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1 DERIVATION OF PHOTON SURFACE NORMALS
In the following, we provide full derivations for the normals of the

photon surface estimators in Sec. 5 of the main paper.

Generalized Photon Planes. For two arbitrary distance sampling

dimensions ξa1 = ti and ξa2 = tj where l ≥ i ≥ j ≥ 1, the offset

vector g becomes

g(ξa ) = x0 − y0 (1)

=
©«xl + tiωi + tjωj +

∑
k,i,k,j

tkωk
ª®¬︸                                 ︷︷                                 ︸

x0(ti ,tj )

− (y1 + s1ψ1)︸       ︷︷       ︸
y0(s1)

(2)

=
©«xl − y1 +

∑
k,i,k,j

tkωk
ª®¬ + Aξa , (3)

where A = [ti , tj , s1]. The Jacobian is

Jgti ,tj ,s1 = |n ·ψ1 |, with n =
(
∂x∗

0

∂ti
×
∂x∗

0

∂tj

)
, (4)

where obtaining n requires computing the directions and lengths of

the two partial differentials. Since for any distance term ti we have
∂x∗

0
/∂ti = ω∗

i , the scaled normal is

n = ωi × ωj . (5)
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Photon Spheres. We obtain photon spheres by integrating out one

directional sampling dimension. Since a direction is actually a two-

dimensional variable, we first decompose it into spherical coor-

dinates. If we choose the direction ω1, we have ξa1 = cosθ1 and
ξa2 = ϕ1 where dω1 = dϕ1dcosθ1. This gives

g(ξa ) = x0 − y0 (6)

= (x1 + t1ω1)︸       ︷︷       ︸
x0(cos θ1,ϕ1)

− (y1 + s1ψ1)︸       ︷︷       ︸
y0(s1)

(7)

= (x1 − y1) + Aξa (8)

where A = [cosθ1,ϕ1, s1], and

Jg
cos θ1,ϕ1,s1

= |n ·ψ1 |, with n =
(
∂x∗

0

∂ϕ1
×
∂x∗

0

∂ cosθ1

)
, (9)

where ∂x∗
0
/∂ϕ1 and

∂x∗
0
/∂ cos θ1 are the tangents at x∗

0
on the rings

formed by sweeping ϕ1 and θ1. Since these tangents are mutually

perpendicular, with lengths:���� ∂x∗0∂ϕ1
���� = |t∗

1
sinθ∗

1
|, and

���� ∂x∗0∂ cosθ1

���� = ���� t∗
1

sinθ∗
1

����. (10)

we have

n = ω∗
1
t2
1
. (11)

Photon Cones, Disks, Cylinders, and beyond. By decoupling the az-

imuthal and polar angle terms, we can choose one angle and one

distance dimension, or two angles but each coming from a different

path vertex. Depending on which of these dimensions we choose

for ξa , we get different photon surface estimators.

If we choose ϕ1 and t1, x∗
0
will be allowed to move along ω∗

1
and

the tangentω∗
1
×ω2, which will sweep a photon cone with the normal

perpendicular to both ω∗
1
and ω2:

n = ω∗
1︸︷︷︸

∂x∗
0

∂t
1

×

(
ω∗
1
× ω2

|ω∗
1
× ω2 |

)
t∗
1
sinθ1︸                     ︷︷                     ︸

∂x∗
0

∂ϕ
1

= (ω∗
1
× (ω∗

1
× ω2))t

∗
1
. (12)

The simplification in the last step is because |ω∗
1
×ω2 | = |ω1 ×ω2 | =

|sinθ1 |.
If we keep t1 but choose cosθ1 instead of ϕ1, we get a photon disc.

The normal will point towards ω2 × ω∗
1
, and based on the partial

differentials we get

n =
(ω1 × ω2) t

∗
1

sin
2 θ∗

1

. (13)

If we keep ϕ1 but choose t2 instead of t1, we get yet another

different photon surface: the photon cylinder :

n = (ω2 × (ω∗
1
× ω2))t1. (14)
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The photon cone, cylinder, and disk are only special cases of

more general classes of photon surfaces. Naturally, we’d like to

generalize all the photon surfaces the same way we generalized

photon planes: allowing the sampled terms we include in ξa to be

from any arbitrary position on the photon subpath. In fact, we have

more choices, as for any i where the spin happens, our choice ranges
from spinning the whole following portion of the photon subpath, to

spinning one single segment and leaving anything else unchanged.

If we choose two directional terms, then all the importance-sampled

directional terms remain properly importance sampled as all the

angles between adjacent segments stay unchanged. If, however,

we also include distance terms, then some importance-sampled

directions might change while some following directions stay the

same, which makes some estimators worse than others, and here

we exclude this type of surfaces for simplicity. In the end of this

section we show the derivation of 2 generalized classes of photon

surfaces: the photon toroid and hyperboloid.

