specific resources
depending on the physical location of the user. The information collected by the
mobile device, could be of value for several scenarios. Besides using the user’s
position for authorization purposes, this information could be used later on for
auditing purposes.



Fig. 4. Barcode image generated by the PorKI application. The image encodes the
shared device IP address and the shared session key.

3.2 The Browser Extension

In our work, a central component is the PorKI application that enables the
shared device to transfer and install the temporary proxy credentials.

Because our implementation is aimed at providing support for web-based
applications, we chose to develop the PorKI application as an extension for the
Firefox browser. This choice has several side-benefits. First, the installation of
extensions for the browser is quite an easy process and users are already used to
it. Moreover, the extension code can be digitally signed thus allowing for code
verification and automatic updates.

Although our choices were driven by the specific example scenario of Alice
authenticating to a Web site operated by Bob, the general design of the PorKI
application can easily be applied to other contexts. For example, operating sys-
tems could provide an update/extension process for their certificates store that
would allow the installation/creation of a PorKI-enabled store. It is out of the
scope of this work to discuss all the possibilities offered by the different OSes or
software distribution technologies.

Out-of-Band Data. The browser extension is responsible to generate the bar-
code image (Figure 4) that is used to setup the secure communication channel
between devices. As the first step, the shared device generates a session key that



is used to establish the encrypted and integrity-checked channel with the mobile
device. The same key is also used to decrypt the PKCS#12 file that contains
the proxy credentials. Together with the generated symmetric key (3DES), the
network IP address of the shared device is embedded in the 2D barcode that is
displayed to the user when she requires to transfer/generate a new proxy cre-
dential. Once the secure communication is established between the two devices,
the PorKI application sends the details about the shared device to the mobile
one. This data can be in any format and is meant to be consumed by the web-
application. It is to be noted that, besides initiating the process, the user is not
asked to interact with the PorKI application on the shared device.

4 Implementation Details

During the development of PorKI, we identified two main challenges: provid-
ing support for Proxy Certificates across operating systems and devices, and
enabling the usage of Proxy Certificates for SSL/TLS authentication in Firefox.

To address the first issue, we used and enhanced LibPKI [11] to support proxy
certificates. In particular, we added support for PKCS#12 tokens manipulation
and proxy certificates profiles management.

The second issue proved to be difficult to solve as much legacy software
does not allow easily extension of the crypto APIs in order to support proxy
certificates. The main problem in adding support for proxy certificates is the
path building process. In fact, according to RFC 5280 [3], an End Entity (EE)
cannot sign certificates. Therefore, the path construction and validation for a
proxy certificate fails in crypto libraries that do not explicitly support them.
Thus, solving this problem can potentially require to directly patch large parts of
the browser software. Fortunately, this was not required in our implementation.
As we describe in 4.2, we leverage the properties of Firefox’s certificates store
to alter the normal behavior of the browser and convince it to use the imported
proxy credentials as normal identity certificates.

4.1 iPhone and Proxy Certificates via LibPKI

In order to develop the PorKI mobile application, we needed a platform that
was able to provide the required functionality out of the box or that would
allow us to port existing software to the device in an easy fashion. Fortunately,
the iPhoneOS and its development environment allow for UNIX programs to be
ported by using open-source tools like GCC. In particular, to address our needs
for cryptographic functionality, we were able to compile LibPKI by using the
iPhone SDK (v2.0, v3.0, and v3.1.3). The possibility of using LibPKI instead of
the native cryptographic functionality built into the iPhoneOS helped us in:
– reducing the size and complexity of the iPhone application
– support proxy-certificate creation easily
– building secure connection channel with the shared device via the provided

URL interface



Fig. 5. PorKI’s user interface on the iPhone: (a) the identity certificate display view,
(b) the proxy-credential issuing view, and (c) communication box for the successful
transfer of the proxy credentials.

For encoding and decoding barcode images, we used libdmtx1. We managed to
port this library to the iPhoneOS as well as MacOS X and Linux operating
systems. Because all the other libraries we rely on are already available across
these systems by default (e.g., libxml2, pthreads, and OpenSSL), we decided
to use the same set of tools to develop both the iPhone application and the
browser’s extension.

