
The Diversity of TPMs and its Effects on Development

A Case Study of Integrating the TPM into OpenSolaris

Anna Shubina
∗

Dartmouth College
Hanover, New Hampshire

shubina@dartmouth.edu

Sergey Bratus
Dartmouth College

Hanover, New Hampshire
bratus@dartmouth.edu

Wyllys Ingersoll
Oracle, Inc.

wyllys.ingersoll@oracle.com

Sean W. Smith
Dartmouth College

Hanover, New Hampshire
sean.w.smith@dartmouth.edu

ABSTRACT
Broad adoption of secure programming primitives such as
the TPM can be hurt by programmer confusion regarding
the nature and representation of failures when using a prim-
itive. Conversely, a clear understanding of the primitive’s
failure modes is essential for both debugging and reducing
the attack surface in the mechanisms built on it. In par-
ticular, differences in error processing and reporting logic
significantly detract from such understanding.

We present a case study of diversity in TPM behaviors and
its effects on a TSS implementation, which emerged from
the Sun/Dartmouth TCG/OpenSolaris project, one of the
goals of which was instrumenting TPM support on Solaris.
At the start of the project, both parties believed the instru-
mentation to be well-defined and, although time-consuming,
relatively straightforward. In the course of the project we
had to reexamine our assumptions concerning the state of
the hardware and the software involved and the view of the
system as presented to someone unfamiliar with its inter-
nals. We describe some failure modes we encountered and
suggest directions for remediation.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

∗This effort was supported in part by Sun/Oracle and by the
U.S. Department of Homeland Security under Grant Award
Number 2006-CS-001-000001. The views and conclusions
contained in this document are those of the authors, not the
funders, and do not represent their official policies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0095-7/10/10 ...$10.00.

1. INTRODUCTION
Since 2006, many computers have been sold with the Trust-

ed Platform Module (TPM) chip built in. Among the man-
ufacturers of these chips are Atmel, Broadcom, Infineon,
Intel, ST Microelectronics, and Winbond. Many Acer, Dell,
Fujitsu, Gateway, Lenovo, Toshiba, and Hewlett-Packard
computers now come with the TPM chip. Yet despite the
availability of the TPMs, the adoption of the secure pro-
gramming primitives they offer by both production devel-
opers and R&D efforts appears to be comparatively slow
compared to adoption rates typical of the IT industry.

1.1 Motivation and our case study
As researchers who see promising applications of trusted

computing to many mission-critical problem areas of practi-
cal computing, we are compelled to examine potential causes
for this slowness.

Neither the problem nor the technical approach appear to
be at fault. Indeed, the problem of trust in computer sys-
tems (including but not limited to remote trust) is still one
of the most fundamental technological problems facing the
industry, and still generally lacks comprehensive technical
solutions, so lack of interest is hardly the case. Similarly,
the TCG’s chain of trust based on a hardware root of trust
at boot appears as a necessary condition of system trust
in the light of attacks moving to lower and earlier layers
of the OS (e.g., rootkits’ evolution from system call inter-
faces to the driver method implementations, to bootkits).
Notably, the TCG technology as a basis for secure systems
attracts independent security researchers highly skilled in
attack techniques (e.g., [6]).

Earlier, we wrote about the “policy gap” ([2, 3]) between
the TCG architecture security model and the process run-
time properties that developers associate with the successful
enforcement of application-level policies. We argued for pro-
viding developers with programming primitives based on the
TCG architecture that would allow them to express applica-
tion process and data runtime properties that they consider
critical for their security policy goals. However, this gap
should stimulate systems developers’ attempts to bridge it
rather than discourage them.

Yet, we see only a few independent projects that attempt
to build on the TPM – e.g., a Sourceforge search as of the
time of this writing produces a mere 11 relevant projects,

of which 3 emulate TPM hardware rather than interact
with it. We should therefore consider the hypothesis that
some combination of circumstances is frustrating developers
and gets in the way of their projects’ starting up or ma-
turing.Anecdotally, we have been made aware of student
projects that were abandoned because of various technical
roadblocks.

We consider this hypothesis worth discussing for yet an-
other reason. True scalability of a technology is hard to
achieve without a critical mass of committed developers.
Many recent examples suggest that the breadth of the de-
veloper community and its ability to attract a critical mass
of programmers – its “developer capital”– significantly helps
its adoption. As Perens [5] suggests, this ability is strongly
associated with the perception of “enabling” developers and
lowering the technological barriers to starting with the tech-
nology. Moreover, Couch [4] describes initial developer expe-
rience with a programming environment as crucial to adop-
tion with the new generations of programmers.

