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Abstract

In this paper, we present a hybrid software–hardware ren-
dering technique which can compute and visualize global
illumination effects in dynamic scenes at interactive rates.
Our system uses a hardware splatting technique simular
to, but developed independently of, Stüerzlingeret al. The
technique involves a progressively refined photon tracing
calculation capable of simulating a wide range of BRDFs.
Photons in the scene are rendered to the screen as oriented
Gaussian splats. This compact representation allows for
rapid rendering of scenes with thousands of photons on
consumer-level hardware.

In contrast to previous methods using simular tech-
niques, our system does not use precomputed lighting,
and is capable of achieving interactive feedback to ob-
ject and light manipulations. Such a feature is invalu-
able to lighting designers dealing with complex globally-
illuminated scenes. The progressive refinement algorithm
allows for rapid preview during interaction, while produc-
ing higher quality images over time. The images produced
also maintain a high correlation to the appearance of full
renderings using a conventional Monte Carlo ray tracer.

1 Introduction

Global illumination arises in the real world through the
interaction of light with the materials it encounters. As
photons travel through space and hit surfaces, any num-
ber of outcomes are possible. Photons can be absorbed
by, reflected by, or transmitted through surfaces, all based
on the material properties of the object. Photons trace
complex paths through the scene, interacting with the sur-
faces that they encounter. The material properties of a
surface have an influence on incident photons, and there-
fore through multiple bounces, can have an effect on the
illumination within another part of the scene. The inte-
gration of all these photon paths is what helps determine
the lighting effects within a particular environment. This
complex system is known as global illumination.

One of the goals of physically accurate and photo-
realistic rendering is the indistinguishability of a render-
ing from a photograph. In order to faithfully represent
the physical world in a rendered image, global illumina-
tion must be taken into account. The importance of this
phenomenon in suspending the disbelief of the audience
can be inferred from the increased use of global illumi-
nation in computer generated films and special effects.
In the past, these sort of effects were achieved through
the use of numerous, strategically positioned lights in-
tended to simulate the indirect illumination falling onto

objects. This large collection of extra lights had to be
positioned individually and manually by lighting design-
ers. With the increase of computational power and the
availability of more advanced rendering techniques, more
physically accurate methods have started to replace these
tedious workarounds.

1.1 Motivation

Graphics hardware today is very successful at rendering
diffuse, directly illumated polygons quickly. Virtually all
3D animation packages take advantage of this and allow
for fully-shaded interactive viewing of a scene. This fea-
ture is incredibly helpful for a lighting designer because it
provides real-time feedback for object and light manipula-
tions. It greatly reduces the amount of time needed for test
renders in order to see the effects of a particular lighting
change.

As opposed to the behavior of direct illumination, in-
direct illumination, especially caustics, is fairly difficult
for a human observer to predict. A slight movement of
a light source might change the shape and location of a
caustic dramatically. Therefore, in order to make sure that
lighting changes have the desired effect, many test renders
must again be performed. With the increased use of global
illumination in the production environment, it would be
similarly advantageous to interactively preview indirect
illumination, as direct illumination already is. Seeing the
change in shape and location of caustics and other indi-
rect illumination effects interactively could dramatically
improve the workflow of a lighting designer.

1.2 Global Illumination Methods

Current graphics hardware does not, however, directly sup-
port advanced global illumination algorithms. Therefore,
the challenge is in finding a way to cleverly take advan-
tage of the processing power of the GPU within current
software-based global illumination techniques. In order
to understand how a GPU could potentially be utilized, it
is important to review these global illumination methods.

1.2.1 Radiosity

Radiosity is a finite element method where the scene must
be discretized into patches. Form factors are calculated
for each patch, accounting for diffuse illumination from
all other patches within the scene. A form factor between
two patches is conventionally computed in a simular way
to direct lighting with ray tracing used to account for oc-
clusion. This collection of form factors is then used when



solving, either directly or indirectly, a large linear matrix
equation [5].

Interactive globally illuminated walk-throughs have been
achieved in the past using the results of a radiosity calcu-
lation. The radiosity solution can be stored in the vertex
colors of a mesh. Graphics hardware can then be used
to render the scene using the pre-calculated illumination
in real-time. This provides a partial solution in that only
diffuse reflections can be simulated, and, aside from triv-
ial changes such as turning individual lights on and off,
lighting changes cannot be previewed dynamically. View-
independent modifications have been implemented, but do
not allow for interactive viewing [24]. The addition of dy-
namic lighting and object manipulation would require the
radiosity calculation to be performed individually for each
affected frame, impairing the interactivity of the preview
as well.

1.2.2 Ray Tracing and Path Tracing

Ray tracing and path tracing methods rely on shooting
out numerous rays in order to interrogate the illumination
present at various locations within the scene. The lighting
incident from all directions onto a surface is calculated by
integrating these values over the hemisphere of directions.
Optimizations to the brute force method have been devel-
oped, such as irradiance caching [36] and bi-directional
path tracing [18]. Globally illuminated scenes with ar-
bitrary material properties can be simulated using these
method; however, they are still not suitable for interactive
rendering.

A pure path tracing method does not seem like a good
candidate for non-programmable graphics hardware ac-
celeration due to the lack of both temporal and spatial
caching. Modifications of both ray tracing [30], and path
tracing [29], which utilize cached information, have been
implemented for interactive preview. However, these gen-
erally rely on large distributed systems to offset the heavy
cost associated with tracing many rays per pixel. Other
solutions have been implemented which utilize the pro-
grammability of modern graphics hardware to trace rays
rather than rasterize polygons [3, 19] in real-time.

1.2.3 Photon Mapping

Similar to path tracing, photon mapping shoots many rays
into the scene in order to simulate global illumination ef-
fects. The algorithm, however, proceeds in the opposite
direction of path tracing, tracing photons from lights in-
stead of rays from the camera. In fact, photon mapping
can be thought of as a special form of bi-directional path
tracing [9, 18] which uses an intermediate caching step.

As opposed to standard path tracing, caching is central to
the photon mapping method. Lighting information from
the photon simulation is stored in a three dimensional data
structure for later integration into a Monte Carlo ray trac-
ing pass.

The caching nature of photon mapping provides more
opportunity for graphics hardware utilization than pure
path tracing, and allows for arbitrary material properties,
unlike radiosity based methods. Interactive walk-throughs
of globally illuminated glossy scenes have been achieved
utilizing photon mapping and graphics hardware [25]. In-
tended as a replacement for diffuse-only radiosity walk-
throughs, the method did not investigate the feasibility
of dynamic scene changes, using a pre-computed photon
map for interactive rendering instead.

For our implementation of interactive global illumina-
tion, the photon mapping method was chosen due to both
its flexibility in simulating complex reflection models, and
its heavy use of exploitable caching.

2 The Photon Mapping Method

The following section outlines the photon mapping method,
which follows the work presented in [9, 12, 11, 8, 7, 13,
4].