Touch User Interface. The PorKI UI on the iPhone provides a usable and
clean interface that minimizes the required user interaction. Figure 5 provides
some screenshots of the interface. At first, the PorKI application allows the user
to select the identity to be used to generate the proxy credentials in the main
screen (A). After that, the user can use the “Pair Device” button to initiate
the pairing of the device. The standard iPhone picture-taking interface is then
displayed and, after the picture is taken, the proxy-credential issuing interface
(B) is displayed. In the current version, the user can select the validity period
(in minutes) of the proxy credentials and the key length—in the form of a sim-
ple “weak”, “medium”, and “strong” selector—only. In future versions we will
explore how to provide the user with meaningful information required to decide
about which policy information to be embedded in the proxy certificate. After the
validity period is chosen, a tap on the “Send” button will send the newly issued
credentials to the shared device and imported into the browser automatically. A
simple confirmation popup (C) is displayed to the user upon successful transfer.
In case of an error, an appropriate message is displayed instead.

The PKCS#12 Contents. Because the PKCS#12 format is meant to provide a
container for identity certificates, it does not explicitly support proxy-certificates.

1 The DMTX library is available at http://www.libdmtx.org/



This means that there is no specific “bag” where the proxy-certificate should be
stored in. We decided to put the proxy-certificate in the identity-certificate bag
and push the identity-certificate in the CA’s one. As specified in more details
in 4.2, this allowed us to identify the proxy-certificate as a CERT TYPE PROXY USER
while the user’s identity one as a CERT TYPE PROXY CA.

The current version of the iPhone application does not allow a user to import
her own credentials from an external source. In the prototype we simply embed-
ded several identity certificates in the form of encrypted PKCS#12 files. In our
future work, we plan to leverage the URI interface in LibPKI to transfer the
user’s long term credentials from an external repository to the mobile device via
different transport protocols (e.g., ldap, https, mysql, postgresq, ssh). By using
this approach, a simple URI can be used to configure the application. Both the
Firefox Extension and the iPhone source code are available from the project’s
repository2.

4.2 The PorKI Firefox Extension

The PorKI extension for Firefox is responsible (a) to generate the pairing images,
(b) to import the proxy-credentials, and (c) to enable the usage of the newly
issued proxy credentials and setting the appropriate trust configuration in the
application store.

Our Firefox extension has two main parts. First, there’s the lower-level func-
tionality developed in C++. These functionality are then wrapped by using the
XPCOMM interface and exposed to the top layer via JavaScript calls. The usage
of LibPKI as our cryptographic provider sensibly contributed to reduce the size
of the C++ code. In particular, the compiled part of the Firefox extension is
only 1̃160 lines of code (the JavaScript part is 5̃00 lines of code).

Lower Level Functions. The PorKI lower level API exposes a very restricted
number of functions to the upper level. In particular, we expose the following:

– GetLocalAddr() provides the IP address of the shared device
– GenHexKey() generates the shared key
– GenBarCode() generates the barcode image and stores it in a local directory

on shared device
– GetUserProxy() opens the communication channel with the mobile device

and stores the retrieved PKCS#12 file
– ImportProxyCertDB() — imports the proxy-credentials into Firefox’s cer-

tificate store and sets the appropriate trust configuration

among these, the most interesting function is the latter. In fact, during the design
of PorKI we planned to extend Firefox in order to:

– correctly import a proxy certificate
– enable the proxy-certificate to be used as a normal user certificate

Because Firefox provides the possibility to interact with its certificate store
and, most importantly, to extend the SSL/TLS callbacks, in our original design



Certificate Type Trust Flags

CERT TYPE CA CERTDB TRUSTED CA, CERTDB VALID CA, CERTDB TRUSTED

CERT TYPE EMAIL CERTDB VALID PEER

CERT TYPE SERVER CERTDB VALID PEER

CERT TYPE PROXY CA CERTDB TRUSTED CA, CERTDB TRUSTED CLIENT CA

CERTDB VALID CA, CERTDB SEND WARN, CERTDB TRUSTED

CERT TYPE PROXY USER CERTDB VALID PEER, CERTDB SEND WARN

CERTDB TRUSTED, CERTDB USER

Table 1. Trust Settings for PorKI’s Imported Certificates in Firefox Trust Store.

we planned to use both of these features to enable the usage of proxy-credentials
for normal browsing operations.

