A radiative transfer framework for non-exponential media

⁴ Pixar Animation Studios ⁵ Cornell University ¹ Dartmouth College ² ETH Zurich ³ Disney Research

DARTMOUTH VISUAL COMPUTING LAB

Benedikt Bitterli¹ Srinath Ravichandran¹ Thomas Müller ²³ Magnus Wrenninge ⁴ Jan Novák ³ Steve Marschner ⁵ Wojciech Jarosz ¹

C C

Radiative Transfer Theory

Radiative Transfer Theory

• Radiative Transfer, Chandrasekhar, 1960

Radiative Transfer Theory

• Radiative Transfer, Chandrasekhar, 1960

Assumes that particle positions are independent

Particle Correlations

The electrostatic interaction in colloidal systems with low added electrolyte, Beresford-Smith et al. 1985

Interactions in colloidal suspensions, *Grier and Behrens,* **2001**

Fat Particle Structure and Stability of Food Emulsions, Xu et al. 2008

A Model for the Stability of a TiO2 Dispersion, Goicochea, 2013

Dusty plasma correlation function experiment, Smith et al. **2004**

The electrostatic interaction in colloidal systems with low added electrolyte, Beresford-Smith et al. **1985**

Interactions in colloidal suspensions, Grier and Behrens, 2001

Fat Particle Structure and Stability of Food Emulsions, Xu et al. 2008

A Model for the Stability of a TiO2 Dispersion, Goicochea, **2013**

Dusty plasma correlation function experiment, Smith et al. **2004**

The electrostatic interaction in colloidal systems with low added electrolyte, Beresford-Smith et al. **1985**

Interactions in colloidal suspensions, Grier and Behrens, 2001

Fat Particle Structure and Stability of Food Emulsions, Xu et al. 2008

A Model for the Stability of a TiO2 Dispersion, Goicochea, **2013**

Dusty plasma correlation function experiment, Smith et al. 2004

Clouds

Couds

On the Spatial Distribution of Cloud Particles Kostinski and Jameson, 2000

Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales, Davis et al. **1999**

Clouds

On the Spatial Distribution of Cloud Particles Kostinski and Jameson, 2000

Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales, Davis et al. **1999**

Clouds

On the Spatial Distribution of Cloud Particles Kostinski and Jameson, 2000

Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales, Davis et al. **1999**

Kilometers

On the Spatial Distribution of Cloud Particles Kostinski and Jameson, 2000

Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales, Davis et al. **1999**

O O \bigcirc C

Distance

The Rendering Equation

$L_i(\mathbf{x},\omega) = \operatorname{Tr}(\mathbf{x},\mathbf{x}_s)L_o(\mathbf{x}_s,\omega) + \int_0^{\infty} \int_0^{\infty} \frac{d\mathbf{x}_s}{dt_s} dt_s = \frac{1}{2} \operatorname{Tr}(\mathbf{x},\mathbf{x}_s)L_o(\mathbf{x}_s,\omega) + \int_0^{\infty} \frac{1}{2} \operatorname{Tr}(\mathbf{x},\mathbf{x}_s)L_o(\mathbf{x},\mathbf{x}_s)L_o(\mathbf{x},\mathbf{x}_s)L_o(\mathbf{x},\mathbf{x}_s)$

rS $\operatorname{Tr}(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}_t) L_s(\mathbf{x}_t, \omega) \mathrm{d}t$

 \mathbf{x}_t

 \mathbf{x}_t

۰S $L_i(\mathbf{x},\omega) = e^{-\tau(\mathbf{x},\mathbf{x}_t)} L_o(\mathbf{x}_s,\omega) + \int_0 e^{-\tau(\mathbf{x},\mathbf{x}_t)} \sigma_s(\mathbf{x}_t) L_s(\mathbf{x}_t,\omega) dt$

 \mathbf{x}_t

 \mathbf{x}_t

• Classical transport assumes particle independence

• Classical transport assumes particle independence

• This model is not necessarily accurate

- Classical transport assumes particle independence
- This model is not necessarily accurate
- Correlated particles lead to non-exponential transmittance

- Classical transport assumes particle independence
- This model is not necessarily accurate
- Correlated particles lead to non-exponential transmittance
- Non-exponential transmittance breaks classical transport