In photon mapping, image creation is split up into two
distinct passes. The first pass constructs the photon map
through a method simular to path tracing. “Photons” car-
rying flux are emitted from all light sources in the scene
based on the emissive characteristics of each light. As
these photons hit surfaces their information is recorded
in the photon map, storing flux from a specific incoming
direction. Storage of a low-level quanity such as flux as
opposed to irradiance allows for simulation of a greater
range of BRDFs when using the photon map in the ren-
dering stage.

The rendering stage is a modified Monte Carlo ray
tracer. The photon map is used in the rendering stage to
help terminate recursion when simulating global illumina-
tion. The ray tracer accesses the information in the photon
map in order to add lighting from caustics as well as in-
direct diffuse illumination. Other enhancements include
using “shadow photons” to speed up shadow ray calcu-
lations [11], and the use of irradiance caching [36] or ir-
radiance gradients [35] at Lambertian surfaces instead of
standard path tracing.

2.1 Photon Tracing Phase

The photon map is constructed by shooting out a large
number of “photons” (packets of flux) into the scene. When
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a photon hits an object, an algorithm determines the fate of
the photon based on the material properties of the surface.
If the surface is at least partially diffuse then the photon
is inserted into the photon map at the intersection point.
If the surface at the intersection point is completely spec-
ular, then the photon is discarded. In addition, Russian
Roulette, based on the reflective properties of the mate-
rial, is used to determine if a photon is reflected, refracted,
or absorbed. If the photon is not absorbed, the BRDF is
used to determined the new direction for the photon.

For improved range searching speed, the photons are
split up into two photon maps: the global photon map,
and the caustic photon map. If volumetric effects are to
be considered, a third, volume photon map can be con-
structed. For the global photon map, the scene is show-
ered with global photons by shooting photons at each ob-
ject in the scene. When these photons hit a diffuse sur-
face, Russian Roulette determines if the photon will be
reflected, or if it will terminate. If a global photon hits
a diffuse surface and did not come directly from a light
source (it has been reflected diffusely at least once) it is
stored in the global photon map for retrieval in the second
pass.

A much higher density of caustic photons is shot out
at the specular objects (any object that has a non-zero re-
flection or transmission coefficient). Any photon that is
transmitted or reflected onto a diffuse surface is stored
in the caustic photon map. Caustics, as opposed to soft
diffuse illumination, often exhibit very sharp details and
therefore require a very high resolution simulation. Also,
since caustics are very hard to simulate using path tracing,
they are visualized directly with the photon map, which
requires a much higher density of photons for acceptable
results.

If volumetric effects are also considered, a separate
volume photon map should be used for simulating global
illumination effects in participating media. The volume
photon map is also visualized directly; however, the de-
tails in the lighting are softened by the cloudy nature of
the media and therefore the high density used for the caus-
tic photon map is not neccassary here. In order to account
for participating media, each photon that was shot for the
global photon map is ray-marched through the medium,
and deposited in the volume photon map if necessary.

2.2 Rendering Phase

Once the photon maps have been constructed, the second
pass uses a modified Monte Carlo ray tracer to calculate
the surface radiance of the closest object for each pixel on
the screen. This can be solved using the rendering equa-

tion [16, 9]:

Lo(x, ~ω) = Le(x, ~ω)+Lr(x, ~ω) (1)

whereLo is the outgoing radiance from pointx in direction
~ω, and is the sum of the radiance emitted by the surface,
Le, and the radiance reflected by the surface,Lr .

Lr can be described in terms of the local illumination
model, and Equation 1 can be re-written as:

Lo(x, ~ω) = Le(x, ~ω)+
∫
Ω

fr(x, ~ω ′, ~ω)Li(x, ~ω ′)(~ω ·~n)d~ω ′

(2)
where fr is the BRDF of the surface,Li(x, ~ω ′) is the radi-
ance incident on the surface from direction~ω ′, (~ω ·~n) is
the foreshortening term, andΩ represents the hemisphere
of incoming directions.

Le(x, ~ω) is strictly determined by the material proper-
ties at the hitpoint and can therefore be easily calculated
directly. The recursive intergral,Lr , is however much
more difficult to evaluate. It can be beneficial to separate
Lr into several different components, each of which can
be calculated more efficiently seperately, using different
techniques.

Incoming radiance can be split up into a diffuse part,
Lr,d, and a specular component,Lr,s.

Lr = Lr,d +Lr,s (3)

Specular reflections,Lr,s, are highly directional and
can therefore be evaluated efficiently with Monte Carlo
integration using few samples.Lr,d, however, is not highly
directionally localized and would require a large number
of samples to integrate using a strictly Monte Carlo based
method; therefore, a different approach would be more
appropriate. Further examination shows thatLr,d can be
broken down further:

Lr,d = Li,l +Li,c +Li,d (4)

whereLi,l is the light coming directly from light sources,
Li,c are caustics coming directly off of specular surfaces,
andLi,d is soft indirect lighting from multiple diffuse bounces.

Combining Equation 3 and Equation 4 we get:

Lr = Li,l +Li,c +Li,d +Lr,s (5)

Using the fact that an integral of a sum is the sum of

3



S

S

C C

C

D

D

D

D

I

C

I

I

Figure 1: Various photon paths with resulting photon types. Caustic photons (C) occur after a specular bounce directly
after being emitted from the light source. Direct photons (D) are deposited at diffuse surfaces on paths directly from
the light source. Indirect photons (I) are stored after more than one diffuse bounce. Shadow photons (S) are stored at
all intersections past the first along the initial photon path.

the integrals, we can therefore write this as:

Lr =
∫
Ω

fr(x, ~ω ′, ~ω)Li,l (x, ~ω ′)(~ω ·~n)d~ω ′+

∫
Ω

fr,d(x, ~ω ′, ~ω)Li,c(x, ~ω ′)(~ω ·~n)d~ω ′+

∫
Ω

fr,d(x, ~ω ′, ~ω)Li,d(x, ~ω ′)(~ω ·~n)d~ω ′+

∫
Ω

fr,s(x, ~ω ′, ~ω)(Li,c(x, ~ω ′)+Li,d(x, ~ω ′))(~ω ·~n)d~ω ′

(6)

where the first component represents contribution from di-
rect illumination, the second term simulates reflective and
refractive caustics, the third term contributes illumination
from multiple diffuse bounces, and the last term simulates
specular and glossy reflections.

This requires the BRDF to be split into two parts:

fr = fr,d + fr,s (7)

where fr,d represents all reflection directions from Lam-
bertian to slightly glossy, andfr,s incorporates slightly
glossy to perfectly specular reflections.

2.2.1 Direct Illumination

The first part of Equation 6 is the local illumination. Many
methods have been developed which handle this case fairly
efficiently [23, 32, 38, 31]. Most of these methods rely on
sending out a number of shadow rays towards points on
each light in order to calculate visibility. Sending shadow
rays to each light can become expensive if the number of
lights in a scene is large. Various optimization techniques
have been developed to handle these cases [34, 23]. In
addition, it is possible to use the shadow photon informa-
tion within the global photon map to optimize shadow ray
calculations [11].