The photon toroid corresponds to choosing 2 arbitrary ϕ samples.

If we choose ϕi and ϕ j where l ≥ i > j ≥ 1, the normal will be the

cross product of tangents ωi+1 × ω
∗
i and ω

∗
j+1 × ω

∗
j whose lengths

are both equal to the distance from x∗
0
to the spinning axis. This

gives us

n =
(ωi+1 × ω

∗
i ) × (ω∗

j+1 × ω
∗
j )|(x

∗
0
− xi ) × ω∗

i+1 | |(x
∗
0
− x∗j ) × ω

∗
j+1 |

sinθi sinθ j
(15)

Similarly, the photon hyperboloid corresponds to choosing the

last distance sample and an arbitrary ϕ sample. If ϕi is chosen, the
normal would be the cross product of the tangent ωi × ωi+1 with
length equal to the spinning radius, and ω∗

1
with unit length, which

gives us

n =
(ωi+1 × ω

∗
i ) × ω

∗
1
|(x∗

0
− xi ) × ωi+1 |

sinθi
(16)

1.1 Photon Surfaces for Low-Order Scattering
Since photon spheres and cones only require one bounce in medium,

they can be directly applied for single scattering from any light

source. The scaled normal and Jacobian remain exactly the same,

we only need to replace the phase function term fω (ω
∗r
l ) with the

emission function Le(xl ,ω
∗r
l ) cosθ∗rl on the light. Photon cones

require a central axis. This can be an arbitrary direction for point

lights, and sensible choice for area lights and spot lights are the

surface normal and spotlight direction, respectively, since this allows

importance sampling the directional emission.

Photon spheres and cones are also applicable to the first bounce

off of surfaces. In this case the BSDF is used instead of the phase

function or emission function.

Planar Light Source. Area light sources enable additional estima-

tors since they provide additional surface area sampling dimensions

for possible analytic integration. To derive single-scattering pho-

ton planes, we introduce an orthonormal coordinate system with

origin o and vectors u, v spanning the whole plane containing the

geometry of the light source. Any point within the plane can be

denoted with a (u,v) coordinate. For simplicity, we consider a quad

light with u and v aligned to the edges and o being a corner of the

quad. In this case, the position of xl would be (o+uu+vv). Now we

configure ξa by choosing two dimensions from {u,v, tl } together

with a dimension s1. There are three combinations of ξa , including
{u, tl , s1)}, {v, tl , s1} and {u,v, s1}, from which we derived three

types of single scattering photon plane estimators.

By setting ξa = {u, tl , s1}, we get the (u, tl )-plane estimator with

offset vector g:

g(ξa ) = (o +vv + uu + tlωl )︸                    ︷︷                    ︸
x0(u,tl )

− (y1 + s1ψ1)︸       ︷︷       ︸
y0(s1)

(17)

= (o +vv − y1) + Aξa , (18)

where A = [u,ωl ,−ψ1]. Therefore, with this combination of integra-

tion domain, the change of variable process gives us this Jacobian:

Jgu,tl ,s1 = |n · ω1 | = |(u × ωl ) ·ψ1 | (19)

Following the same procedure with the other two choices will result

in the (v, tl )- and (u,v)-planes with Jacobians:

Jgv,tl ,s1 = |n ·ψ1 | = |(v × ωl ) ·ψ1 | (20)

Jgu,v,s1 = |n ·ψ1 | = |(u × v) ·ψ1 | (21)

Since we can position and rotate our orthogonal coordinate sys-

tem however we like, the (u, t1)- and (v, t1)-planes are the same

estimator, but under different rotations of the coordinate system.

In fact, we can construct a single-scattering plane estimator for an

arbitrary rotation angle α ° of the coordinate system, which call an

α ° (v, t1)-plane.
The Jacobian takes an identical form, simply using the rotated

u(α) in place of u:

Jguα ,tl ,s1 = |n ·ψ1 | = |(u(α) × ωl ) ·ψ1 | (22)

Non-planar Light Source. Although it is hard to explicitly parame-

terize an arbitrarily shaped light surface, extending the (u,v)-plane
estimator to such lights only requires the existence of an arbitrary

locally area preserving parametrization xl (u,v), while the final Jaco-
bian will not depend on u or v . By taking ξa = (u,v, s1), we reform
the offset vector g as

g(ξa ) = xl (u,v) +
1∑
i=l

tiωi︸                 ︷︷                 ︸
x0(u,v)

− (y1 + s1ψ1)︸       ︷︷       ︸
y0(s1)

(23)

where photon surface x0(u,v) has exactly the same shape as the

light surface xl (u,v). Concluding from Eq. (23), applying a delta

function on g is equivalent to finding the intersections between the

query ray y0(s1) and photon surface x0(u,v). Thus for uv-surfaces,

Jgu,v,s1 = |n ·ψ1 | (24)

where n is simply the surface normal at the intersecting point.