In this paper we present our experiences derived from in-
tegrating and testing support for two vendors’ TPMs and
TrouSerS, an open Trusted Software Stack (TSS) into Open-
Solaris on x86. In the course of this effort, we encountered a
number of issues potentially frustrating for developers and
possibly discouraging for newcomers to the field.

1.2 What this paper is not about
We would like to stress that this paper is not meant to

single out any particular TPM vendor for either criticism
or commendation. We definitely do not intend to attach
blame or “name names.” Rather, it seeks to formulate and
substantiate engineering challenges for all vendors and the
TCG community at large.

Moreover, this paper is not meant as a criticism of either
TrouSerS, its TSS API test suite, OpenSolaris, or other tools
and technologies mentioned therein. Indeed, we have not
encountered any tools that would have served us better.

Furthermore, the TrouSerS project has seen an increase in
activity in the past 6 months and has incorporated many of
our reported bug fixes and enhancements into its main code-
base. There have been several releases of TrouSerS in the
past year and the early problems we encountered with re-
source exhaustion have been addressed. The TSS Test Suite
has also seen some activity in recent months; several prob-
lems that were causing our tests to fail have been identified
and corrected.

We proceed from the understanding that, as a technology
spreads to more applications and platforms, and adds fea-
tures and dependencies – in other words, as its uses scale
up and diversify – issues connected with economics of pro-
gramming effort and programming environment diversity in-
evitably emerge. They motivate creation of new tools or
even subsystems, such as – during the evolution of UNIX
– its startup system, tracing and debugging subsystems,
TCP/IP stacks, etc.

2. WHAT WE EXPECTED
One of the tasks of the joint Dartmouth College and Sun

Microsystems TCG/OpenSolaris project was instrumenting
the TPM support on OpenSolaris. At the start of the project,
both parties believed this to be well-defined and, although
time-consuming, relatively straightforward.

Testing the TPM for compliance. Testing TPMs for com-
pliance is a hard engineering challenge, as shown, e.g., by
the important work of Sadeghi et al. [7]. A comprehensive
TPM compliance testing effort [1] (primarily of TPM 1.1b
implementations, and of some TPM 1.2 chips) was then per-
formed by Sirrix AG in collaboration with researchers from
the Horst Görtz Institute for IT Security. Five TPMs were
tested, but only two of them were found to be compliant.
Testing of the other TPMs revealed numerous bugs. Unfor-
tunately, their test suite was not available to us.

We used TPM 1.2 chips from Intel and Atmel on Dell and
Lenovo platforms, with drivers developed by Sun Microsys-
tems engineers and a researcher from our PKI/Trust Lab
(see 5.2.1). We also used the TrouSerS TSS.1

We decided to test our Trusted Software Stack by using
the open source TSS API test suite for TrouSerS.2 We antic-
ipated that the test suite would not be complete, due to new
functionality that needed to be tested and due to function-
ality that is intrinsically hard to test (such as, for example,
key migration).

However, we expected that for the straightforwardly test-
able and previously tested TPM functionality, the suite would
provide us a “push-button” ability to tell us that our TPM
driver and TSS were functioning correctly, and would thus
enable us to test the more sophisticated features and sce-
narios.

Intuitively, we expected a situation similar to testing a
“layered” design ultimately grounded on a physical device,
such as an OSI-flavor network stack, which could be tested
layer-by-layer, starting with the basic ability of the physical
layer device to reliably perform transmit (tx_*) and receive
(rx_*) operations on arbitrary payloads, shared by all plat-
forms. We also expected the ability to conclusively test the
lower layers across all implementations with cookie-cutter
tests.

In the course of the project we had to reexamine our as-
sumptions concerning the state of the hardware and the soft-
ware involved in the task and the view of the system as
presented to someone unfamiliar with its internals.

3. WHAT WE FOUND
Much to our surprise, after building the test suite on

OpenSolaris, we realized that no such “push-button” capa-
bility to test the lower layers of the trusted software stack ac-
tually existed. We could not conclusively tell from the tests
whether TPM driver and TSS were functioning correctly
w.r.t. their “essential” functionality, let alone advanced fea-
tures.