Because of the lack of documentation on the internals of Firefox, the best
implementation strategy was not clear. After studying the NSS library (the se-
curity library that provides the cryptographic functionality to Firefox) internals,
we realized that Firefox heavily relies on the library to store, retrieve, and verify
certificates. The proxy-credentials import process has been divided into two func-
tions: ImportNSSKeypair(), and ImportNSSCertificate(). The first function
takes care of importing the private key and set the usage flags in the store. The
second one, takes care of importing a certificate in the appropriate store. In
PorKI we use the following types of certificates during our import process:

– CERT TYPE PROXY USER, which identifies the proxy-certificate issued by the
mobile device

– CERT TYPE PROXY CA, which identifies the user’s identity certificate (the cer-
tificate used to sign the proxy credentials)

– CERT TYPE CA, which identifies any other CA certificate in the chain of cer-
tificates up to the user’s root CA

When parsing the contents of the PKCS#12 file, the certificates are imported into
the Firefox store according to their type. In particular, after retrieving a reference
to the default certificate store, our ImportNSSCertificate() function sets the
trust flags in the NSS object. Table 1 provides a list of all the trust settings for the
different type of certificates and their trust settings. Because of the lack of docu-
mentation about the meaning and the effects of each trust setting, we performed
some tests to discover the right set of trust settings. Specifically, after importing
the certificate with the CERT ImportCerts() function, by setting the appropriate
trust settings via the CERT ChangeCertTrust() NSS function, PorKI is able to
correctly import the proxy credentials and have Firefox to correctly verify the
full chain of certificates. Surprisingly, this automatically enables the usage of the

2 http://mm.cs.dartmouth.edu/porki/



Fig. 6. The Proxy Certificate installed on Firefox as displayed by the standard certifi-
cate selector.

proxy credentials in Firefox also for browsing activities. We note that enabling
proxy-certificates usage in the NSS library was easier than expected.

Higher Level Functionality. The high-level functionality are provided via
the JavaScript portion of the Firefox extension. In particular, we use an Icon
on the status bar that the user can interact with. By left-clicking on the Icon,
the user activates the generation of the barcode image (openBarCode()), while
a right-click on the PorKI icon simply opens up the Certificate Dialog where
the user can verify her own certificates and identity settings. Figure 6 shows
the default Certificate Dialog correctly showing the details of a proxy certificate
generated with PorKI.

5 Enabling PorKI Authentication in Web Applications

In order to evaluate the usability of the PorKI system, we evaluated the im-
pact on configuring some PKI-enabled web applications to accept our proxy-
credentials instead of the user’s identity certificate. In particular, we evaluated
a widely adopted systems: GridWiki.

This software is used by many communities of users or researchers to ex-
change information about their interests or work. We choose this specific software
because it supports user authentication via X.509 certificate out of the box.



Our purpose was to determine how difficult would it be to enable the usage of
PorKI’s proxy credentials (standard X.509 proxy certificates) in GridWiki, and
how usable would the user’s experience be. Specifically, we installed GridWiki
on a Linux machine running Apache v2.2.6.

Because Apache uses the OpenSSL library as its cryptographic provider, in
order to enable the support for proxy-certificates for SSL/TLS, we just needed to
set the OPENSSL ALLOW PROXY CERTS environment variable in the server’s startup
script. This simple change allowed existing users (users that already registered
themselves on the wiki page) to login into the Wiki by using their proxy creden-
tials instead of their regular certificates. Also, no problems were reported when
new users registered on the wiki by using their proxy credentials directly.

As reported earlier in this paper, it is interesting to notice how simple the
whole setup process was, both from the sysadmin and the user perspectives.

6 Conclusions and Future Work

This work represents a new approach to end-user key management. The PorKI
system allows average users to authenticate to remote web resources with their
PKI credentials; moreover, it allows those users to authenticate from worksta-
tions of varying trustworthiness without exposing their long-term keypair to
attack. The tool is flexible, usable, and based on widely-accepted PKI standards;
because it also leverages a popular mobile platform and a lightweight browser
extension, it can be easily deployed in a variety of settings.

As described in Section 3, we envision using the mobile device to perform
remote attestation of the workstation (similar to work by Garriss et al. [5])
during the negotiation of the short-term credentials. Having more trustworthy
information about the workstation would allow the remote party stronger confi-
dence in providing the user with access to the sensitive data. As in the SHEMP
project [6], we can also envision crafting custom policies to govern the types
of access that may be performed using a given set of short-term credentials;
we anticipate that corporate organizations who allow their employees to access
company systems from personal workstations would have a particular interest
in this sort of fine-grained access management.