It is theoretically possible to also extend the (u, tl )- and (v, tl )-
plane estimators to arbitrary curved light sources. The shape of

the resulting photon surfaces would, however, depend on the iso-

contours of the u,v parameterization. This would be challenging

for arbitrary mesh lights, but might be practical for some simple

analytic area light shapes.
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1.2 Continuous MIS
For a planar area light source, using (u, t)- or (v, t)-planes can in-

troduce singularities when the dot product of the plane normal and

the camera ray approaches zero. Since there are infinitely many

possible orthogonal parameterizations of the planar light source

(through rotation), we combine all possible rotations of (u, t)-planes
to compensate for the singularities of any individual orientation.

In this section, we derive the Jacobian and MIS weight for these

rotated planes. We start with the natural coordinate system of the

light source, in which the unit vectors u and v are the two edges of

the light, and o marks a corner of the light source. To obtain a new

coordinate system, we rotate the edges by an angle α around the

center of light source, yielding new axis uα , vα .
The parametrization using the rotated edges along uα , vα results

in a new (uα , t)-plane (see below).

αLe

L

tl
xl

x0
ωl

o

u

v

uα

vα

o

To evaluate the contribution of such a rotated parametrization,

we treat it as a new square light source with edges uα , vα that

exactly envelops the original light source. The emission of this light

source is zero outside the bounds of the original light, and otherwise

matches the original emission.

The estimator score of a (uα , t)-plane is then

f (z)
p(z,α)

=
f (ξn )

p(ξn )
Ia (uα , tl , s1) (25)

=
f (ξn )f

1,1
ω ft (t

∗
l )Le((u

∗
α ,v(α)),ωl )

p(ξn ) J
g
uα ,tl ,s1

(26)

Where p(zj ,α) is the probability of generating path zj with u(α)t-
plane. Similar to the main paper, we use the estimator contribution

as a proxy for the path PDF. Now imagine usingm different esti-

mators, corresponding tom randomly rotated parameterizations of

the original light source, and combine thesem strategies, then by

balance heuristic, the pixel intensity is

I =
1

N

N∑
j

✚
✚
✚✚p(zj ,α)

f (zj )

1

m
∑m
i=1

p(zj ,αi )
f (zj )

✚
✚
✚✚f (zj )

p(zj ,α)
(27)

=
1

N

N∑
j

f (zj )
1

m
∑m
i=1 p(ξn ) J

g
uαi ,tl ,s1

(28)

Therefore, for a light path z, the path contribution evaluated by MIS

among randomly-oriented (uα , t)-planes is

⟨I ⟩MIS =
f (z)

p(ξn )
1

m
∑m
i=1 J

g
uαi ,tl ,s1

(29)

In the equation above, we regard the term
1

m
∑m
i=1 J

g
uαi ,tl ,s1

as the

Jacobian term of the new estimator produced by MISing. We now

take the limit of this expression as the number of strategiesm goes

toward infinity. This corresponds to performing MIS between the

uncountably infinite possible parametrizations of the light source.

Recall the properties of the Riemann sum

lim

m→∞

b − a

m

m∑
i=1

f (x) =

∫ b

a
f (x)dx (30)

lim

m→∞

1

m

m∑
i=1

f (x) =
1

b − a

∫ b

a
f (x)dx (31)

Then we can compute the denominator of Eq. (29) by

lim

m→∞

1

m

m∑
i=1

Jguαi ,tl ,s1 =
1

π

∫ π

0

Jguα ,tl ,s1dα (32)

where uα = sinαu + cosαv. Replacing u with uα in Eq. (19) and

insert into Eq. (32) we obtain

1

π

∫ π

0

|((sinαu + cosαv) × ω1) ·ψ1)|dα (33)

=
1

π

∫ π

0

|k1 sinα + k2 cosα |dα (34)

=
2

π

√
k2
1
+ k2

2
(35)

where k1 = (u × ωl ) · ψ1,k2 = (v × ωl ) · ψ1. This results in the

continuously MIS’d estimator

⟨I ⟩MIS =
f (z)

p(ξn )
2

π

√
((u × ωl ) ·ψ1)

2 + ((v × ωl ) ·ψ1)2
(36)

2 ADDITIONAL RESULTS
Comparison with path tracing. In Fig. 4, we compare MISed com-

binations of some of our estimators with path tracing for single

scattering. Our estimators generally lead to lower variance. It is

worth pointing out that the noise characteristics of our estimators

differ significantly from path tracing: Due to the reuse of the photon

paths for many pixels, the noise in our method is spatially coherent

and appears smoother, whereas the noise appears at much higher

frequencies for path tracing.