We found that this behavior was partially due to the dif-
ferent sets of commands implemented and enabled on differ-
ent TPM chips. This diversity made it hard to develop a sin-
gle high-level procedure for testing either the “basic” driver
functionality or the correctness of TSS, because interacting
with the driver to test it required complex wrapping of data
that was the raison d’être for much of the TSS, and so using
the TSS wrapper code is the natural choice; however, this
code is not designed to isolate faults in specific TPM fea-
tures, and makes assumptions about certain TPM features
acting correctly.

1http://sourceforge.net/projects/trousers.
2http://sourceforge.net/projects/trousers/files/
TSS+API+test+suite/.

Furthermore, test failures associated with unimplemented
or disabled features were reported differently by different
TPM drivers, and caused different observable behaviors in
the TSS, thus making it hard to associate a specific TPM
error condition with a particular TSS behavior.

These differences turned out to significantly complicate
debugging of higher level TSS and test suite code, which in
turn increased the effort required to fix any given bug in the
higher layers of the software stack.

Testing layered designs. We note that designing tests for
layered architectures with complex low level interfaces – such
as the TPM – is a non-trivial research problem. Indeed,
interaction with these interfaces requires encapsulation of
complexity, which is most naturally abstracted to the higher
layers of the software stack; however, “test”and“production”
kinds of encapsulation code are likely to be different – which
in turn poses the requirement that these two code branches
be kept synchronized and must induce equivalent state tran-
sitions within the TPM. The latter property becomes harder
to validate as the complexity of the input data grows.

A representative experience. It is hard to claim that any
particular set of uncovered bugs gives an unbiased idea of
the“typical”debugging or security challenges for a platform.
Even in methodologies like fuzz-testing, wherein bugs are
found by random searches of the spaces of all possible in-
puts and system states and code coverage is established in
terms of the part of the target’s instructions or basic blocks
traversed during execution, these metrics are only accepted
due to the lack of better ones.

However, since our experience involved a test suite of TPM
features and related TSS functions, we suggest that we have
covered many of the common cases that a beginning devel-
oper or a start-up project would encounter.

In the following section we classify the kinds of errors we
encountered. and discuss their implications.

4. TPM FAILURE MODES AND PATTERNS
When running TSS API test suite on Atmel TPMs and

on Intel TPMs, we witnessed the following types of failures.

4.1 Expected test failures
Certain kinds of test failures were expected by the creators

of the test suite and are possible (but not guaranteed) on
different TPM chips, due to variety in the sets of commands
available on those chips.

• Some tests fail with the TPM E BAD ORDINAL er-
ror code, which means that the index passed to the
TPM does not correspond to a valid TPM command.
This kind of failure may happen, for example, if a com-
mand was deprecated and removed from a TPM chip.

• Some tests fail with the TPM E DISABLED CMD er-
ror code, which means that the command is disabled
inside the chip. The command may be disabled per-
manently or conditionally.

• Some tests fail with the TSS E NOTIMPL error code.
This error code means that the command is not imple-
mented in TSS.

We note that checking for each of these error conditions
in the upper layers of the TSS, and distinguishing between

their intended semantics – whenever the semantic distinc-
tions are indeed intended – creates additional complexity
for the developer.

4.2 Cascading test failures
The test suite is structured so that some tests (in partic-

ular, NVRAM tests) expect the system to be in a certain
state after the previous tests. If one test fails, so will the
consequent ones.

This kind of failure represents the hardest challenge from
the point of view of predictable TSS behavior – and, there-
fore, developer debugging activities. To correctly identify
these error conditions, the code must track the state of the
TPM components, which essentially means maintaining a
(correct) model of the TPM within the code. This require-
ment is clearly excessive, and yet necessary for correct error
interpretation.

We believe that a clear understanding of the se-
cure programming primitive’s failure modes is es-
sential for both efficient debugging and for reducing
the potential attack surface in the mechanisms built
on it.

In particular, differences in the logic that propagates er-
ror conditions to higher layers of the API and the result-
ing difference in error reporting can be very confusing to
programmers and reduce their overall productivity, making
development more expensive and less secure.

Whereas such differences may be unavoidable or even nec-
essary in a developing standard, they should be offset by a
clear conceptual model of data and control flow that develop-
ers would use while debugging. We discuss this issue further
in Section 7.

