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A B S T R A C T

The power grid depends on embedded control systems or SCADA systems to function

properly. Securing these systems presents unique challenges—in addition to the resource

restrictions inherent to embedded devices, SCADA systems must accommodate strict

timing requirements that are non-negotiable, and their massive scale greatly amplifies

costs such as power consumption. Together, these constraints make the conventional

approach to host intrusion detection – using a hypervisor to create a safe environment from

which a monitoring entity can operate – too costly or impractical for embedded control

systems in the critical infrastructure.

This paper discusses the design and implementation of Autoscopy, an experimental

host-based intrusion detection mechanism that operates from within the kernel and

leverages its built-in tracing framework to identify control-flow anomalies, which are

most often caused by rootkits that hijack kernel hooks. The paper presents the concepts

underlying the original Autoscopy prototype, highlights some of the issues that arose from

it, and introduces the new system, dubbed Autoscopy Jr., which addresses the issues. Tests

on non-embedded systems demonstrated that the monitoring scope could be managed to

limit Autoscopy Jr.’s performance impact on its host to under 5%. The paper also describes

the use of an optimized probe framework to reduce overhead and the test results obtained

for a hardened kernel. The results demonstrate that Autoscopy Jr.’s design and effectiveness

render it uniquely suited to intrusion detection for SCADA systems.
c⃝ 2012 Published by Elsevier B.V.

1. Introduction

The world’s critical infrastructure has become increasingly

dependent on embedded control systems—computers im-

planted in larger devices to serve as controllers and perform

many of their important tasks. The power grid has not been

immune from this trend. One study [1] predicts that the num-

ber of smart electric meters deployed worldwide – and by

extension the embedded control systems inside these meters
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– will increase from 76 million in 2009 to roughly 212 million
by 2014.

The need to secure software that expresses complex
process logic is well understood, and is particularly
important for devices operating as part of a SCADA system,
where this logic applies to the control of potentially
hazardous physical processes such as power generation.
Any failure to secure these important devices can have
grave consequences, as demonstrated by Stuxnet [2]. As a
general exploit alone, Stuxnet’s credentials are frighteningly
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impressive. The program attempted to subvert targets
using four zero-day vulnerabilities and two compromised
digital certificates, and incorporated rootkit functionality
that enabled it to hide its behavior. However, rather
than attacking systems indiscriminately, Stuxnet specifically
targeted devices within an industrial control system. In
particular, the program looked for Windows computers used
to configure programmable logic controllers that operate
uranium-enriching centrifuges [3]. Because industrial control
systems are often found within critical facilities such as
power plants, the consequences of such sabotage could be
severe and potentially life-threatening. Therefore, ensuring
the integrity of these devices and others within the critical
infrastructure is essential.

A number of malware protection proposals (see, e.g., [4–9])
address the issue of device integrity using virtualization,
relying on a hypervisor to create a trusted space to use
for monitoring the potentially-compromised system. These
proposals, however, fail to account for some key attributes of
embedded control systems used in the power grid:

• The space and storage constraints of embedded devices
may render the use of a hypervisor impractical. For
example, Petroni and Hicks [7] found that running the Xen
hypervisor on a test platform (a laptop with a 2 GHz dual-
core processor and 1.5 GB RAM) imposes an overhead of
nearly 40%.

• Embedded systems in the power grid must deal with strict
application timing requirements, some of which require a
message delivery time of no more than 2 ms [10].

• The extra costs associated with security computations
(i.e., computations performed solely to achieve device
security goals) do not scale well in a power grid
environment. For example, LeMay and Gunter [11] note
that, in a planned rollout of 5.3 million electric meters,
including a trusted platform module (TPM) with each
device would incur an added power cost of more than
490,000 kWh per year, even assuming that the TPMs sit idle
at all times.

On the whole, the collective price (in terms of main-
tenance, patching, energy, etc.) [12] of hypervisor-based
approaches obviates their use in industrial control envi-
ronments. However, this conclusion leaves the door open
for non-virtualized alternatives. A particularly promising ap-
proach is to use a kernel protection mechanism that resides
at the same privilege level as the kernel to defend against
malware. Such approaches have proven to be effective in
the past. For example, kernel hardening efforts (e.g., grsecu-
rity/PaX [13] and OpenWall [14]) that implement a variety of
security mechanisms in the code of the Linux kernel itself (by
creatively leveraging the MMU hardware of x86 and other ar-
chitectures and the ELF binary format features) are successful
at reducing the kernel attack surface without resorting to a
separate implementation of a formal reference monitor.

