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* In this talk, we are interested in rendering scene with participating media, or scenes where 
the volume or medium participates in the lighting interactions.
* Participating media is actually all around us.
* These are just a few example photographs of the type of striking effects that are caused by 
participating media.

http://theory.stanford.edu/~kngk
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Volume Rendering Eq.
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Participating MediumL(e,�)
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* In order to render images:
* We need to compute the radiance, L, arriving at the eye along a ray in the presence of 
participating media.
* This can be expressed using the volume rendering equation, which consists of two main 
terms:

 * The right term incorporates lighting arriving from surfaces

 * and the left term, scattering of light from the medium



L(e, ⌥⇥) =
� s

0
Tr(e�x)�s(x)Li(x, ⌥⇥) dx + Tr(e�x�)L(x�, ⌥⇥)

Volume Rendering Eq.
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* This light is then diminished by the transmittance as it travels through the medium towards 
the eye
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Volume Rendering Eq.
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Li(x, ⇥�)

all light arriving at x which scatters towards e 
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scattering coefficient
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Li(x, ⇥�)

Very costly!
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Previous Work

Path tracing
[Kajiya and Herzen 84, Kajiya 86, Lafortune and Willems 96]

- Slow convergence/noisy results.

Photon mapping
[Jensen and Christensen 1998.]

- Costly for high albedo

- Costly for scenes with large extent

Finite Element
[Rushmeier and Torrance 87]

- Requires discretization

Participating Media
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* A number of methods have been developed to handle participating media, but they all have 
significant limitations.
* this motivates us to develop a new method.



Related Work

Caching:

• “A Ray Tracing Solution for Diffuse Interreflection.” 
Ward et al. 1988.

• “Irradiance Gradients.” Ward and Heckbert. 1992.

• “Radiance Caching for Efficient Global Illumination 
Computation.” Křivánek et al. ‘05

Global Illumination
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* we draw inspiration for our method from irradiance caching methods for surfaces.



Indirect Illumination

Direct Illumination Indirect Illumination
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* direct illumination has sharp discontinuities
* Indirect illumination smooth in large regions



Irradiance Caching
Ward et al. ‘88
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* compute irradiance accurately only at a sparse set of locations (shown in yellow) and 
interpolate whenever possible.



Irradiance Gradients
Ward and Heckbert ‘92
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* follow-up work



http://www.kevinyank.com
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Observations

Smooth in large portions of the image
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* We make the observation that same property is true for participating media
* computationally very expensive, but very smooth and low frequency in large parts of the 
image

http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk


Goals

• Exploit this property by caching 
lighting within participating media.

• Develop an efficient but general 
rendering algorithm which can handle:

• single, multiple, anisotropic scattering

• heterogeneous media

• production quality

15
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* production quality, physically based



Radiance Caching in 
Participating Media
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cache point valid radius
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* at a high level, radiance caching gains efficiency by caching expensive lighting calculations 
within the medium.



Radiance Caching in 
Participating Media
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cache point valid radius
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* for this ray, since a cache point overlaps with every part of the ray, we can compute the 
lighting by interpolating the cache points



Radiance Caching in 
Participating Media
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cache point valid radius
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* a neighboring ray can re-use many of the same cache points



Challenges

• What should the cache points store? 
• Where to place cache points to 

minimize visible error?
• How to interpolate cache points 

accurately?
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* Cannot re-use details from irradiance caching directly, since many underlying assumptions 
are different.
* What is a “good” valid radius?
* How do we interpolate the nearby cached values?



Approach

• Cache inscattered radiance:

20
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* Since the gradient is a local measure of the smoothness of the radiance field, we use it to 
estimate a valid radius within which it’s OK to extrapolate each cache point.
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* Since the gradient is a local measure of the smoothness of the radiance field, we use it to 
estimate a valid radius within which it’s OK to extrapolate each cache point.



Approach

• Cache inscattered radiance:

• Compute gradients due to translation

• Use gradients to:

• Estimate valid radius within which it’s 
OK to extrapolate

• Provide high quality interpolation
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* Since the gradient is a local measure of the smoothness of the radiance field, we use it to 
estimate a valid radius within which it’s OK to extrapolate each cache point.



Radiance Computation

• In order to make gradient derivations 
more convenient:

• Split computation into single and 
multiple scattering components:

• How do we compute 

• How do we compute 

21

Li = Ls + Lm

Ls and Lm?

�Ls and �Lm?
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* we cache values of Li
* split because:
   * it makes the derivations more convenient
* single scatter is light that only scatters once in the medium before reaching the eye.
* multiple scattering scatters at least twice



Single Scattering

Ls(x, ��) =
�

A
p(��,x��x)Lr(x��x)V (x�⇥x)H(x��x) dx�
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x
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Single Scattering

Ls(x, ��) =
�

A
p(��,x��x)Lr(x��x)V (x�⇥x)H(x��x) dx�
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x’
A

A

Integration over surface area
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* over area of light sources and surfaces
* reduce radiance
* radiance from light, diminished through medium



Single Scattering
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Lr(x��x) = L(x��x)Tr(x�⇥x)Reduced Radiance: 
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* over area of light sources and surfaces
* reduce radiance
* radiance from light, diminished through medium



Single Scattering
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x’

Phase function
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Single Scattering

Ls(x, ��) =
�
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p(��,x��x)Lr(x��x)V (x�⇥x)H(x��x) dx�
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Visibility Function and Geometry Term
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* there is also a visibility and geometry function



Gradient Computation
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* In order to obtain the gradient, we analytically differentiate the terms in the integrand using 
the product rule.
* gradient of Lr is most significant:
   * accounts for change in transmission, even in heterogeneous media