4.3 TPM resource exhaustion
Most operations with the TPM require authentication ses-

sions established between the TPM and the software com-
ponents serving it, an abstraction that is implemented via
parts of the hardware’s stored internal state and the soft-
ware’s corresponding state. The TPM’s data storage limits
them to a small integer, with a minimal compliant number
prescribed by the TCG.

As described in Section 6, on some TPMs TrouSerS did
not always release authentication sessions. This resulted in
the test suite DOS-ing these TPMs by taking up all the
available authentication sessions.

4.4 TPM issues and TSS bugs
We witnessed test failures that appeared to be due to

problems with respective TPMs or due to TSS bugs. These
problems and fixes to them were discussed on the trousers-
tech mailing list.3 The full history of fixes to TSS bugs can
be viewed in the TrouSerS git repository.

The test suite also contained directory init/ of tests that
could not be automatically run, due to their effect on the
TPM - such as, for example, TPM deactivation.

5. CONFUSION ON “FIRST DATE”
In this section we describe unexpected behavior variations

that we encountered even before writing any of our own code
and dealing with the issues above, a cautionary tale early

3See http://sourceforge.net/mailarchive/forum.php?
forum_name=trousers-tech

adopters of the TPM-enabled platforms intending to offer
customer support across a diverse TPM deployed base.

Whereas issues described below may not present any sig-
nificant obstacle to seasoned developers, addressing them as
a matter of product/SDK support would likely divert re-
sources from other tasks. Even though monetary costs of
such diversion are hard to estimate, we suggest that any
difference in development platform behaviors does have a
support cost that cannot be entirely eliminated without los-
ing some of the customer base.

We also point the reader to Couch’s insightful analysis [4]
of modern development practices by younger generations of
programmers. While we find the picture it paints is disturb-
ing from the point of view of resulting software trustwor-
thiness, we credit the author with astute “anthropological”
observations, no matter how uncomfortable.

The Trusted Computing Group (TCG)’s guide [8] sum-
marizes the enabling and use of TPM in four steps:

1. Turn on the TPM from the BIOS.

2. Load available TPM utility software.

3. Enable the TPM and take ownership.

4. Use the TPM to generate keys.

One would expect that, if all required software is avail-
able, and if all configurations are correct, the first three
steps would either work straightforwardly, without requiring
the developer to spend time and effort to figure them out,
or failures in these steps would be easy to interpret. Also,
one would expect that TPM functions, such as key genera-
tion, would always work according to the Trusted Comput-
ing Group’s specification. In [7], Sadeghi et al. test these
assumptions for earlier TPM versions.

In practice, we found that, given TCG’s specifications of
the TPM and of user mode interfaces to the TPM, and given
diversity of chips, systems, software, and configurations, suc-
cess in these steps cannot be taken for granted. Moreover,
when a step fails, it is not always clear to a non-specialist
why it failed, and what should be done to remedy the situ-
ation.

We describe these three steps and their failure modes
in 5.1, 5.2, and 5.3.

5.1 Enabling the TPM chip in the BIOS
For the TPM chip to become functional, it needs to be

activated in BIOS.
A new computer with a TPM chip is likely to come with

that TPM chip disabled. In order to enable it, the user
needs to boot the computer, go to the BIOS menu, find
the TPM settings, change them, and save the settings. The
BIOS allows not only to activate the TPM chip, but also
allows to deactivate it, and to clear the TPM. Clearing the
TPM resets all the information stored in it, removing the
owner authorization secret, the Storage Root Key (SRK),
the other keys, and all the handles.

In the BIOSes of computers, TPM chip settings are fre-
quently listed in the “Security Settings” menu, without any
mention of the word TPM. Typically, no version/vendor in-
formation about the chip is listed, making it necessary to
refer to external data sheets and to assume that the chip is
the same as in the standard configuration.

Worth noting is also that on Lenovo laptops the option
to clear the TPM is not displayed in the BIOS until the
computer is powered down and booted back up. Merely
rebooting the computer, without a total power down, does
not allow one to see the option to clear the TPM. This has
been a source of a lot of confusion of users of TPM on Lenovo
machines.

5.2 Loading TPM utility software
As described in the TCG architecture specification over-

view [9], the communication with the TPM happens through
the TPM device driver and through the user mode compo-
nents of the TCG stack. In Sun/Dartmouth implementation
the latter is implemented as the daemon tcsd.