This paper describes the Autoscopy system, which we
developed as a prototype in-kernel intrusion detection
mechanism [15] and recently refined to protect embedded
control systems [16]. Instead of being separated from its host
via a hypervisor, Autoscopy demonstrates the possibilities of
an intrusion detection system working inside the operating
system kernel to reduce the overhead on its host [15]. To do
so, the system leverages Kprobes [17,18], a tracing framework

included in the Linux kernel, to place probes in indirectly-
called functions within the kernel to dynamically monitor the
control flow of running programs for anomalies [15].

In tests run on a standard laptop system, Autoscopy was
able to detect every one of the published control-flow hooking
rootkit techniques it was tested against, while imposing an
overhead of 5% or less on a wide range of performance
benchmarks [15]. Our second iteration of the program, dubbed
Autoscopy Jr., includes a system profiler, which permits the
location and removal of “heavy” probes that generate too
much overhead, helping balance security with performance
and allowing the customization of the mediation scope to
keep the overhead under the 5% limit [16]. These results
indicate that, unlike virtualized intrusion detection solutions,
Autoscopy’s design and performance make it well-suited to
the task of protecting embedded control devices, including
those that are used within the critical infrastructure.

2. Background

This section discusses embedded systems in the power grid,
frames the debate between virtualized and in-kernel security
solutions, and introduces the tracing framework used by
Autoscopy for monitoring its host. The section also provides
details about one of the more successful projects in the area
of kernel hardening.

2.1. Embedded control systems in the power grid

The electrical grid contains a variety of intelligent electronic
devices (IEDs), including transformers, relays and remote
terminal units. The capabilities of these devices can vary
widely. For example, the ACE3600 RTU sports a 200 MHz
PowerPC-based processor and runs a VX-based real-time
operating system [19], while the SEL-3354 computing
platform has an option for a 1.6 GHz processor based on the
×86 architecture and can support operating systems such as
Windows XP or Linux [20].

In addition to the issues that arise from restricted
resources, embedded control systems in the power grid are
often subject to strict timing requirements when passing
data in a network. For example, IEDs within a substation
require a message delivery time of less then 2 ms to stream
transformer analog sampled data, and must be able to
exchange event notification information for protection within
10 ms [10]. Given these small timing windows, introducing
even a small amount of overhead could affect a device so that
it cannot meet its message latency requirements, prohibiting
it from performing its task—an outcome that may well be
worse than a malware infection. Therefore, it is vital to limit
the amount of overhead imposed on a device, especially as its
availability takes precedence over its security.

Another important issue is the evolution of the technolo-
gies used to power critical embedded systems. While compa-
nies have historically used customized proprietary products
in SCADA and other critical systems, the current trend is to
deploy commercial off-the-shelf (COTS) products, including
operating systems, applications and communication proto-
cols [21]. (The COTS trend was confirmed in a conversation
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with David Whitehead from Schweitzer Engineering Labora-
tories [22].) Our partners in the power hardware industry in-
dicate that time-to-market concerns drive the movement to-
wards COTS solutions; also, the fact that control systems tend
to stay in operation for decades after their initial adoption [23]
amplifies both the benefits of gaining acceptance in the mar-
ketplace and the costs of being left behind.

2.2. Virtualization vs. self-defense

In the computer security community, virtualization often
means simulating a specific hardware environment that can
function as if it were an actual physical system. Typically, one
or more of these simulations, or virtual machines (VMs), are
executed such that they are isolated from the actual system
and other VMs, with a virtual machine monitor (VMM) in
place to moderate VM access to the real hardware.

Virtualization has become a commonly-used security
measure. The basic idea is to employ a hypervisor that
imposes a strict barrier between a VM and the underlying
hardware, preventing a program running on a VM to affect the
host system or other VMs executed by the host. Several recent
intrusion detection system proposals [4,5,7] leverage this
feature to separate the detection program from the system
being monitored. However, these isolation assumptions have
been challenged by Bratus et al. [12], who argue that there is
no good way to discuss policies concerning how information
is allowed to pass between boundaries. In particular, Bratus
et al. state:

“. . . [because] little thought has been given to what the best way is
to combine the twin roles of resource provider and reference monitor
. . . virtualization environments can find themselves attempting to
measure security-relevant properties of a system in ways that are
both creative and convoluted.”

In addition, such a setup is computationally expensive
(a hypervisor can add 40% overhead [7]) and an embedded
control system may not have the available resources to
support such a configuration and still perform its duties in
a timely manner. Also, hypervisors often found in virtual
configurations are not immune to attack themselves [24,25].
Moreover, Bratus et al. [12] note that adding a hypervisor
means updating the guest software and the host operating
system, and that remotely-deployed machines require
remote management systems that rely on less-than-secure
technologies.