- Classical transport assumes particle independence
- This model is not necessarily accurate
- Correlated particles lead to non-exponential transmittance
- Non-exponential transmittance breaks classical transport
- We need a new transport framework

 $L_i(\mathbf{x},\omega) = \operatorname{Tr}(\mathbf{x},\mathbf{x}_s)L_o(\mathbf{x}_s,\omega) + \int^s \operatorname{Tr}(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x}_t)L_s(\mathbf{x}_t,\omega)dt$

 $L_i(\mathbf{x}, \omega) = \operatorname{Tr}(\mathbf{x}, \mathbf{x}_s) L_o(\mathbf{x}_s, \omega) + \int^s \operatorname{Tr}(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}_t) L_s(\mathbf{x}_t, \omega) dt$

 $L_i(\mathbf{x}, \omega) = \operatorname{Tr}(\mathbf{x}, \mathbf{x}_s) L_o(\mathbf{x}_s, \omega) + \int^s \operatorname{Tr}(\mathbf{x}, \mathbf{x}_t) \sigma_t(\mathbf{x}_t) \alpha(\mathbf{x}_t) L_s(\mathbf{x}_t, \omega) dt$

 $L_i(\mathbf{x},\omega) = \operatorname{Tr}(\mathbf{x},\mathbf{x}_s)L_o(\mathbf{x}_s,\omega) + \int \operatorname{Tr}(\mathbf{x},\mathbf{x}_t)\sigma_t(\mathbf{x}_t)\alpha(\mathbf{x}_t)L_s(\mathbf{x}_t,\omega)dt$

 $L_i(\mathbf{x}, \omega) = \operatorname{Tr}(\mathbf{x}, \mathbf{x}_s) L_o(\mathbf{x}_s, \omega) + \int_{e} -\tau(\mathbf{x}, \mathbf{x}_t) \sigma_t(\mathbf{x}_t) \alpha(\mathbf{x}_t) L_s(\mathbf{x}_t, \omega) dt$

 $L_i(\mathbf{x},\omega) = \operatorname{Tr}(\mathbf{x},\mathbf{x}_s)L_o(\mathbf{x}_s,\omega) + \int_{e} -\tau(\mathbf{x},\mathbf{x}_t)\sigma_t(\mathbf{x}_t)\alpha(\mathbf{x}_t)L_s(\mathbf{x}_t,\omega)dt$

 $L_i(\mathbf{x}, \omega) = \operatorname{Tr}(\mathbf{x}, \mathbf{x}_s) L_o(\mathbf{x}_s, \omega) + \int \left[\operatorname{pdf}(\mathbf{x}, \mathbf{x}_t) \alpha(\mathbf{x}_t) L_s(\mathbf{x}_t, \omega) dt \right]$

Transport Functions

Transport Functions

 $\operatorname{Tr}(\mathbf{x},\mathbf{x}_t)$

 $pdf(\mathbf{x}, \mathbf{x}_t)$

Transport Functions

 $\operatorname{Tr}(\mathbf{x},\mathbf{x}_t)$

 $pdf(\mathbf{x}, \mathbf{x}_t)$

Iransport Functions

 $\operatorname{ff}(\mathbf{x},\mathbf{x}_t)$

 $\operatorname{fp}(\mathbf{x}, \mathbf{x}_t)$

 $\operatorname{pf}(\mathbf{x},\mathbf{x}_t)$

 $pp(\mathbf{x}, \mathbf{x}_t)$

p: "particle" *f*: "free space"

Free-flight PDF Probability Density: Integrates to 1

$$pp(\mathbf{x}, \mathbf{x}_t)$$

ransport Kerne

$T(\mathbf{x},\mathbf{x}_t) = \boldsymbol{\langle}$

$pp(\mathbf{x}, \mathbf{x}_t)$ if $\mathbf{x} \in p$ and $\mathbf{x}_t \in p$ $pf(\mathbf{x}, \mathbf{x}_t)$ if $\mathbf{x} \in p$ and $\mathbf{x}_t \in f$ $\operatorname{fp}(\mathbf{x}, \mathbf{x}_t)$ if $\mathbf{x} \in f$ and $\mathbf{x}_t \in p$ $ff(\mathbf{x}, \mathbf{x}_t) \quad \text{if } \mathbf{x} \in f \text{ and } \mathbf{x}_t \in f$