5.2.1 Loading TPM device driver
The TPM device driver enables the actual TPM device to

communicate with the TSS device driver library. An early
prototype of the TPM 1.2 device driver for Solaris was de-
veloped by Kwang-Hyun Baek of Dartmouth College, who
based it on the Atmel TPM unit. It then had to be sig-
nificantly rewritten by Sun engineers to accomodate other
TPMs. In particular, the initialization functionality of the
driver had to be entirely rewritten to make the driver com-
patible with the various TPMs that Sun developers added
support for.

Currently, the TPM driver is packaged into an OpenSo-
laris package, SUNWtpm, available from pkg.opensolaris.org.
When the package is installed, it adds to /etc/devlink.tab

an entry corresponding to the TPM driver and attempts to
add the driver by running add_drv. The computer needs to
be rebooted in order to attach the driver.

If the driver attached successfully, it can be seen by run-
ning modinfo | grep TPM and checking for the presence of
TPM. Running the OpenSolaris GUI utility “Device Driver
Utility” (listed under “System Tools” of OpenSolaris 2008-
2009 versions) will show the driver for TPM devices even
if it failed to attach. The driver may fail to attach if it is
incompatible with the TPM (if it failed initial checks), or
if the TPM is disabled in the BIOS. If the driver failed to
attach, the first thing to check would be whether the TPM
is activated in BIOS.

Sun’s current release of the TPM driver is intended to
support any 1.2 TPM. Sun did extensive testing on Atmel
and Infineon TPM devices; Dartmouth extensively tested
Atmel and Intel TPMs.

Notably, one of the more generic problems that encoun-
tered in the course of this testing was that the register sets
that the TPM devices presented to the kernel were not al-
ways arranged the same way on different TPMs. In some
cases there were multiple registers and the device driver had
to query each one to identify the correct one to attach with
instead of assuming that the first one was correct.

Instructive examples of bugs, reported and fixed in the
later versions, included not checking the registers correctly
upon completion of a command, and one of the TPMs unex-
pectedly returning much more data than others in the ver-
sion info record, with the result that the data got rejected
by the driver.

5.2.2 Trusted Software Stack
As specified by Trusted Computing Group, the TSS in-

teracts with the TPM driver, simplifying TPM access for a

programmer, and also provides APIs for some extra func-
tionality (such as the ability to store keys on disk).

Sun uses the open-source TCG Software Stack TrouSerS
(http://trousers.sourceforge.net), originally implement-
ed for Linux, to provide TSS functionality; the third au-
thor ported TrouSerS to Solaris, fixing a number of Solaris-
specific and non-Solaris-specific problems.

The Solaris build of TrouSerS is packed into the packages
SUNWtss and SUNWtss-root. The packages install and start
up the TSS Core Service daemon tcsd, which allows the
user applications to communicate with the TPM.

The daemon tcsd needs to run in order for any TSS-based
applications to be able to talk to the TPM. The user can
check whether it is running by pgrep tcsd. If for some
reason tcsd is not running, it can be enabled with svcadm

enable tcsd.
In the course of this effort Dartmouth has extensively

tested tcsd. Bugs in tcsd had previously caused it to die
due to conditions the user could not diagnose.

5.3 Taking Ownership
For taking ownership of the TPM, Sun provides the util-

ity tpmadm, part of the package SUNWcsu. Besides taking
ownership, tpmadm allows to run a few other commands.

usage: tpmadm command args ...
where 'command' is one of the following:
status init clear [owner | lock]
auth keyinfo [uuid] deletekey uuid

Running tpmadm status allows to examine the state of
the TPM, as shown in Figure 1.