To avoid the trouble and overhead of a virtualized solution
(or other external solution), we propose using an internal
approach to intrusion detection, one that allows the kernel
to monitor itself for malicious behavior. The idea of giving
the kernel a view of its own intrusion status dates at least as
far back as 1996, when Forrest et al. [26] proposed building a
system-specific view of “normal” behavior, which could then
be used for comparisons with future process behavior. The
approach underlying Autoscopy can be viewed through the
same lens, as the kernel is provided with amodule that allows
it to perform intrusion detection using its own structures and
to determine whether an action is trustworthy or not.

2.3. Kprobes

In recent years, several operating systems have introduced
tracing frameworks to give authorized users standard and

easy access to the internals of the system at the granularity
level of kernel symbols. Examples include DTrace [27] for
Solaris and Kprobes [17,18] for Linux.

Once properly configured, one or more Kprobes can be
inserted into the kernel at any arbitrary address within
kernel text (including multiple probes at the same address),
although some exceptions exist [17]. Upon receiving a signal
from the appropriate trap, the system first verifies that
it is indeed a Kprobe breakpoint [18], then passes control
to the Kprobe mechanism, which executes the pre-handler
associated with the probe, then single-steps the probed
instruction, and finally executes the post-handler of the
probe [17].

A recent enhancement to the Kprobe infrastructure is the
concept of “direct jump probes” or Djprobes, which were
introduced by Hiramatsu [28]. A Djprobe uses a jmp instruction
to move to the corresponding Kprobe code rather than using
a breakpoint instruction [29]. After some safety checking to
determine whether or not it is appropriate to overwrite the
bytes needed for the jmp instruction, the system prepares
a “detour buffer” that handles saving/restoring registers,
provides a path to the probe handlers, and returns the flow
back to the original execution path [17]. After further safety
checking, the jmp to the detour buffer is inserted into the
kernel.

The primary benefit of using Djprobes is speed: Hira-
matsu’s initial testing showed that Djprobes were at least ten
times faster than other probes [28]. However, Djprobes in-
troduce several restrictions when performing safety checks,
which limit where an optimized probe can be inserted [17].

2.4. grsecurity and PaX

The grsecurity project was originally a part of a project
focused on hardening the 2.4 Linux kernel [30]. grsecurity
provides a number of additional protection features for
the Linux kernel, including such features as a full-fledged
role-based access control system and enhanced chroot

protection [31]. Its most notable feature, however, is the
inclusion of the PaX Project [13], which contains a number
of its own kernel hardening measures, including address
space layout randomization (ASLR) [32] and memory-page
execution protection (using a no-execution bit if available [33]
or simulating it if one is not available [34]).

The payoff of using grsecurity/PaX is a kernel that is much
more difficult to exploit [35]. Very little public work exists
on the subject of exploiting grsecurity/PaX-hardened kernels
and even Rosenberg and Oberheide’s exploit technique [35],
which leveraged vulnerabilities in kernel code and not in
the grsecurity/PaX protections, was promptly squashed by
the PaX Team [35]. On the whole, the grsecurity project is a
testament to the security benefits that can be achieved by an
in-kernel protection scheme.

3. Related work

A large portion of the work on kernel rootkit technique
analysis that defined the threat space and informed
defenders originated in hacker publications such as Phrack
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and public forums such as the Bugtraq mailing list. The
discussion of system call hijacking and countermeasures
can be traced back to at least 1997 (see the classic hacker
guide [36] for a summary of this early work). A complete
survey of this research is beyond the scope of this paper;
however, interested readers are encouraged to examine Phrack
from issue #50 [37] onward.

Much work in the intrusion detection field has been based
on the availability of a hypervisor or some other virtualiza-
tion primitive. SBCFI [7] uses VMs to create a separate, secure
space for their control-flow monitoring program, from which
it is possible to validate both the kernel text and any control-
flow transfers in the monitored operating system. Patago-
nix [5] and VMWatcher [4] use hypervisors to protect their
monitoring programs, but take different approaches to bridg-
ing the semantic gap between the hypervisor and the operat-
ing system. Patagonix relies on the behavior of the hardware
to verify the code being executed, while VMWatcher simply
reconstructs the internal semantics of the monitored system
for use by an intrusion detection system within the secured
VM. NICKLE [8] and HookSafe [9] use trusted shadow copies of
data to protect against rootkits. NICKLE uses a VMM to create
a copy of VM memory space that only contains authenticated
kernel instructions; this helps ensure that unauthenticated
code is not allowed to run in kernel space. HookSafe copies
the kernel hooks of an operating system into a page-aligned
memory area, where it can take advantage of the page-level
protection within the hardware to moderate access.