Gradient Computation
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* In order to obtain the gradient, we analytically differentiate the terms in the integrand using 
the product rule.
* gradient of Lr is most significant:
   * accounts for change in transmission, even in heterogeneous media



• Assumes constant visibility

Gradient Computation
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* In order to obtain the gradient, we analytically differentiate the terms in the integrand using 
the product rule.
* gradient of Lr is most significant:
   * accounts for change in transmission, even in heterogeneous media



• Assumes constant visibility

• Evaluated together using Monte Carlo 
integration and ray marching

Gradient Computation
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* In order to obtain the gradient, we analytically differentiate the terms in the integrand using 
the product rule.
* gradient of Lr is most significant:
   * accounts for change in transmission, even in heterogeneous media



• Assumes constant visibility

• Evaluated together using Monte Carlo 
integration and ray marching

• Gradients take into account changing 
properties of medium along the whole ray

Gradient Computation
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* In order to obtain the gradient, we analytically differentiate the terms in the integrand using 
the product rule.
* gradient of Lr is most significant:
   * accounts for change in transmission, even in heterogeneous media



Reduced Radiance
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Ray Marching
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Transmission Gradient
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* take into account how the extinction coefficients change along the whole ray segment



Transmission Gradient
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* these changes would induce a different overall transmission when x is translated
* gradients contain meaningful information about how Tr changes as we move x in any 
direction, even out of the line connecting x to x’
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Multiple Scattering
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∇L
m x

Multiple Scattering Gradient
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Cache Storage

• Cached points store:
• 3D position
• Value (inscattered radiance)
• Gradient
• Valid Radius

35
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* distinct caches for single, surface, and multiple scattering



Cache Storage

• Cached points store:
• 3D position
• Value
• Gradient
• Valid Radius

}

Isotropic Media

‣inscattered radiance is a scalar

36

Thursday, 6 September 12



Cache Storage

• Cached points store:
• 3D position
• Value
• Gradient
• Valid Radius

}

Anisotropic Media

‣inscattered radiance is a 
spherical function
‣projected onto SH

37

Thursday, 6 September 12



Valid Radius
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Want density of cache points to adapt to the local variation of illumination:
* smooth radiance → large radius, few cache points
* sharp radiance → small radius, many cache points



Optimal Radius

Ex(x�) = radiance extrapolated from x to x�

A(x�) = actual radiance at x�

39
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* Maximum radius such that the total relative error between the extrapolated and actual 
radiance within the cached region is below some error threshold t.
* using relative error because human vision is sensitive to contrast, not absolute errors 



Optimal Radius
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* Maximum radius such that the total relative error between the extrapolated and actual 
radiance within the cached region is below some error threshold t.
* using relative error because human vision is sensitive to contrast, not absolute errors 



Valid Radius
1D Scene with 2 Point Lights
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* numerically computed optimal radius



Valid Radius
1D Scene with 2 Point Lights
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� ln(L) =
�L

L

measure of local contrast:
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* log-space gradient. perceptually motivated: contrast



Valid Radius
1D Scene with 2 Point Lights
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measure of local contrast:
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Valid Radius
1D Scene with 2 Point Lights
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• Perform a weighted interpolation from 
nearby cache points.
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Interpolation
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* whenever possible, interpolate from nearby cache points
* given a valid radius for each cache point, in order to compute radiance: interpolate
* weighted average
* smooth weighting function



• Perform a weighted interpolation from 
nearby cache points.

44

Interpolation
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* whenever possible, interpolate from nearby cache points
* given a valid radius for each cache point, in order to compute radiance: interpolate
* weighted average
* smooth weighting function



x
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* given a valid radius for each cache point, in order to compute radiance: interpolate
* weighted average
* smooth weighting function



Find overlapping 
cache points.
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* given a valid radius for each cache point, in order to compute radiance: interpolate
* weighted average
* smooth weighting function



Extrapolate 
along gradients 
in log-space.
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* given a valid radius for each cache point, in order to compute radiance: interpolate
* weighted average
* smooth weighting function



Weight 
contributions 
using smooth 
kernel
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* given a valid radius for each cache point, in order to compute radiance: interpolate
* weighted average
* smooth weighting function



Exponentiate 
result to obtain 
interpolated 
radiance.
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* given a valid radius for each cache point, in order to compute radiance: interpolate
* weighted average
* smooth weighting function



Results
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• All results rendered:
• at 1K horizontal resolution
• with up to 16 samples per pixel
• on a Core 2 Duo 2.4 GHz
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Results

1.4 minutes
51
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Results

3.6 minutes
52

RC

PT

Thursday, 6 September 12

* can handle anisotropic media
* project radiance and gradient onto SH
* photon mapping works quite well in contained scenes like this, however...



Results

19 minutes
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RC

PT
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* very difficult for photon mapping
* reuse for walk-through animations



Results
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Results

5.8 minutes
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* can handle heterogeneous media



Results
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Results

20 minutes
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* can handle scenes with large extent
* difficult for photon mapping



Results

contrast enhanced
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PMRC
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* 8M photons



Contributions
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Contributions
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• Radiance caching scheme for Part. media:
• complementary to photon mapping

• perceptually motivated error metric
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Contributions
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• Radiance caching scheme for Part. media:
• complementary to photon mapping

• perceptually motivated error metric

• Analytic gradient derivations for 
inscattered radiance:
• efficient to compute

• take into account changing properties of 
medium
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Limitations

• Gradient ignores visibility/occlusion 
changes

• Multiple scattering still costly

60
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Future Work

• Gradient ignores visibility/occlusion 
changes

• W. Jarosz, et al. “Irradiance Gradients in the 
Presence of Participating Media and Occlusions.”

• Multiple scattering still costly
• Terminate recursion using volumetric photon 

mapping

61
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Thank you
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