2.2.2 Caustics

With earlier approaches, caustics have been a very hard
effect to simulate. Path tracing almost always fails except
in some contrived scenes, so a Monte Carlo method does
not seem optimal. Caustics can be much better handled
with methods which start at the light and move out into the
scene, as opposed to trying to find paths back to the lights
from locations the eye sees. The information we gathered
from our photon mapping simulation in the first phase is
ideal for visualizing these effects; therefore, we calculate
caustics by directly visualizing the caustic photon map.
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2.2.3 Indirect Diffuse Illumination

The third part of Equation 6 is indirect diffuse illumi-
nation. This illumination has bounced off of a diffuse
surface at least once already, and therefore changes very
slowly. This component is calculated indirectly by per-
forming a “final gather” on the photon map. This involves
performing a path tracing like step where many rays are
shot out from a query point to probe the radiance in the
whole scene. In regular path tracing, those rays would
in turn spawn more rays. However, with the photon map
available, we can eliminate this recursion by looking up
directly in the global photon map for the final gather rays.
At completely Lambertian surface, a significant optimiza-
tion can be made by utilizing irradiance caching [36] or
irradiance gradients [35]. These schemes too would ter-
minate recursion by looking up in the global photon map.

2.2.4 Specular Reflections

The last term in Equation 6 represents highly specular re-
flections. For this illumination, the BRDF is very local-
ized, and Monte Carlo sampling works very well.

2.3 The Radiance Estimate

The photon map can be used to estimate the radiance leav-
ing a point in a particular direction. The components,
from Equation 6, which the radiance estimate will include
depends on which photon map is used and what type of
photons were inserted into the photon map. Each photon
represents the amount of flux∆Φp coming in from a par-
ticular direction; therefore, we can integrate many pho-
tons over all directions using a BRDF to get the outgoing
radiance.

Figure 2: The radiance estimate is evaluated by locating
then nearest photons in the photon map using an encom-
passing sphere in range searching. The density of the pho-
tons is based on the area of the circle formed by the inter-
section of the sphere with the locally flat surface.

The radiance,Lr , for which we are trying to solve can

be expressed as:

Lr(x, ~ω) =
∫
Ω

fr(x, ~ω ′, ~ω)Li(x, ~ω ′)(~ω ·~n)d~ω ′ (8)

In order to approximate theLr using the photon map,
we will consider theM closest photons tox. These pho-
tons can be acquired using an efficient range searching al-
gorithm which locates photons within a specified bound-
ing volume. As long as many photons are used, and the
local density of the photons atx is high, this should yield
a reasonable approximation. We can rewrite Equation 8 in
terms of flux, which can be approximated using the pho-
ton map:

Lr(x, ~ω) =
∫
Ω

fr(x, ~ω ′, ~ω)
d2Φi(x, ~ω ′)

dAi

≈
M

∑
p=1

fr(x, ~ωp, ~ω)
∆Φp(x, ~ωp)

πr2

(9)

wherer is the radius of the sphere which is expanded to
contain theM photons.

The above technique uses a box filter, which gives the
same amount of weight to all photons within the gathered
sphere. In order to reduce blurring, a more advanced ker-
nel can be used. In these cases, each photon would have a
weight based on its distance from the query point, and the
area by which the sum is divided would change based on
the kernel. Some common kernels are discussed in [9].

2.4 Storing Photons

Since the photon map could possibly contain millions of
photons which must be searched, two major concerns arise.
The representation must be compact so that memory us-
age is reasonable, and the photons must be kept in some
sort of structure which allows for fast range searches.

2.4.1 Photon Structure

In this context, photons represent flux hitting a sur-
face from a given direction. This indicates that we need
to store the energy (color) of the photon, the worldspace
location of the photon, and its incoming direction. We
can also add in an extra flag variable which will distin-
guish between global and caustic photons. All these val-
ues could be represented as floats; however, some of these
do not need this precision. The power of the photon must
be a high dynamic range color value since it is trying to
simulate real world intensity values. In order to compact
this, we can use Greg Ward’s Real Pixels [33] format and
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1 class Photon
2 {
3 char power[4]; // Power of the photon.
4 float pos[3]; // Position of the photon.
5 unsigned char theta, phi; // Incoming direction.
6 char flags; // Some extra flags.
7 }

Figure 3: A photon structure occupying only 19 bytes of memory.

pack the power into four bytes. Since the incoming direc-
tion also does not need to be very exact; it can be stored
in longitude/latitude as only two bytes. Precision in the
location of the photons cannot be sacrificed however, so
this must remain represented as a vector of three floats.
The resulting structure is shown in Figure 3. With this
structure, each photon will only take up 19 bytes.

2.4.2 Balanced Kd-Tree

Photons are stored in a balanced kd-tree because of its fast
range search capabilities [9, 7, 12]. Since we know the to-
tal number of photons we wish to store in the photon map
in advance, we can create a static array which will rep-
resent the kd-tree. This heap-like structure eliminates the
need to store extra child pointers, reducing the memory
requirements for the photons by over 40%.

Initially, the collection of photons is kept as a flat, un-
structured array. As photons are shot, they are simply in-
serted into the array sequentially. This keeps the photon
shooting phase very quick. Once the photon map is full,
the unstructured array is reorderd to correctly represent a
kd-tree.

A proper heuristic must be determined to uniquely de-
fine a balanced binary tree as a flat array. One such order-
ing is a heap structure; however, we developed a modified
representation in which the array is simply a flattened ver-
sion of the original tree. This is equivalent to an inorder
traversal of the tree. Figure 4 shows an example array for
a binary tree using this encoding technique.

The flat array must be rearranged to fit this ordering.
At each step in the algorithm, we must find the median
photon – this is the root of the (sub)tree. We then partition
the photons into two sets – all photons with a location
less than or equal to the median, and all photons with a
location greater than the median. This algorithm is then
repeated on each of these subsets individually.

Thepartition_list algorithm in Figure 5 needs
to find the median element and partition the list about this
element. A perfect implementation of this sort of algo-
rithm isnth_element found in the STL [15].nth_element

-23

-7

-2

3

6

32

61

76

77

91

(a)

-23 -7 -2 3 6 32 61 76 77 91

(b)

Figure 4: An example one-dimensional left-balanced kd-
tree. (a) shows the tree representation, while (b) shows the
flattened encoding of the tree. The whole tree is flattened
vertically, with the root being the median element. It is
interesting to note that in the one-dimensional case, the
flattened tree is the sorted list of elements.

is linear in time complexity, making the overall time com-
plexity of BuildTree O(nlgn).