Individual comparisons. We additionally compare all of our single

scattering estimators (spheres, cones, (u, t)-planes, (u,v)-planes and
(v, t)-planes) and various MISed combinations to photon beams and

path tracing in Fig. 2 and Fig. 3 for differently sized light sources to

better evaluate invidual vs. combined performance.
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Estimator overhead. In Table 1, we measure render times of different

estimators at equal photon count. This outlines the performance

overhead of our new estimators individually, as well as their MIS

weighted combinations. The cost of each estimator mostly depends

on its average size in screen-space, and hence how many times it is

evaluated by a pixel. On the other hand, MIS does not contribute

significantly to the estimator cost, which is encouraging.

3-plane MIS. In Fig. 1, we show a full-sized version of Fig. 3 in

the main paper, comparing averaging and MIS for different plane

estimators.

Var: 1.0×Var: 1.0× Var: 0.300×Var: 0.300×

Var: 1.0×Var: 1.0× Var: 0.320×Var: 0.320×

AVG 3-planesAVG 3-planes MIS 3-planesMIS 3-planes

AVG (uα , t)-planesAVG (uα , t)-planes MIS (uα , t)-planesMIS (uα , t)-planes

Fig. 1. Full size version of Fig. 3 in the main paper.

Table 1. We compare the overhead of each of our estimators by rendering scenes at equal photon count and measuring the rendering time (in seconds). The
computational expense of an estimator depends both on the complexity of intersecting/evaluating it, as well as the number of pixels it overlaps with on
average. The latter depends on the scene setup (phase function, occlusion, placement of light sources), but generally dominates the computational cost for
estimators such as photon spheres that tend to have a large screen-space extent. On the other hand, the overhead of MIS is not significant.

Scene
(t1, t2)-
plane

(t1, t3)-
plane

(t2, t3)-
plane 3-planes Cone Cylinder Sphere

Cone
Sphere

0D Plane
Cone

Cylinder

3-planes
Cone

Cylinder

HorseRoom 97.9 173.5 172.9 166.4 76.3 95.4 58.6 76.9 108.0 154.3

LivingRoom aniso 83.3 112.9 97.4 116.6 152.8 141.2 434.0 377.7 154.3 161.1

LivingRoom iso 121.5 184.1 182.7 188.6 238.5 269.7 381.7 374.1 252.8 260.6

Dining room 88.8 181.4 153.9 149.1 146.4 185.4 346.6 247.6 147.7 169.2

Bathroom 28.0 175.8 177.8 131.1 34.9 46.6 57.1 49.7 38.7 101.6

Kitchen 154.9 228.3 229.7 237.3 340.5 390.1 660.6 613.4 357.6 346.5
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(uα , t)-planes + (u,v)-planes = Combination Beams

MISAVG MISAVG MISAVG

5
m
f
p

2
m
f
p

1
m
f
p

0
.5
m
f
p

0
.2
m
f
p

0.111×0.111× 0.018×0.018× Var: 1.0×Var: 1.0×

0.318×0.318× 0.066×0.066× Var: 1.0×Var: 1.0×

0.887×0.887× 0.157×0.157× Var: 1.0×Var: 1.0×

2.231×2.231× 0.380×0.380× Var: 1.0×Var: 1.0×

4.583×4.583× 1.043×1.043× Var: 1.0×Var: 1.0×

Fig. 2. An expanded version of Fig. 6 from the main paper examining the effect of more light source sizes (rows) on the relative performance of continuously
rotated (uα , t )-planes (first column) and (u, v)-planes (second column). For each estimator we show its contribution individually (left split, AVG), as well as
weighted by MIS (right split). The third column shows the weighted and unweighted combination of these two estimators. The (u, v)-planes perform well
when viewing a large light source, but for smaller lights their weight diminishes compared to continuously rotated (uα , t )-planes, which start to resemble the
photon beams baseline, though without bias.
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Path Tracing Ours: MIS((u, t), (v, t), (u,v)) Path Tracing Ours

Var: 1.0×Var: 1.0× Var: 0.559×Var: 0.559×

Var: 1.0×Var: 1.0× Var: 0.198×Var: 0.198×

Var: 1.0×Var: 1.0× Var: 0.192×Var: 0.192×

Fig. 4. We perform an equal-time comparison between our MIS weighted (u, t ), (v, t ) and (u, v) planes (middle column) with path tracing (left column). We
show zoomed in comparisons (right columns) as well as variance numbers. We only compare transport that can be handled by our estimators.
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Fig. 5. We perform equal-time comparison between MIS weighted (u, t ),(v, t ),(u, v) planes (top row) and MIS weighted (uα , t ), (u, v) planes (remaining
rows), with the ratio (uα , t ) : (u, v) + (uα , t ) changing from 0.1 to 0.9.
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