Errata for Photon Beam Diffusion: A Hybrid Monte Carlo Method for Subsurface Scattering

Ralf Habel¹

Per H. Christensen²

Wojciech Jarosz1

¹Disney Research Zürich

²Pixar Animation Studios

July 2013

Abstract

This document contains errata for the publication Photon Beam Diffusion: A Hybrid Monte Carlo Method for Subsurface Scattering. The errors are corrected in the online versions of the paper, but not in the version hosted in the Eurographics library.

1. Correction to Diffuse Single Scattering (Section 3.5)

Equation (13) already contained the extended beam source Q, and was then falsely multiplied by Q again when defining $f(\vec{x}, \vec{\omega}, t_i)$. The correct expression, not containing Q, for Equation (13) should be

$$r^{(1)}(\vec{x}, \vec{x}_r(t)) = \frac{f_s(\vec{\omega} \cdot \vec{\omega}_{\vec{x}_r \vec{x}})e^{-\sigma_t(d_r(t))}F_t(\theta_o, \eta)F_t(\theta_i, 1/\eta)\cos\theta_o}{d_r^2(t)}$$
(13)

Note also that the source function for single scattering should use un-reduced scattering parameters, hence we define $f(\vec{x}, \vec{\omega}, t_i) = r^{(1)}(\vec{x}, \vec{x}_r(t_i)) Q^{(1)}(t_i)$ with $Q^{(1)}(t) = \alpha \sigma_t e^{-\sigma_t t}$.