In order to expand this algorithm to more than one
dimension, we need to partition the photon list about all
three dimensions during our building process. One method
of doing this is to split each node about alternating axes
based on depth: the root node about the x-axis, nodes at
the second level about the y-axis, nodes in the third level
about the z-axis, and so on. Though this would correctly
create a balanced kd-tree of three dimensions, it is not
the optimal strategy. This method may split along an axis
which is very small already, while splitting along an axis
with a wider range would more quickly narrow a range
search. A better technique would be to split about the axis
with the greatest extent. This would partition the space
more uniformily and can be done by maintaining a bound-
ing box for the photons while balancing. Since there is no
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1 BuildTree (lo, hi)
2 {
3 partition_list (from index lo to index hi);
4

5 // the root of this tree is now the median
6 // element, everything to the left of the median
7 // is the unordered left subtree, and everything
8 // to the right the unordered right subtree.
9

10 median_index = lo + (hi-lo)/2;
11

12 // Repeat on both subtrees
13 BuildTree (lo, median_index - 1);
14 BuildTree (median_index + 1, hi);
15 }

Figure 5: The algorithm which turns the unstructured array into a balanced kd-tree representation.

explicit formula for the splitting dimension of a node any-
more, the splitting-plane axis needs to be stored with each
photon. This can be easily accomodated by using a few
bits of theflags member.

2.5 Range Searching

The range search is performed at every pixel, and in the
case of final gather for the global photon map, many times
per pixel; therefore, it plays a key roll in the efficiency
of the photon mapping algorithm and must be optimized
extensively in order to attain the shortest render times.

The BuildTree algortihm in the previous section
creates a balanced tree from the photons. The balanced
tree can guarantee an efficientO(M · lgN) search time for
M photons within a tree containingN photons total. If the
tree were heavily skewed, however, then the search time
could be significantly longer.

Range searching is performed in a recursive algorithm.
First, a searching radius is determined. Once this is done,
each step looks at the root of the current (sub)tree and de-
termines if that photon is within the search radius. If it
is, then the photon is accepted; otherwise, it is rejected.
The algorithm then determines if the search radius inter-
sects the bounding boxes of the left or right subtrees. If
a subtree potentially intersects the search range then the
procedure is repeated on it.

As it is searching, the algorithm keeps a found-heap
of already located photons. The user specifies how many
photons each search should locate, and the heap is fixed
to that size. As the found-heap fills up, the furthest pho-
ton is kept at the head of the heap. Once the heap is
full, we have found our desired number of photons. How-
ever, the found-heap could fill up before we have consid-
ered all of the photons in the photon map, and we would

therefore retrieve photons that are not closest to the query
point. Therefore, once the found-heap is full, we test each
photon searched against the head of the found-heap. If
the photon is closer to the query point than the head is,
the head is removed from the found-heap and the cur-
rent photon is added in its place. Figure 6 outlines the
rangeSearch procedure that could be used for a one-
dimensional kd-tree. The algorithm can easily scale to
arbitrary dimensions. In order to expand the search algo-
rithm for three-dimensional kd-trees,range needs to be
modified to represent the one-dimensional distance on the
axis specified by the photon’s splitting plane.

2.6 Shooting Photons

A common area for error is in the implementation of the
photon shooting algorithm. Since the final rendered image
will be combining lighting from two completely different
methods (ray traced direct lighting, illumination gathered
from the photon maps), it is very important that the pho-
tons are shot with the proper power distribution, and in
the proper directional distribution. In order to match the
output produced with standard ray traced lights, we will
assume that they are implemented to adhere to physical
laws such as inverse squared falloff. If this is not the case,
the photon shooting algorithms will need to be appropri-
ately modified in order for the two methods to match.

In order to preserve the power distribution of the lights
in the scene, photons should be shot with probability based
on the brightness of the lightsource – more photons should
be shot out from brighter light sources than from dimmer
ones. This should be used, whenever possible, instead of
scaling the power of each light’s photon energy because it
creates photons with simular intensities, providing better
results when averaging during the radiance estimate [9].
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1 void rangeSearch(ctr, rr, nphotons, heap, lo, hi)
2 {
3 if (hi-lo >= 0)
4 {
5 median = (lo+hi)/2;
6 dist = distance form this photon to ctr;
7

8 if (dist < rr)
9 {

10 if (found_heap isn’t full)
11 add this photon to the found-heap
12 else
13 remove the heap of the found-heap, and
14 add this photon to the found-heap
15 }
16

17 range = 1D distance from ctr to this photon;
18

19 // range only crosses one side
20 if (range > rr)
21 {
22 if (range <= 0)
23 rangeSearch left subtree
24 else
25 rangeSearch right subtree
26 }
27

28 // range crosses both sides, search both sides
29 else
30 rangeSearch left and right subtrees
31 }
32 }

Figure 6: The range searching algorithm.

2.6.1 Point Lights

Though they are completely non-physical, point lights are
perhaps the most commonly and easily implemented light
sources. Point lights emit light equally in all directions;
hence, the photon shooting algorithm will shoot photons
out in all directions with equal probability. We present
two techniques which can be used to generate these out-
going directions.

The first method employes simple rejection sampling
of points generated within a unit cube. Only points which
are also within the unit sphere are accepted, and must then
be normalized for use as a direction vector. Since the dif-
ference in volume of a unit cube and a unit sphere is small,
a large percentage of sample are accepted. This allows
for the rejection sampling method to perform efficiently.
Pseudo-code which achieves this is presented in Figure 7.

An alternate approach is to transform two uniform ran-
dom variables into polar space such that they are unifor-
mally distributed on the surface of a unit sphere. The
following transformation can be used to generate random

points on the surface of a unit sphere:

θ = arccos(1−2r1)
φ = 2πr2

(10)

wherer1 andr2 are two uniform random variables, and (θ ,
φ ) are the polar coordinates of a point on the sphere [21].
Using this method, no rejection sampling needs to be per-
formed – all generated samples are valid. However, our
tests have shown that rejection sampling tends to be more
efficient in this case because a large portion of samples
are accepted, and there is no need to call trigonometric
functions.

2.6.2 Spot Lights

Spot lights limit the emited light to a user specified cone:
let us call this angleα. In order to shoot photons out in
this distribution, we could use rejection sampling like with
the point light; however, this could be very inefficient for
smallα. Instead, the second method for generating points
on a unit sphere, expressed in Equation 10, can be used
while limiting the range ofr2 to [0,α/2π]. This point
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1 point pointLightDirection()
2 {
3 point d;
4 do
5 {
6 d = point(random(),random(),random());
7

8 } while(d.length() > 1.0);
9

10 return d;
11 }

Figure 7: Rejection sampling algorithm which calculates uniformly distributed random points on a unit sphere.

must then be converted to the polar space defined by the
spot light, which can be done using an ortho-normal ba-
sis constructed from the vector defining the direction of
the spot light. See Section (4.2) and Figure 11 for more
details about constructing ortho-normal bases.

2.6.3 Area Lights

True light sources are not infinitesimally small but have
a finite area. Adding area to the light sources slightly in-
creases the complexity of the photon shooting algorithm.
In order to shoot photons out from area light sources, not
only do we need to choose a correct outgoing direction
according to the light’s emission characteristics, but we
must first choose a random location on the light’s surface
as the photon origin. Methods have been developed which
generate random points on commonly used 2D and 3D ge-
ometry [21].