Several malware detection proposals do not require a
hypervisor, but they suffer from other drawbacks that affect
their utility in an embedded control system. For example,
Kolbitsch et al. [38] build a behavior graph of individual
malware samples using system calls invoked by malware,
and then attempt to match unknown programs to the
graph. However, much like traditional antivirus systems,
this approach requires prior analysis of malware samples;
deploying updates to embedded devices – which are often
remotely deployed in areas with questionable network
coverage – is also a challenge. Integrating a security policy
into programs has also been investigated, but considerable
effort is required to adapt this solution to new systems. As
an example, the proposal of Hicks and colleagues [39] to bring
together a security-typed language with operating system
services that handle mandatory access control would most
likely require rewriting a large number of legacy applications.

Kprobes have been used for a number of different tasks.
Most of them focus on debugging the kernel or analyzing
kernel performance (e.g., SystemTap [40]), but some other
novel uses for Kprobes have recently been identified. For
example, ACAP [41] uses Kprobes to capture network packets
by probing important functions in the INET socket layer
while Atom LEAP [42] leverages Kprobes to place “energy
calipers” at arbitrary kernel code locations for measuring and
characterizing the energy usage of a system. However, to the
best of our knowledge, the Autoscopy effort [15,16,43] is the
first to leverage Kprobes as a tool for system protection.

4. Autoscopy and Autoscopy Jr.

This section provides a high-level overview of the original
Autoscopy system, discusses some of its shortcomings and

shows how they are addressed in Autoscopy Jr. Also, the
section discusses how the Autoscopy setup makes it uniquely
suited for embedded control systems. Interested readers are
referred to [15] for additional details about Autoscopy and
to [16] for details about Autoscopy Jr. and its new features.

4.1. Autoscopy design

Autoscopy does not search for specific instances of malware
on its host—instead, it watches for a specific type of
control-flow alteration commonly associated with malicious
programs. The control flow of a program is defined as the
sequence of code instructions that are executed by the host
system when the program is executed. Diverting control flow
within a system has been a favored tactic of malware authors
for some time, and, as such, using control-flow constraints as
a security device has been well-explored (see [44] for a good
discussion of the topic).

Specifically, Autoscopy looks for a certain type of pointer
hijacking, where a malicious function interposes itself
between a function pointer and the original function to
which it pointed. The hijacking causes the pointer to point
to the malicious function, which then calls the original target
function of the pointer at some point within itself. In this
manner, the malicious program can use the original target
function to preserve an illusion of normalcy by giving the user
the expected output while allowing the malware to perform
whatever actions it desires (e.g., scrubbing the output to hide
itself and its activities).

Autoscopy has two phases: the learning phase and the
detection phase.

Learning phase. In this phase, Autoscopy scans the kernel
for function pointers to protect and collects information
about “normal” behavior on the system. First, Autoscopy
scans kernel memory for function pointers by dereferencing
every address it finds, looking for an address that could
point to another location within the kernel. (This list can be
verified against the System.map file of the kernel if desired.)
Next, Autoscopy places a Kprobe on every potential function
pointer it finds, then silently monitors the probe as the
system operates, collecting all the control-flow information
it requires for the detection method being used. (Multiple
rounds of probingmay be necessary and probes that are never
activated are removed from consideration.) The end result
is a list of functions that Autoscopy tags as being called by
a function pointer, complete with the necessary detection
information.

To obtain a complete picture of trusted behavior, the Linux
Test Project [45] was used to exercise as much of the kernel as
possible, to attempt to bring rarely-used functions under the
protection scope and to reduce the number of false positives
from frequently-used ones. Since this method can leave out
some of the more task-specific behavior, it is recommended
to engage actual use cases in the learning phase in addition
to test suites.

Detection phase. In this phase, Autoscopy places Kprobes on
the functions tagged in the learning phase. However, instead
of collecting information about system behavior, it verifies
the information against the “normal” behavior data compiled
earlier. Anomalous control-flows that are identified can be
announced immediately or can be logged for collection.
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4.2. Shortcomings

Upon re-examining Autoscopy in the hopes of leveraging
it to protect critical infrastructure assets, we discovered
some problems with its implementation that needed to be
addressed.

1. Viewing kernel memory using mmap. Using mmap is problematic
because the sys_mmap system call is itself vulnerable to
hijacking and cannot be trusted to provide the desired
access to memory [46].

2. Overhead imposed by the disassembler. Autoscopy relies on
a separate disassembler library (udis86 [47]) for digging
into the assembly code of the host. While the original
rounds of testing reported in [15] indicated that using the
disassembler inside the probes was efficient enough to be
feasible, later tests suggested that the exact opposite was
the case. This was confirmed via personal communication
with the author of [15]. A more lightweight method is
needed to determine whether or not a function is called
indirectly.