TPM Version: 1.2 (ATML Rev: 13.9, SpecLevel: 2, ErrataRev: 1)
Contexts: 16/16 available Sessions: 2/3 available
Auth Sessions: 2/3 available Loaded Keys: 21/21 available

PCR 0: 7A A0 EC 26 E8 59 1D E9 55 A3 D8 4B BB 03 B8 6F D8 07 8E 6B
PCR 1: 5B 93 BB A0 A6 64 A7 10 52 59 4A 70 95 B2 07 75 77 03 45 0B
PCR 2: 5B 93 BB A0 A6 64 A7 10 52 59 4A 70 95 B2 07 75 77 03 45 0B
PCR 3: 5B 93 BB A0 A6 64 A7 10 52 59 4A 70 95 B2 07 75 77 03 45 0B
PCR 4: AF 98 77 B8 72 82 94 7D BE 09 25 10 2E 60 F9 60 80 1E E6 7C
PCR 5: 7A E0 C1 A8 BD C0 8E 18 D9 9C 31 89 45 4B A9 C3 9C E3 2A 85
PCR 6: 5B 93 BB A0 A6 64 A7 10 52 59 4A 70 95 B2 07 75 77 03 45 0B
PCR 7: 5B 93 BB A0 A6 64 A7 10 52 59 4A 70 95 B2 07 75 77 03 45 0B
PCR 8: 00
...
...
PCR 16: 00
PCR 17: FF
PCR 18: FF
PCR 19: FF
PCR 20: FF
PCR 21: FF
PCR 22: FF
PCR 23: 00

Figure 1: Output of tpmadm status

For tpmadm to be able to interact with the TPM (in par-
ticular, to take ownership), the following conditions must be
satisfied:

• The TPM chip must be activated.

• The TPM driver must be attached.

• The TCS daemon tcsd must be running.

If tpmadm is able to take ownership, every component nec-
essary for working with the TPM is in place.

6. TPM RESOURCES
Every TPM can hold only a limited number of sessions,

contexts, authentication sessions, and keys. However, each
TPM vendor implements different limits. As shown above,
tpmadm status lists the available TPM resources: Contexts,
Sessions, Auth Sessions, and Loaded Keys. The TPM user
can (for example, through faulty code) cause the TPM to run
out of a certain kind of available resources, thus preventing
any operation that requires creation of new objects of that
type.

In particular, we discovered that some TPMs failed to
release authentication sessions when certain GetCapability

functions fail and quickly run out of sessions. At the time,
the chosen fix was for TrouSerS to reset the TPM after such a
failure, clearing authentication sessions; it was possible that
other solutions existed at the time, but were hard to find.
Later, these resource exhaustion problems were reportedly
corrected.

If the TPM runs out of a certain kind of a resource, it
may become unusable until objects of this kind are released.
Releasing the objects may involve power-cycling the system;
in some cases, this may be possible to address through soft-
ware.

Clearing the TPM removes all stored information and
makes it possible to use the TPM again. However, this is
probably not a measure a user should be forced to revert to.

7. A DIRECTION FOR REMEDIATION?
We see the path to remediating these difficulties in a series

of measures to increase the transparency of the TPM device
driver, the TSS layer, and the related TSS test suites, that
would facilitate observation of each stage on the path of data
from and to the TPM, through the driver, and throughout
the levels of the TSS.

In this section,we briefly survey the historical precedent
for similar improvements in other systems, and then provide
specific recommendations for the TCG architecture.

7.1 Historical Precedent
Historically, architectural improvements in complex multi-

layered systems has been effected through designing and im-
plementing a system of debugging hooks associated with
the paths of data units through the layers. These hooks
were “dataflow-centric”, in the sense that they not only al-
lowed examination of the lower layers and events occurring
in them, but also reported all objects – including all session-
related data structures – associated with a particular data
flow.

We find a motivating example in the evolution of another
layered architecture, TCP/IP network stacks. Despite the
obvious differences between network and TSS programming,
we note that layering is essential to both for controlling com-
plexity and maintaining future extensibility and that both
stacks build on physical devices with limited interfaces and
complex behaviors (e.g., the 802.11 link layer requires han-
dling over a dozen different types of frames, with many kinds
of information elements). Moreover, normal data flows in
each require creating and maintaining additional “associa-
tion”, “connection”, or “session” data structures in various
levels of the OS kernel.

Initially, network stacks were known to contain multiple
bugs and, as a result, vulnerabilities; their defence was rele-
gated to external“firewall”systems, which quickly developed

into implementations of stateful models of the target stacks’
state.

The change was brought about by kernel hook systems
such as Netfilter that instrumented the path of a communi-
cation unit (packet) through the kernel, and made it possible
to extract and examine these units at different stages of their
processing, as well as to debug the system by injecting spe-
cially prepared data structures.4 The result was a marked
improvement in the trustworthiness of network stacks.