In order to choose a pointv uniformally distributed on
the surface of a triangular luminaire, the following trans-
formation can be applied to two uniform random variables
r1 andr2:

v = v0 +s(v1−v0)+ t(v2−v0) (11)

where

s= 1−
√

1− r1

t = (1−s)r2

andv0, v1, andv2 are the vertices of the triangle.
In the real world, lights are often covered with shades

used to diffuse the harshness of the outgoing light. A com-
mon shape of such shades can be simulated as a spherical
light source. In order to simulate spherical lights, the out-
going directions and origins of photons can be calculated
using the two methods discussed for point lights in Sec-
tion (2.6.1).

Disks can also be used as a shape for light sources.
Generation of points on the surface of a disk can be ac-
complished using the concentric map [22]. The transla-
tion for the first region of the map is:

r = r1R

θ =
π

4
r2

r1

(12)

where (r,θ ) are the polar coordinates of a point on a disk
with radiusR. Equations for the other regions of the map
have simular formulations [22].

3 Interactive Photon Mapping

3.1 Speed Issues In Photon Mapping

Though photon mapping is currently one of the fastest
methods for computing complex global illumination, in
its standard implementation it does not perform at interac-
tive rates. In order to attain the goal of interactive photon
mapping, it is important to pinpoint the performance bot-
tlenecks in traditional photon mapping. Once these areas
are identified, they can be modified in order to perform
more quickly, either by using a better algorithm, or by
trading accuracy for performance.

3.1.1 Balancing

Both our balancing algorithm and the one developed by
Jensen operate inO(nlgn) [10]. When included in a Monte
Carlo ray tracer, which in itself is a very time consuming
algorithm, the time needed to balance the photon map is
neglegible. Table 1 shows that balancing 100,000 pho-
tons takes less than a second on a Pentium II 400 MHz
machine, which is equivalent to about 1% of the total ren-
der time. Interactive rates suggest that a full image must
be displayed about ten times per second. Waiting a few
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second to balance a million photons before they are even
displayed on the screen is therefore unacceptable. How-
ever, these statistics show that other portions of the photon
mapping algorithm should also be investigated for speed
benefits.

3.1.2 Range Searching

Ranging searching is performed at least once per rendered
pixel. In our test scene, the range searching accounted for
about 52% of the total render time for images with caus-
tics alone. For images which simulate diffuse indirect il-
lumination, the range search is performed numerous times
per pixel during final gather, so the total time performing
range searches increases. However, the total render time
also significantly increases due to the cost of shooting rays
in the final gather step. We employ an optimization tech-
nique which precalculates irradiance values in the global
photon map [4]. Using this optimization, in scenes with
diffuse indirect illumination calculated using a final gather
on the global photon map, range searches take about 47%
of total rendering time. Range searching is certainly an
ideal candidate for optimization within the standard pho-
ton mapping algorithm.

3.1.3 Ray Tracing

The Monte Carlo ray tracing stage of the photon mapping
pipeline is certainly not interactive. Using a full Monte
Carlo simulation, a rendered image could take minutes, or
even hours, whereas a simplified rendering of the scene
could be generated using a less flexible method on con-
sumer level graphics hardware in real-time.

3.2 Modifying the Photon Mapping Method

One of the goals is to be able to implement an interactive
form of photon mapping in the workflow of already exis-
tent animation packages. For this to be useful, the method
must firstly be fast enough to preview global illumination
interactively, providing the animator or lighting designer
with real-time feedback for lighting changes. It would
also be advantageous for the method to be simple enough
for easy incorporation into current software. Lastly, for
the preview to be useful in eliminating test renders, it must
have a high corrleation with the final look of the rendered
image.

The ray tracing stage of the photon mapping method
can certainly be replaced by a Z-buffer render in hardware
using a graphics API such as OpenGL. Such implemen-
tations already exist for previewing local illumination in

commercial packages. However, in eliminating ray trac-
ing, and moving from software into hardware, a great deal
of flexibility is lost and the challenge becomes incorporat-
ing the photon mapping simulation into a fixed graphics
pipeline.

Two methods come to mind for integrating the photon
map into an OpenGL environment. The first method is a
direct implementation of Jim Arvo’s backward ray trac-
ing [2] using hardware texturing capabilities. The second
method involves representing each individual photon in
the photon map as a geometric entity which can be ren-
dered in hardware. The two methods would still imple-
ment the photon shooting phase of conventional photon
mapping in software, but would represent those photons
differently in the hardware accelerated rendering pass.

3.2.1 Backwards Ray Tracing

In backwards ray tracing, or light tracing, light rays are
shot out into the scene in a manner virtually identical to
photon mapping. The distinguishing characteristic of the
backward ray tracing method is the way in which these
photon hits are stored for later retrieval.

As rays of light are bounced around in the scene, en-
ergy packets are stored in textures on each diffusely re-
flecting surface. When a light ray hits a diffuse surface,
instead of inserting a photon into the photon map, a small
packet of energy is added to the corresponding pixel of
the surface’s illumination map. This method requires that
all surfaces have pre-generated texture parametrazations
for the mapping of the illumination map onto the object.
Using the same function that looks up texture values for
locations in worldspace, we can calculate into which pix-
els to add energy. Arvo performed bilinear interpolation
and distributed the ray’s energy into the four neighboring
pixels of the hitpoint.

One drawback to this method is that the resolution of
the illumination map must be chosen carefully to corre-
spond with the amount of photons which are shot out. If
few photons are shot out, the result will look “speckly.” In
order to alleviate this problem, a modified approach can
be taken.

Instead of, or in addition to, distributing the light en-
ergy into four neighboring pixels, once the light tracing
stage is complete, the whole illumination map can be blurred.
This step can be performed efficiently inO(n ·m) where
n is the radius of the blurring kernel, andm is the size of
the illumination map [6]. Further speed improvement can
be realized by using SIMD instructions on most modern
CPUs. The blurring will spread each photon’s influence
over a larger area, simulating an effect comparable to the
radiance estimate in photon mapping. The blur radius can
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Final Gather Cautics Photons Global Photons Range search Total
Count Tracing Balancing Count Tracing Balancing

a OFF 0 0 sec 0 sec 0 0 sec 0 sec 0 sec 16.15 sec
b ON 0 0 sec 0 sec 0 0 sec 0 sec 0 sec 115 sec
c OFF 100,000 11.796 sec 0.632 sec 0 0 sec 0 sec 31.4 sec 60 sec
d ON 100,000 11.575 sec 0.673 sec 50,000 2.527 sec 0.342 sec 114.4 sec 244.5 sec

Table 1: Render time statistics for a conventional photon mapping implementation on a Cornell box scene with various
global illumination settings: standard local illumination ray tracing (a); Monte Carlo ray tracing with a final gather
performed using an irradiance cache (b); ray tracing plus the caustic photon map (c); and (d), full global illumination
simulation with final gather, global photon map, and caustic photon map.

be increased as the photon search radius is increased in
the actual renderer, maintaining a loose correspondence
between the final results.