3. Edge cases introduced by the detection metric. Autoscopy
identifies control flow anomalies by observing the
argument similarity between function calls within the
current flow (argument similarity is defined as the number
of parameters in the same position and possessing the
same value between two function calls) [15]. Simply stated,
if more than half of the arguments of a probed function
and those of a function discovered above or below it in
the current control flow match, then Autoscopy flags it as
suspicious behavior.

However, this metric is problematic for indirectly-called
functions with less than two arguments (see [16] for a
sampling of such functions found inside the kernel). If we
assume that a malicious program changes at least one
parameter of a function it hijacks, in the case of a one-
argument function, it would change the only parameter,
causing the argument similarity check to fail and allowing
the malicious program to continue to operate without
being detected.

4. Lack of space for storing kernel control flow information. During
the information-gathering portion of the learning phase,
Autoscopy collects the current return address, which it
uses later to determine whether or not the probed function
is called indirectly [15]. However, the system only sets
aside enough space to store a single return address per
probe, which means that the slot would be overwritten
every time a probe is hit [16]. Furthermore, the check for
indirect function calls is only performed after data from
the probes is gathered, meaning that the decision about
whether or not a function was called indirectly is based
on the return address written during the final firing of the
probe. Thus, two problematic scenarios arise:
• If a probe is called indirectly and then called directly

at a later point in time, Autoscopy only sees the direct
function call and ignores the function believing it was
never called indirectly.

• If a probe is called indirectly and then called indirectly
from a different location within the kernel, Autoscopy
only collects the context information about the second
indirect function call. If the first indirect call appeared

during the detection phase, its arguments may be
dissimilar enough from the collected context that, even
if the first indirect call was subverted, Autoscopy would
not recognize it as a similar function call.

4.3. Autoscopy Jr.

We embarked on a significant redesign of Autoscopy
to address the problems described above. The resulting
program, dubbed Autoscopy Jr., incorporates several new
features.

Memory access using a character driver. The original Autoscopy
system used a character driver to deploy Kprobes and gather
information from them. However, in addition to the usual
read and write operations, Linux character drivers support an
ioctl method as a catch-all for more esoteric functions such
as those that perform hardware-control tasks [48]. Autoscopy
Jr. takes advantage of this fact by defining an ioctl function
within the learning phase kernel module that allows values
to be read directly from memory, without taking the chance
of calling an untrustworthy function.

Simplified checks for indirect function calls. To work around the
inability to use the disassembler library [47] inside the probes,
a simple assembly checker was developed that looked for
specific bytes that signaled the start of a CALL instruction. In
researching the bytemakeup of x86 assembly instructions, we
discovered that CALL instructions in 32-bit mode begin with
one of three potential byte values: 9a, e8 and ff [49]. Of the
three, only ff signifies an indirect CALL [49], indicating that the
first byte of the instruction could be examined to differentiate
indirect and direct function calls.

Trusted location lists. This change is the most important
and the most substantial portion of the redesign. Instead
of gathering context information for argument similarity
checks, all the return addresses associated with indirect calls
seen during the learning phase are collected and compiled
into trust lists that are used as whitelists for validating
control flows. While location-based verification is not a
particularly groundbreaking approach (e.g., the technique has
been used in [50–52]), it helps determine whether or not a
current control flow is trustworthy.

To address the single-return-address-slot issue discussed
above, 200 return address slots are allocated for each probe.
The vast majority of probes use fewer address slots; the
probes that exceeded this number were associated with
functions that were never called indirectly. Thus, the switch
to trusted location lists simplifies the learning-phase logic
while correcting two problems with Autoscopy (#3 and #4 in
Section 4.2).

Profiler for managing mediation scope. To increase the flexibility
of Autoscopy Jr., a system profiler was constructed to divide
the probes into groups based on their location within the
kernel, thereby providing more information about where
probes are located within the operating system and the
amount of overhead they impose. Using the kernel source
files, object files and System.map file, the profiler produces a
set of files, where each file corresponds to a top-level directory
in the kernel source and contains the probes that fall within
that directory. With this information in hand, it is possible
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to benchmark each group of probes individually to see which
groups impose the most overhead andmay require additional
adjustments to enable Autoscopy Jr. to run effectively.

4.4. Advantages

As mentioned above, Autoscopy Jr. incorporates the following
improvements over the original Autoscopy system:

• A more trustworthy path to kernel memory.
• The ability to handle argument-similarity edge cases.
• Enough space to capture the return addresses for probes

called indirectly from multiple places.
• A lightweight assembly checker that identifies indirect
function calls even from inside probes.

