Reduced Aggregate **Scattering Operators** for Path Tracing

Adrian Blumer Jan Novák **Ralf Habel** Derek Nowrouzezahrai Wojciech Jarosz

Reduced

7

image sources:

clouds: https://www.flickr.com/photos/rocor/608762581 tree: http://www.wallpapersonview.com/wallpapers/landscape_astonishing_nature_quality_trees_background_picture-2560x1600-12555.html snowmen: http://funmozar.com/christmas-snow-wallpapers/ sheep: https://travelblog.expedia.co.th/westhern_thailand/15043/

Motivation

Selected Related Work

Clustered principal components for precomputed radiance transfer *Sloan et al., 2003*

Modular radiance transfer Loos et al., 2011

A Practical Model for Subsurface Light Transport Henrik et al., 2001

Much more: importance sampling, caching of light transport, vegetation rendering, subsurface scattering, ...

Precomputation

Path tracer integration

Precomputation

Path tracer integration

Method Light transport as a matrix operation

indirect

		-				-	
_		_				_	
_		_	_			-	
	-	-		_		-	
		_					
		-					
		_					
		_	_			-	
		-		-	-	-	
		_					
		_					
_		_	_			-	
	-	-		_			
		_					
		_					

direct illumination

transport matrix

direct

Method Light transport as a matrix operation

indirect basis transform

X

direct illumination

direct

of vertices

of vertices

of vertices

of configuarions

of vertices **Compress using SVD** ₩ truncate

of configurations

of vertices

of basis functions

compact basis

of vertices

of basis functions

compact basis

of vertices

of basis functions

compact basis

of vertices

of basis functions

compact basis

of vertices

of basis functions

clustered compact basis

Clustered principal components for precomputed radiance transfer Sloan et al. 2003

indirect

indirect basis transform

X

direct illumination

direct

X

Precomputation

Path tracer integration

Path tracer integration Monte Carlo evaluation

between batches, apply transport

indirect illumination cache

Importance cache

between batches, apply transport

 \times

 \times

Results

Side lighting (in the training set)

Quality

Path tracing with RASO

Back-lighting (not in the training set)

Quality

Path tracing with RASO

Con Maria

Quality

Path tracing with RASO

CANO. (not in the training set)

CS NO

Quality

Path tracing with RASO

Front-lighting with occluder (not in the training set)

Performance

Equal-time Path tracing

Performance

Equal-time Path tracing with RASOs (ours)

Temporal stability

Homogeneous volume

PT (17 min)

PT with RASO (3.1 min)

PT with RASO (6 s)

Diffusion dipole (6 s)

multiple-scattering only, discretization: 128³ voxel grid, dipole parameters hand-tweaked for visually similar result

Conclusion

Advantages

- fast convergence
- perceptually unobtrusive error
- temporal stability

Limitations

- precomputation & storage
- bias

Future Work

- All-frequency Transport
- Application to Clouds
- Non-negative matrix factorization

Thanks for your time!

Questions?