By using an illumination map, and completely elimi-
nating the three-dimensional photon map, the costly range
searching and balancing can be completely avoided. The
illumination maps can simply be rendered on top of each
diffuse surface in the same way as normal texture maps.
However, the replacement of the photon map with a two-
dimensional texture introduces some new problems. Firstly,
the nature of the algorithm ties the illumination to the ge-
ometric representation of the scene, a quality which was
specifically avoided with the conventional photon map-
ping method. Specifically, each geometric entity needs to
be polygonized and parameterized. Objects represented as
implicit surfaces or fractals must be converted to polygo-
nal representations, which can often be hard to achieve.
However, since this method is being integrated into al-
ready existing animation packages, we can assume that
all objects which the renderer supports are also supported
in the real-time workflow. Another drawback stems from
the fact that different techniques are being used for the fi-
nal render and the interactive preview. With such differing
display techniques, it can be difficult to make the preview
correspond highly to the final rendered image.

3.2.2 Photon Splatting

The second method works with the photon map represen-
tation more directly. If a very rough idea of what the
global illumination looks like is sufficient, then each pho-
ton can simply be rendered to the screen as a point. This
would give a result simular to Figure 9b. From this image
it is clear where the concentrations of photons reside and
is especially good at depicting the location and general
shape of caustics. Sinceeachphoton is non-discriminately
drawn to the screen, the structure of the kd-tree is no
longer required. This allows us to store the photons in a
completely unstructured array, eliminating the balancing
costs and, more importantly, the cost of range searching.

In addition, since we are no longer performing a radiance
estimate over the hemisphere of directions, the incoming
direction of the photon is no longer needed, reducing the
memory costs of the realtime photon map to 17 bytes.

Using non-physical geometry such as points to ren-
der the photons prevents us from being able to accurately
specify the intensity of the photons. If more accuracy is
needed in the intensity of global illumination effects, then
a different approach can be taken. Instead of using points,
we can use worldspace geometry to display our photons.
This will allow for proper calculation of photon intensity,
and should correspond to the final rendered image much
more closely.

First we note that Equation 9 using a fixed width search
radiusr, corresponds exactly to splatting each photon onto
the framebuffer as a disc of radiusr. If a weighting func-
tion is used in the radiance estimate, we can replace each
simple disc, with a textured disc. The texture would con-
tain a greyscale raster representation of the weighting ker-
nel. Each photon disc can be drawn to the screen as a tex-
tured quad; however, a quad is generally rendered to the
screen as two triangles. For increased performance one
triangle can just as easily be used to represent the photon
splats, making the triangle cost per photon 1 to 1.

Stürzlinger,et al. point out that glossy BRDFs can be
simulated using this method if the incoming direction is
stored in the photon [25]. The intensity of each photon
splat can be modulated by the evaluation of a Phong-like
glossy BRDF based on the surface normal, the viewing
angle, and photon’s incoming direction. This allows for
caustics and soft indirect illumination on non-lambertian,
semi-glossy surfaces.

4 Implementation

Because of the requirement to parameterize all geome-
try in the scene using a backwards ray tracing approach,
and the increased flexability and accuracy of using photon
splatting, we decided to implement the photon splatting
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method.

4.1 Photon Tracing Phase

In order for the technique to produce interactive feedback,
not only does the cost of the render pass in photon map-
ping need to be improved, but the cost of casting out pho-
tons must also be kept to a minimum. For scenes with only
a few simple objects, tracing a million rays can be done
fairly efficiently. However, for more complex scenes with
thousands or millions of triangles this operation becomes
prohibitive without any optimization techniques.

4.1.1 Projection Maps

One optimization which is performed for caustic photons
is restricting the outgoing directions of the photons from
the light towards only specular objects. Since caustics can
only be formed if a photon first encounters a specular sur-
face, and subsequently get deposited at a diffuse object,
this restriction should improve performance while main-
taining the accuracy of the simulation.

One way of implementing this would be to create raster
projection maps at each light source [9]. A bounding
sphere representation of each specular object could then
be rasterized in the projection maps using ray tracing or
scan conversion. Any pixel which a bounding sphere projects
to would be white, and all other pixels would be black.
This provides a conservative estimate to the directions in
which the photons must be distributed. The photon shoot-
ing algorithm must then be appropriately modified to only
shoot photons in directions represented by white pixels
in the projection maps [9]. Care must be taken to pre-
serve the proper probability distribution of photons emit-
ted from each light source.

Another method can be implemented which avoids the
need for storing a raster in each light [17]. Instead of ras-
terizing the projection of bounding spheres onto the light,
this information can be kept as a few geometric constants
from which the cone of directions can be accurately re-
constructed. For explanatory purposes assume that the
light source is a point or spot light. Generalizations to
this assumption will be derived later. In order to conser-
vatively shoot photons at specular objects, photons should
be emitted within the cone defined by the light location
and the radius of the bounding sphere. Geometric rela-
tionships of these structures are shown in Figure 8. If cal-
culation and retrieval of the bounding sphere for objects
is efficient, this cone of directions can be calculated di-
rectly for each photon emitted. However, if the bounding
sphere algorithms are not cached, and therefore the oper-
ation takes considerably more time, these values should

R R
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r
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Figure 8: Determining the cone within which to emit pho-
tons for (a), point light sources and (b), area light sources.
The radius for the bounding sphere of the light must be
added to the bounding sphere of the object in order to
achieve a conservative estimate for the cone of directions.

be stored at each light for each specular object. In or-
der to reconstruct the cone, a vector towards the center
of the bounding sphere should be stored, along with a
apex angle. For area light sources, the cone of directions
can be similarly calculated; however, different locations
on the light source would produce different valid ranges
for directions. In order to account for the different cones
of directions, a single cone, which encloses any possible
valid outgoing direction can be constructed. It is suffi-
cient to simply add the radius of the bounding sphere of
the light to the bounding sphere of the object and use this
new bounding sphere for the projection [10]. This creates
a conservative bound for outgoing directions for photons
emanating from any location on the area light source.

The bounding sphere construction of the cone of di-
rections provides an excellent analytic alternative to the
rasterized projection maps; however, care must be taken
to avoid errors in the simulation if this method is em-
ployed. Figure 10 shows a situation which would produce
inaccurate results if a naı̈ve implementation of this tech-
nique is used. Regions 1 and 3 would recieve the proper
amount of photons; however, region 2 falls into the cone
of directions of both objects, and therefore would recieve
twice as many photons. Photons shot towards either object
would contribute to the caustic illumination within that
region, thereby producing an inaccurately high probabil-
ity of photons. We developed a simple test which can be
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(a) (b) (c)

(d) (e)

Figure 9: Rendering comparison of caustics using a conventional Monte Carlo photon mapping approach, (a) & (d);
our interactive photon mapping method using points, (b); and interactive photon mapping using textured triangles, (c)
& (e). The area light sources are approximated for local illumination in OpenGL as single point lights. This, along
with the use of Gouraud interpolation for shading explains all the major differences in the local illumination of the
images. The global illumination however maintains a high level of correspondence between the interactive previews
and the full renderings.