Autoscopy Jr. offers two additional advantages:

Elimination of a disassembler library. Incorporating assembly
checking minimizes the dependence on the actual system
architecture, meaning that a disassembly library is not
needed. Also, assembly checking is simple enough that the
system can be adapted to other architectures simply by
making a few changes to the heuristics.

Allowance of legitimate pointer hooking. If desired, Autoscopy
Jr. can be used in conjunction with other programs that alter
the control flow of a system for security or other legitimate
reasons. This is because it can simply tag program behavior
as trusted during the learning phase.

4.5. Disadvantages

For all of the advantages that Autoscopy Jr. offers, certain
shortcomings exist that need to be taken into account.

Malware target. By operating within the kernel, Autoscopy
Jr. is as open to compromise as the host system itself. While
additional measures can be taken to protect the integrity of
the program and kernel, these measures may run up against
the resource constraints of the embedded control system.

Trusted base state requirement. Because trusted lists are created
by simply whitelisting every return address seen in a probed
function, the behavior of any malware that is installed before
the learning phase would be classified as trusted. Therefore,
the system that hosts Autoscopy Jr. must be in a trusted state
before the learning phase to ensure that malicious behavior
is classified correctly.

Kernel memory mapping dependence. The contents of kernel
page tables are highly dependent on the amount of system
RAM. Specifically, the kernel attempts to map as much of
the available physical memory as it can, up to a limit of
896 MB [53]. This limitation, however, means that memory
locations above an unmapped memory address would be
missed by the scan because the addresses would never be
reached. (The learning module in one of our test kernels
resided in such memory.) Addressing this issue is important
if Autoscopy Jr. is to be used in production power systems.

False positive identification. The number of false positives
depends on the comprehensiveness of the test suites used
in the learning phase. If an indirect control-flow path that is
not seen in the learning phase appears during the detection
phase, it will always be reported as an anomaly, whether or
not the flow actually indicates a malicious hijacking. It is
important to make a finer-grained distinction between a flow
that is “malicious” and one that is simply “new”.

4.6. Threats

At this point, it is important to consider the potential threats
to Autoscopy Jr.

Data modification. An attacker with the ability to read andwrite
to arbitrary locations on the system could conceivably modify
the underlying data structures to defeat the defenses of
Autoscopy Jr. For example, a malicious program could modify
a Kprobe or trusted location list to include the addresses of its
own functions; or it could disable individual probes.

Program circumvention. Autoscopy Jr. detects malware by
checking for the use of legitimate kernel functions from
illegitimate locations. However, an attacker who uses his/her
own code to duplicate the functionality of a kernel function
could avoid any probed functions and completely bypass
Autoscopy Jr.

Kprobe-specific hijacking. As discussed in Section 2.3, regular
Kprobes are triggered when the kernel hits the breakpoint
placed by the probe. However, if a piece of malware
interferes with the breakpoint-handling code, it could bypass
the Kprobe notification setup, once again working around
Autoscopy Jr.

While these threats are a concern, the design nevertheless
raises the bar for a malicious program to subvert the system.
Specifically, malware is forced to increase its footprint on
the host in terms of either processor cycles (more cycles are
needed to locate the appropriate data structures) or code
size (extra functions are needed to duplicate kernel behavior
and adapt it to the Kprobe architecture). The larger footprint
would, of course, increase the chances of the malware being
detected on the host system.

Other techniques could also be used to protect Autoscopy
Jr. data—for example, the trusted location lists could be stored
on a read-only memory chip. However, the embedded host
constraints may hinder the complete implementation of such
techniques.

5. Experimental results

The original Autoscopy system was tested on a standard
laptop system running Ubuntu 7.04 and using Linux kernel
version 2.6.19.7. While a different underlying system – a
Pentium 4 desktop with a 2 GHz processor and 768 MB
RAM – was used to test Autoscopy Jr., the same Linux
distribution and kernel version were used to provide a means
for comparing the results obtained using the two Autoscopy
systems.

5.1. Autoscopy results

We evaluated the ability of Autoscopy to detect common
control-flow altering techniques. Also, we examined the
overhead imposed on the host system in terms of
additional time required and bandwidth reduction. The tests
demonstrate that Autoscopy performs well in both areas.

Malware detection. We tested Autoscopy against a collection
of control-flow-altering rootkits that employ representative
kernel hook hijacking techniques; two of the rootkits were
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Table 1 – Autoscopy detection results.