$L_i(\mathbf{x},\omega) = T(\mathbf{x},\mathbf{x}_t) L_o(\mathbf{x}_s,\omega)$

) +
$$\int_0^s T(\mathbf{x}, \mathbf{x}_t) \alpha(\mathbf{x}_t) L_s(\mathbf{x}_t, \omega)$$

This Talk: Rendering Equation

$L_i(\mathbf{x}, \omega) = T(\mathbf{x}, \mathbf{x}_t) L_o(\mathbf{x}_s, \omega)$

In Paper: Path Integral

) +
$$\int_0^s T(\mathbf{x}, \mathbf{x}_t) \alpha(\mathbf{x}_t) L_s(\mathbf{x}_t, \omega)$$

This Talk: Rendering Equation

$L_i(\mathbf{x},\omega) = T(\mathbf{x},\mathbf{x}_t) L_o(\mathbf{x}_s,\omega)$

This Talk: Rendering Equation In Paper: Path Integral Reciprocity, energy conservation, ...

) +
$$\int_0^s T(\mathbf{x}, \mathbf{x}_t) \alpha(\mathbf{x}_t) L_s(\mathbf{x}_t, \omega)$$

• In correlated media, transmittance becomes four functions

 In correlated media, transmittance becomes four functions These represent different interactions at the end points

Summary

- Given one, all others can be derived

• In correlated media, transmittance becomes four functions These represent different interactions at the end points

Summary

- Given one, all others can be derived
- This talk: High level overview

• In correlated media, transmittance becomes four functions These represent different interactions at the end points

Summary

- Given one, all others can be derived
- This talk: High level overview
- Paper: Rigorous derivation

• In correlated media, transmittance becomes four functions These represent different interactions at the end points

Data Driven

Data Driven

A Data-Driven Reflectance Model, Matusik et al., 2003

Data Driven

A Data-Driven Reflectance Model, Matusik et al., 2003

A Microfacet-based BRDF Generator, Ashikhmin et al., **2000**

C O Ο

Phenomenological

Models of Light Reflection For **Computer Synthesized Pictures** James F. Blinn, **1977**

Illumination for Computer **Generated Pictures**, Bui Tuong Phong, **1975**

Phenomenological

Models of Light Reflection For **Computer Synthesized Pictures** James F. Blinn, **1977**

Illumination for Computer **Generated Pictures**, Bui Tuong Phong, **1975**

Phenomenological

Data Driven

Phenomenological

Data Driven

Statistical Models

Phenomenological

Microfacet Models for Refraction through Rough Surfaces, Walter et al., **2007**

Statistical Models

Theory for Off-Specular Reflection Torrance and Sparrow, **1966**

Davis and Mineev-Weinstein, 2011

Results

Phenomenological Transmittance (non-physical)

Davis-Mineev-Weinstein Model (physically based)

Same correlations everywhere

Same correlations everywhere

Same correlations everywhere

 Unbiased distance sampling in heterogeneous media only in special cases

Future Work

Non-exponentiality as a tool for...

Non-exponentiality as a tool for...

Multi-scattering approximation

Non-exponentiality as a tool for...

Multi-scattering approximation

Oz: The Great and Volumetric, Wrenninge et al. 2013

Non-exponentiality as a tool for...

Multi-scattering approximation

• Level-of-detail for media

Non-exponentiality as a tool for...

 Multi-scattering approximation • Level-of-detail for media

46

 Radiation propagation in random media: From positive to negative correlations in high-frequency fluctuations, Davis and Mineev-Weinstein, 2011

- Radiation propagation in random media: From positive to negative correlations in high-frequency fluctuations, Davis and Mineev-Weinstein, 2011
- A generalized linear Boltzmann equation for non-classical particle transport, Larsen and Vasquez, 2011

- Radiation propagation in random media: From positive to negative correlations in high-frequency fluctuations, Davis and Mineev-Weinstein, 2011
- A generalized linear Boltzmann equation for non-classical particle transport, Larsen and Vasquez, 2011
- A Radiative Transfer Framework for Spatially-Correlated Materials, Jarabo et al. 2018

Comparison to Related Work

Ours

Larsen and *Vasquez,* **2011**

Jarabo et al., 2018

Heterogeneity

Path Integral

Thank you!

Pink Noise (ours)

Thank you!

Pink Noise (ours)