1 2 3

Figure 10: An example scene which would cause inaccu-
rate results in a naı̈ve implementation of the cone of di-
rections. Region 2 would recieve twice as many photons
as regions 1 and 3.

administered in order to circumvent this problem. When
a caustic photon is sent out from a light towards a spe-
cific specular object, Objectc, the first hit along the path
of the photon must be Objectc in order for the photon to
be valid. If the photon encounters any other object before
it hits Objectc, the photon should terminate. This ensures
the proper power distribution in all three regions.

4.1.2 Spatial Subdivision

Another important optimization which should be imple-
mented for use in complex scenes is some form of spa-
tial subdivision. Various methods have been proposed for
the way in which space is discritized, including BSP trees
[26], octrees [20], and uniform grids [22]. The method
chosen for our implementation uses octrees and a para-
metric approach to ray traversal of the tree.

The first step in a spatial subdivision scheme is to di-
vide the scene into discrete cells. For grids and octrees,
the bounding box of each object is calculated, and the ob-
ject is added to any cell which overlaps with this bounding
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volume. This creates a conservative estimate for which
cells each object occupies. A three-dimensional version
of a scan converter could be implemented instead to pro-
vide a tighter estimate; however, the overhead in such a
technique may outweight its marginal benefits [22]. Once
the data structure has been created, ray tracing proceeds
by traversing the structure along each ray. Our method im-
plements a parameteric ray traversal algorithm described
in [20].

4.1.3 Frame Coherent Photons

Another important issue when shooting photons for in-
teractive use is frame coherence. A distracting artifact
present in the standard implementation of photon map-
ping is caused by the fact that each frame is independent
of the other. Photons shot from lights in one frame will
have the same overall distribution as the photons in the
next frame, but each individual photon is emitted within
this distribution randomly. In animations, and also in in-
teractive light and object manipulations, this causes a dis-
tracting flickering appearance. In order to alleviate this, a
trick can be utilized which will produce inter-frame coher-
ence [14]. When shooting out photons from the lights, the
pseudo-random number generator responsible for choos-
ing reflection directions for photons is seeded with the
photon’s number. This way, the random number sequence
for each individual photon will remain constant from frame
to frame.

4.1.4 Progressive Refinement

Generating a photon map of a million photons takes a mat-
ter of a few seconds on a Pentium II 400 MHz machine;
however, waiting a few seconds does not allow for an in-
teractive preview. The user should be able to move lights
and objects and interactively see the effects these actions
have on global illumination. To allow for interactive use,
a simple progressive refinement technique can be used to
incrementally increase the quality of the global illumina-
tion simulation over time.

This technique requires the implementation of an idle
function which continually shoots out photons into the
scene and stores them in the photon maps. For systems
with multiple processors it may be advantageous to re-
place the idle function with an idle thread. Our test sys-
tem only had one CPU, so multi-threading was not imple-
mented. Another function continually updates the OpenGL
screen if any change is made. If the camera is moved the
photon simulation proceeds as normal, since the effects
are view-independent. The photon splatting method sup-
ports view-dependent glossy BRDFs; however, the pho-

tons are stored with their incoming direction, which al-
lows us to change the viewpoint without having to shoot
out the photons from scratch. If an object or light is moved,
the photon maps must be cleared, and the simulation starts
over. This produces an effect that accumulates accuracy
when the scene is static, but also provides a quick, refining
view during light and object manipulations.

In our implementation, photons are shot for a quan-
tum of time, τ, after which the results are displayed to
the screen. The parameter,τ, controls the responsiveness
of the interactive progressive refinement method. Choos-
ing a small value forτ would produce more frequent up-
dates to the screen, and a more fluid responsiveness of
the system. However, updating the screen often while
shooting photons can increase the time needed to acquire
a high quality preview; therefore an appropriate value of
τ should be chosen to properly compromize between the
responsiveness to user input and the speed of the simula-
tion. In our tests, values ofτ between 0.1–0.5 seconds
produced acceptable results.

4.2 Photon Splatting Phase

Once a photon mapping framework is implemented,
modifying it to use this method is straightforward. After
all other geometry is rendered to the screen using OpenGL,
a new render() function of the photon map class is
called which iterates through the photon array and spits
out aglPoint (for the rough preview) or aglTriangle
(for the accurate preview) at the location of each photon
[37]. Each photon’s location is precisely on a surface,
which can cause flickering due to numerical imprecision
in the Z-buffer. Therefore, a small offset towards the cam-
era should be added to each photon in order to reduce nu-
merical error. In OpenGL, this can be accomplished using
theglOffset command [37].

Though the location and shape of the photon map is
represented very well using points, since we are using
the location of each photon directly, the intensity of the
global illumination effects are more difficult to display
correctly. In OpenGL, aglPoint does not have a speci-
fiable worldspace size [37]. Instead, all points are ren-
dered to the screen with the same screenspace dimensions,
no matter how far or close to the camera they are. This
can make choosing the correct color for each photon very
difficult. The photon’s intensity should coorespond to its
displayed radius in worldspace. If a photon is shown as a
point of radius 1 in worldspace, its intensity should be di-
vided by the area of the point,π. Determining the worldspace
dimensions of an arbitrary two-dimensionalglPoint can
be complicated and unnecessary.
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1 void orthoBasis(vector3d N, vector3d X, vector3d Y)
2 {
3 min_index = index of smallest component of N;
4

5 if (min_index = 0)
6 X = vector3d(0,-N[2],N[1]);
7

8 else if (min_index == 1)
9 X = vector3d(-N[2],0,N[0]);

10

11 else if (min_index == 2)
12 X = vector3d(-N[1],N[0],0);
13

14 Y = cross(X,N);
15

16 normalize(X);
17 normalize(Y);
18 }

Figure 11: Numerically stable algorithm which generates an orthogonal basis constained such that one axis is the
vector N.

Using textured triangles to represent photons automat-
ically provides proper perspective effects for the splats. In
addition, the intensity of each splat can be directly com-
puted to match a radiance estimate, providing a much closer
correspondence to the final output. Using a box filter, each
photon’s power would need to be divided by the area of
the kernel disc. When more complex filters are used, the
power needs to also be divided by a constant determined
from the kernel:

colorp =
∆Φp

C ·πr2 (13)

whereC is the average weight in the rasterized kernel.
Each photon splat is drawn at its hitpoint oriented us-

ing a ortho-normal basis derived from the photon’s nor-
mal vector. This requires each photon to store the normal
vector at the location of the surface to which it belongs.
This information can be encoded in the photon structure
in the same way as the incoming direction; or, if glossy
effects are not desired, it could be stored instead of the
incoming direction. An ortho-normal basis can be created
from a single vector by generating a random vector and
taking the cross product. Generating numerous random
numbers just to create a basis is highly inefficient, and in
fact numerically unstable. Another option would be to use
Gram–Schmidt orthogonalization [1]. We instead devel-
oped our own technique for this process, pseudo-code for
which is presented in Figure 11.