Technique Malware Detected

Syscall table hooking superkit Yes
Syscall table entry
hooking

kbdv3, Rial, Synapsys v0.4 Yes

Interrupt table hooking enyelkm v1.0 Yes
Interrupt table entry
hooking

DR v0.1 Yes

/proc entry hooking DR v0.1, Adore-ng 2.6 Yes
VFS hooking Adore-ng 2.6 Yes
Driver hooking Custom network driver

rootkit [15]
Yes

Kernel text modification Phantasmagoria No

developed by us as proofs-of-concept (see [15] for additional
details). Most of the rootkits tested are prototypes that
incorporate hooking techniques rather than actual stealth
malware captured in the wild. Nevertheless, they were
written to showcase a broad range of control-flow-altering
techniques and the corresponding control flow behaviors.

Table 1 lists several techniques used bymalware to subvert
an operating system, examples of text and/or code that
incorporate these techniques, and whether or not Autoscopy
was able to detect these techniques. Autoscopy was able to
detect every one of the hooking behaviors listed. Interested
readers are referred to [15] for a complete list of the rootkits
used for testing.

Performance overhead. We measured the impact of Autoscopy
using five benchmark programs: two standard benchmark
suites (SPEC CPU2000 [54] and lmbench [55]), two large
compilation projects (compiling a version of the Apache web
server and the Linux kernel), and one test involving the
creation of a large file. In the vast majority of these tests,
Autoscopy imposed an additional time cost of no more than
5% on the system. In fact, some of the tests indicated that
the system ran faster with Autoscopy installed, which we
interpreted to mean that Autoscopy had no noticeable impact
on the system. Only one test (bandwidth measurement
during the reading of a file) showed a large discrepancy
between the results with and without Autoscopy installed.
In [15], Ramaswamy hypothesized that this was the result of
I/O path preemption or disk caching interference on the part
of the kernel.

Table 2 lists the benchmarks and the performance
overhead imposed by Autoscopy and Autoscopy Jr. The kernel
compilation test was only run on Autoscopy; interested
readers are referred to [15] for the raw Autoscopy test data.
Note that the system was not heavily inconvenienced by the
presence of Autoscopy.

5.2. Autoscopy Jr. results

In the case of Autoscopy Jr., the tests focused on the
performance aspects of the system and concentrated on
keeping the overhead under the 5% threshold. We tested
three scenarios: (i) an unoptimized-probe setup similar to
the original Autoscopy configuration (both with and without
the profiler); (ii) an optimized-probe setup (with Ubuntu 10.04
and kernel version 2.6.34) to test the effect of direct-jump

probes [28,29] on the imposed overhead; and (iii) a version
of the Linux kernel secured using the grsecurity kernel
patch [56].

5.2.1. Unoptimized probes
Using lmbench [55] as the baseline test suite, we first measured
the overhead imposed by the full set of probes discovered in
the learning phase. While most of the Autoscopy Jr. results
paralleled those obtained with Autoscopy, several benchmark
tests produced overhead amounts that were substantially
larger than expected, greatly exceeding the 5% threshold.
However, by using the probe profiler, we identified the probes
responsible for the increased overhead (as well as some of
the excessive overhead from the previous tests) and removed
them from the mediation scope.

Performance tests using the post-profiling scheme con-
firmed that the remaining probes did not hinder the system
enough to exceed the 5% threshold. Table 2 shows the re-
sults obtained for Autoscopy Jr. using a full set of probes and
Autoscopy Jr. using only the low-overhead probes identified
by the profiler. Note that we only tested the full Autoscopy
Jr. probe set using lmbench [55]. Interested readers are referred
to [16] for the raw Autoscopy Jr. performance data and details
about the probe locations.

5.2.2. Optimized probes
For the optimized probes, we again turned to lmbench [55]
to examine how the introduction of a newer kernel sporting
“faster” probes would impact system performance. Table 3
presents the lmbench benchmark results for Autoscopy Jr. on
the 2.6.19.7 Linux kernel with unoptimized probes and the
2.6.34 Linux kernel with optimized probes. The table shows
that, while the overhead observed earlier has decreased
or disappeared, new sources of overhead have popped up,
indicating that even with an optimized probe framework in
place, the profiler would be required to bring the overhead
down to acceptable limits. Interested readers are referred
to [16] for the raw performance data related to the optimized
probes.

The experiments also demonstrate that direct-jump
probes create a conflict with another Linux tracing frame-
work, ftrace, which includes a function stub that is inserted
at the beginning of every function in the kernel [57]. This vi-
olates the optimized-probe restrictions, which state that the
instructions being replaced by the direct jump cannot include
a CALL instruction [17]. In summary, the testing shows that
optimized probes do little good in terms of improved perfor-
mance.