7.2 Directions for TPM/TSS
The lessons of our case study can be generalized as follows:
TPM/TSS testing needs to be designed for each specific

TPM condition as much as possible, in particular: disabled,
enabled but un-owned, enabled and owned.

Testing needs to be broken up so that each layer can be
tested before moving up to the higher layers:

• kernel driver layer – passing commands and reading
responses from the TPM registers,

• TDDL layer – communicating directly with the ker-
nel driver through the defined kernel interfaces - e.g.
whether the TCSD daemon can read and write to the
device as expected,

• TSPI layer – can the client applications send and re-
ceive commands to the TCSD as expected? Can the
applications issue commands and get the expected re-
sponse all the way through the stack?

Testing of this nature would be much easier if there were a
known working emulator that we could know for sure was
returning the proper responses. However, software emula-
tors are just as prone to have implementation bugs as hard-
ware or any other complex layered software solution so it is
often difficult to identify where failures lie - in the device,
the application software, the test suite, or in the assump-
tions made by the testers.

8. CONCLUSION
Our experience derived from implementing a TPM/TSS

test suite for OpenSolaris leads us to conclude that diversity
of TPM feature sets and driver and TSS behaviors, and, in
particular, variations in handling of TPM and driver error
conditions throughout the stack may present an obstacle to
the TCG technology adoption. The mismatch between our
expected and actual effort on this project confirms this.

The direct result of our case study was that Sun/Dartmouth
TPM support on OpenSolaris is at this time fully functional
on all version 1.2 TPM chips, as far as we know. We found
the open source TrouSerS test suite to be a useful tool for
finding mistakes in TSS implementations and TPM prob-
lems, despite some incompleteness and deficiencies. The Sun
TSS test suite will soon be available as a package from the
testing repositories on OpenSolaris.

However, we also concluded that the failure modes of the
system remain confusing to the users, despite many fixes
and clarifications, from the very first steps such as loading
the driver and taking ownership of the TPM. In some cases,
we could not always tell if the bugs were in the test suite,
the TSS implementation, or the TPMs themselves. Thus,

4See, e.g., http://netfilter.org/documentation/HOWTO/
netfilter-hacking-HOWTO.html.

whereas a number of bugs uncovered with the help of the
test suite have been fixed, potential for developer confusion
remains.

We contend that this issue is an important one for the
TCG community to address, and we see the direction for
remediating it in further layer-by-layer, dataflow-centric in-
strumentation of the Trusted Software Stack, which will en-
able developers to follow the path of their data through the
TSS, and to develop an understanding of its internals and
failure modes, and, ultimately, encouraging wider adoption
of the TCG architecture. We abstracted and described sev-
eral design priciples that we believe should be followed to
achieve this goal.

9. REFERENCES
[1] Sirrix AG. TPM compliance test results. http://www.

sirrix.com/content/pages/test_results_en.htm,
2008.

[2] S. Bratus, M. E. Locasto, A. Ramaswamy, and S. W.
Smith. New Directions for Hardware-assisted Trusted
Computing Policies. In Future of Trust in Computing,
2009.

[3] Segey Bratus, Michael Locasto, and Brian Schulte.
SegSlice: Towards a New Class of Secure Programming
Primitives for Trustworthy Platforms. In Proceedings of
the TRUST 2010 Conference, June 2010. Berlin,
Germany.

[4] Alva Couch. Programming with Technological Ritual
and Alchemy. ;login:, June 2010.

[5] Bruce Perens. The Emerging Economic Paradigm of
Open Source.
http://perens.com/Articles/Economic.html.

[6] Bruce Potter. High Time for Trusted Computing. IEEE
Security and Privacy, 7(6):54–56, 2009.

[7] Ahmad-Reza Sadeghi, Marcel Selhorst, Christian
Stüble, Christian Wachsmann, and Marcel Winandy.
TCG Inside? - A Note on TPM Specification
Compliance. In Proceedings of the First ACM Workshop
on Scalable Trusted Computing (STC’06), 2006.

[8] Trusted Computing Group. How to Use the TPM: A
Guide to Hardware-Based Endpoint Security.
http://www.trustedcomputinggroup.org/resources/

how_to_use_the_tpm_a_guide_to_hardwarebased_

endpoint_security.

[9] Trusted Computing Group. TCG Specification
Architecture Overview.
http://www.trustedcomputinggroup.org/.../TCG_1_

4_Architecture_Overview.pdf, August 2007.