Using simple geometry, an equilateral triangle is then
constructed in the plane perpendicular to the normal vec-
tor (defined by the vectorsX andY). The triangle is scaled
to enscribe a circle with radius equal to the radiance es-

photon hit pointkernel support

texture support

triangle splat

Y

X

(0, 2r)

{ r

Figure 12: The geometric relationship between the ortho-
normal basis, the triangle splat, and the texture.

timate’s search radius. A precomputed kernel texture is
applied to the triangle such that the support area of the
kernel fits exactly into the triangle. The kernel texture is
used as a transparency map over the triangle, fading out
the calculated triangle intensity from Equation 13.

5 Results and Discussion

The described algorithm was implemented on a 400 MHz
Pentium II machine running Windows and Red Hat Linux
with an NVidia GeForce 256 graphics card. Our progres-
sive refinement method allowed for an almost instanta-
nious low-quality preview, while a higher quality image
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could be realized within a matter of a few seconds. The
graphics hardware portion of the algorithm is fill limited
due to the enormous amount of textured triangles which
are generated per frame. Ray tracing the photons was also
a major bottleneck.

5.1 Numerical Imprecision

Throughout development, we encountered problems due
to the limited color precision in OpenGL provided by the
graphics card. The problem involved the use of thousands
or even millions of photons, which combined add signif-
icant brightness to the scene, but individually are all very
low in intensity. This created noticeable precision errors.
In fact, without any modification, once a certain amount
of photons was shot, none of the photons would display
onscreen. This is due to the fact that each photon’s power
is divided by the total number of photons shot out from a
particular light source. Once this number becomes very
large, numerical imprecision rounds the overall power of
the photon to 0. As more hardware starts supporting full
floating-point precision colors, as is the current trend, this
problem should disappear completely. However, in order
to eliminate this problem using currently available hard-
ware, two methods were tested.

The first method was inspired by error diffusion in
digital imaging [28]. Since each photon’s power will be
rounded to a discrete intensity value, each one introduces
some error to the final output. Some values will increase
the overall power, while others will decrease it. In order
to maintain a correct overall average intensity, we can add
the round-off error from the currently rasterized photon to
the subsequent photon. This eliminated the problem of the
photon map completely disappearing once a large number
of photons have been shot. However, at the point where
the photon map would completely disappear, no further
detail was added to the rendered image by using error dif-
fusion, only noise. Any additional photons are essentially
useless, and just add to the total render time of the frame.

The second method was based on the observation that
adding noise may prevent the photon map from disappear-
ing, but it does not add any detail. Instead, a counter
keeps track of how much error is introduced during each
frame refresh. As the number of photons grow larger, this
error counter should decrease, since many photons will
start losing energy during round-off. The photon shooting
algorithm is stopped if the value of the counter reaches
some empirically determined value. When chosen cor-
rectly, this prevents the photon map from disappearing
due to numerical imprecision.

5.2 Photon “Haze”

When using the triangle splatting method, photons are
drawn into the scene using textured triangles oriented ac-
cording to the normal vector of the surface at the hit-
point. Approximating the appearance of the range search
using a single flat, textured triangle produces acceptable
results when photons are distributed on locally flat sur-
faces. However, when this method is used for scenes with
more complex geometry, visible artifacts appear due to
this simplified representation. On highly curved surfaces
a photon splat will deviate from the contour of the object,
producing a visible gap between the photon and the sur-
face. When viewed from the side, this appears as though
the photons hover above the surface as a cloudy haze, in-
stead of being directly on the surface.

This problem can be alleviated in several ways. One
method would be to try to calculate the local curvature of
the surface, and incorporate this information when draw-
ing the splats. Each splat could be represented using a
higher order primitive, such as a tessilated ellipsoid, in-
stead of a simple triangle. The curvature of the textured
ellipsoid would be chosen to correspond to the local cur-
vature of the surface, allowing the splat to hug the surface
more closely. This method, however, suffers from several
drawbacks. Calculating the local curvature of a surface
for each photon hit-point would be a very costly opera-
tion, decreasing the performance of the preview. Also,
many more triangles would need to be rendered using this
representation, further increasing the run time of the algo-
rithm.

A method suggested by [25] maintains the use of a
single triangle per photon and does not introduce any new
highly costly computations. Instead of rendering all the
photons to the screen after all the objects have already
been drawn, photons are assigned to the objects on which
they lie. After an object is drawn, all the photons belong-
ing to it are rendered. A mask is created when drawing
the object such that the rendering of the photon splats is
limited to the pixels which are covered by the object. This
ensures that photons only influence the displayed bright-
ness of objects which they hit.

In our tests, however, the effect of this artifact in de-
grading the quality of the preview was minimal. A small
search radius ensures that the artifacts are insignificant un-
less the camera is zoomed in very close to a particular
surface. At this point, a higher density, and smaller search
radius, for the photons would be needed in order to pre-
view the global illumination effectively. See Figure 13 for
a comparison.
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(a) (b) (c)

Figure 13: An example scene (a) with a caustic concentrated partially onto a curved surface and exhibiting “photon
haze.” (b) Closeup of the artifact. (c) Reduction of the artifact by using a smaller photon splat size (search radius).

5.3 Image Quality and Speed

Our tests have shown that the photon splatting method for
previewing the caustic photon map was very effective and
efficient. The output of the interactive algorithm for the
caustic photon map matched the output of a full Monte
Carlo ray tracer with photon mapping very well. Though
the interactive global photon map was implemented in a
similar manner to the caustic map, the usefulness of the
preview was less significant. Firstly, in a full Monte Carlo
photon mapping simulation, the global photon map is not
directly visualized; instead, a final gather step is used.
While the photon splatting did relay useful information
in the color bleeding in the scene, the results were much
more “splotchy” than in a final render. Also, since gen-
erally the search radius for a global photon map is much
higher, and the photons are distributed more evenly in the
scene, the fill rate for the photon splats became more of
an issue. The frame rate performance went down drasti-
cally when the global photon map was considered. This
leads us to believe that while photon splatting is a very
good method to preview caustics, diffuse indirect light-
ing might be better implemented using a method such as
backwards ray tracing with hardware texturing.

6 Conclusion and Further Work

We have presented a hybrid hardware-software based im-
plementation of global illumination which can be visu-
alized interactively on consumer level PCs. The method
can easily be embedded in pre-existing animation pack-
ages with little overall modification. Such a tool could
provide increased productivity when lighting 3D scenes
with global illumination by provide realtime feedback for
lighting and object manipulations.

Though not presented in this paper, it seems that this
method could be extended to simulate volumetric global

and local illumination in hardware. The photons in the
photon map would be deposited anywhere in space, as op-
posed to directly on surfaces. The triangle splats could be
set to always face the camera and would use a modified
kernel.

Another issue that could improve the overall quality
of the rendered image is automatically shooting photons
in areas of high importance. The importance map [27]
can be utilized for this effect in non-interactive rendering;
however, the process is currently too time consuming for
realtime applications.
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