5.2.3. Autoscopy Jr. and grsecurity/PaX
Finally, we tested Autoscopy Jr. on a hardened kernel, with
the hope of showing that the system could offer some
value to kernels with preexisting in-kernel security measures.
However, combining Autoscopy Jr. and grsecurity/PaX is
no easy task, since grsecurity/PaX introduces a number of
changes to the kernel that interfere with the operation
of Autoscopy Jr. In particular, grsecurity/PaX appears to
rearrange the load addresses of many kernel symbols (even
with grsecurity/PaX set to a low security level with no



8 I N T E R N A T I O N A L J O U R N A L O F C R I T I C A L I N F R A S T R U C T U R E P R O T E C T I O N ( ) –

Table 2 – Autoscopy and Autoscopy Jr. results.

lmbench latency measurements Autoscopy overhead (%) Autoscopy Jr. overhead
(unprofiled) (%)

Autoscopy Jr. overhead
(profiled) (%)

Simple syscall −0.2 −0.1 −0.1
Simple read +1.4 +143.2 −2.5
Simple write −2.4 −3.5 −4.6
Simple fstat +0.5 −3.4 +0.1
Simple open/close +10.6 +46.4 +1.7

lmbench bandwidth measurements

Mmap read +0.1 +1.6 −0.1
File read +21.1 +23.7 +1.0
libc bcopy unaligned +0.1 −2.1 −3.0
Memory read −0.1 +0.7 +0.7
Memory write +0.3 +1.6 +1.1

SPEC CPU2000 benchmark

164.gzip +0.6 N/A −0.8
168.wupwise −0.4 N/A −1.3
176.gcc −0.8 N/A −0.7
256.bzip2 −0.3 N/A 0.0
254.perlbmk +0.5 N/A 0.0
255.vortex +1.3 N/A +0.4
177.mesa +2.0 N/A +0.8

Custom benchmark

Random 256 MB +1.9 N/A +0.6
File creation
Apache httpd +4.1 N/A +1.0
2.2.19 compilation
Linux kernel +4.9 N/A N/A
2.6.19.7 compilation

Table 3 – Autoscopy Jr. lmbench benchmark results.

Latency
measurements

Autoscopy Jr.
overhead

(unprofiled) (%)

Autoscopy Jr.
overhead

(unprofiled and
optimized) (%)

Simple syscall −0.1 +0.2
Simple read +143.2 +33.6
Simple write −3.5 +31.0
Simple fstat −3.4 +21.7
Simple open/close +46.4 +12.0

Bandwidth
measurements

Mmap read +1.6 +0.3
File read +23.7 +4.2
libc bcopy

unaligned
−2.1 +3.6

Memory read +0.7 +0.4
Memory write +1.5 +1.0

additional options) such that they do not correspond to the
System.map file. This means that an additional mechanism –
or at the very least, a variation of the current mechanism –
is required to properly identify the true symbols and hooks.
(Of course, any hook-searching rootkit would run into the
same problems.) Since anymechanism that is added to gather
symbol information should not leak any address information
to an attacker, it is important to take great care in adapting
the hook locator mechanism.

Because of this discovery, we were not able to obtain
proper performance measurements using Autoscopy Jr. with
the grsecurity/PaX patch. However, we intend to continue our
efforts to integrate Autoscopy Jr. with grsecurity/PaX in order
to provide another layer of protection.

6. Conclusions

The Autoscopy effort is a practical approach to intrusion
detection that operates within the operating system kernel
and leverages its built-in tracing framework to minimize
the performance overhead on the host system. The original
Autoscopy prototype has been refined to create Autoscopy
Jr., an intrusion detection system that is specifically targeted
towards embedded control systems in the power grid. Given
the critical, time-sensitive nature of the tasks performed by
embedded devices in the power grid, Autoscopy Jr. offers
the flexibility to balance detection functionality with the
overhead imposed on the system. Since the intrusion
detection functionality is situated in the kernel, other
protection measures may be needed at the hardware level
(e.g., memory immutability) or software level (e.g., kernel
hardening). Still, the Autoscopy effort provides a useful
alternative to virtualized security solutions and the overhead
they impose.

Experimental results demonstrate the effectiveness of
Autoscopy Jr. in standard configurations. However, the testing
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of special kernel configurations involving optimized probes
yielded sub-optimal results, and we were unable to overcome
the technical challenges involved in running a hardened
kernel. Nevertheless, the in-kernel approach still holds
promise for securing embedded control systems where more
resource-intensive solutions would not be appropriate.

Note that the views and opinions in this paper are those of
the authors and do not necessarily reflect those of the United
States Government or any agency thereof.
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