References

1. Bluetooth SIG: Specification of the Bluetooth System, Core Version 1.2 (2003),
http:/www.bluetooth.org/

2. Cholia, S., Genovese, T., Skow, D.: Profile for SLCS X.509 Public Key Certification
Authorities with Secured Infrastructure (2009), http://www.tagpma.org/files/
SLCS-2.1b.pdf

3. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (May 2008), http://www.ietf.org/rfc/rfc5280.txt



4. El-Bakry, H.M., Mastorakis, N.: Design of Anti-GPS for Reasons of Security. In:
CIS’09: Proceedings of the International Conference on Computational and Infor-
mation Science 2009. pp. 480–500. World Scientific and Engineering Academy and
Society (WSEAS), Stevens Point, Wisconsin, USA (2009)

5. Garriss, S., Cáceres, R., Berger, S., Sailer, R., van Doorn, L., Zhang, X.: Trustwor-
thy and Personalized Computing on Public Kiosks. In: MobiSys ’08: Proceeding of
the 6th International Conference on Mobile Systems, Applications, and Services.
pp. 199–210. ACM, New York, NY, USA (2008)

6. Marchesini, J.: Shemp: Secure Hardware Enhanced MyProxy. Ph.D. thesis, Dart-
mouth College, Hanover, NH, USA (2005)

7. Marchesini, J., Smith, S.W., Zhao, M.: Keyjacking: The Surprising Insecurity of
Client-Side SSL. Computers & Security 24(2), 109–123 (2005)

8. McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-Is-Believing: Using Camera Phones
for Human-Verifiable Authentication. In: SP ’05: Proceedings of the 2005 IEEE
Symposium on Security and Privacy. pp. 110–124. IEEE Computer Society, Wash-
ington, DC, USA (2005)

9. Min Wu and Simson Garfinkel and Rob Miller: Secure Web Authentication with
Mobile Phones. In: MIT Project Oxygen: Student Oxygen Workshop (2003)

10. Mundt, T.: Two Methods of Authenticated Positioning. In: Q2SWinet ’06: Pro-
ceedings of the 2nd ACM International Workshop on Quality of service & Security
for Wireless and Mobile Networks. pp. 25–32. ACM, New York, NY, USA (2006)

11. Pala, M.: The LibPKI project. Project Homepage, https://www.openca.org/

projects/libpki/

12. RSA: RSA SecurID Two-Factor Authentication. RSA Solution Brief (2010)
13. Sharp, R., Madhavapeddy, A., Want, R., Pering, T.: Enhancing Web Browsing Se-

curity on Public Terminals using Mobile Composition. In: MobiSys ’08: Proceeding
of the 6th International Conference on Mobile Systems, Applications, and Services.
pp. 94–105. ACM, New York, NY, USA (2008)

14. Sinclair, S., Smith, S.W.: PorKI: Making User PKI Safe on Machines of Hetero-
geneous Trustworthiness. Computer Security Applications Conference, Annual 0,
419–430 (2005)

15. Singh, S., Cabraal, A., Demosthenous, C., Astbrink, G., Furlong, M.: Password
Sharing: Implications for Security Design Based on Social Practice. In: CHI ’07:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
pp. 895–904. ACM, New York, NY, USA (2007)

16. Tippenhauer, N.O., Rasmussen, K.B., Pöpper, C., Čapkun, S.: Attacks on Public
WLAN-based Positioning Systems. In: MobiSys ’09: Proceedings of the 7th In-
ternational Conference on Mobile Systems, Applications, and Services. pp. 29–40.
ACM, New York, NY, USA (2009)

17. Trusted Computing Group: TCG Specification Architecture Overview. Spec-
ification, Revision 1.4 (August 2007), http://www.trustedcomputinggroup.

org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_

Architecture_Overview.pdf

18. Tuecke, S., Welch, V., Engert, D., Pearlman, L., Thompson, M.: Internet X.509
Public Key Infrastructure (PKI) Proxy Certificate Profile. RFC 3820 (Proposed
Standard) (June 2004), http://www.ietf.org/rfc/rfc3820.txt

19. Whitten, A., Tygar, J.D.: Why Johnny Can’t Encrypt: a Usability Evaluation of
PGP 5.0. In: Proceedings of the 8th USENIX Security Symposium. pp. 14–14.
USENIX Association, Berkeley, CA, USA (1999)


