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Abstract

Facial appearance capture is now firmly established within academic research and used extensively across
various application domains, perhaps most prominently in the entertainment industry through the design of virtual
characters in video games and films. While significant progress has occurred over the last two decades, no single
survey currently exists that discusses the similarities, differences, and practical considerations of the available
appearance capture techniques as applied to human faces. A central difficulty of facial appearance capture is
the way light interacts with skin—which has a complex multi-layered structure—and the interactions that occur
below the skin surface can, by definition, only be observed indirectly. In this report, we distinguish between two
broad strategies for dealing with this complexity. “Image-based methods” try to exhaustively capture the exact
face appearance under different lighting and viewing conditions, and then render the face through weighted image
combinations. “Parametric methods” instead fit the captured reflectance data to some parametric appearance model
used during rendering, allowing for a more lightweight and flexible representation but at the cost of potentially
increased rendering complexity or inexact reproduction. The goal of this report is to provide an overview that
can guide practitioners and researchers in assessing the tradeoffs between current approaches and identifying
directions for future advances in facial appearance capture.

1. Introduction

The human face is arguably the most distinctive aspect of
human appearance. The face is used to immediately iden-
tify a person, infer their emotions, portray their physical
condition, and can even communicate their current state of
mind. Accurately capturing the facial appearance of a real
subject can lead to a wide range of applications, from vir-
tual makeup systems [SRH∗11, TOS∗03] or computer vi-
sion [LCQ∗04, SPF∗13], to the design of prosthetics or an-
imatronics. One particular successful application is that of
virtual characters, which are now ubiquitous in video games
and the movie industry [ARL∗10, Sey13]. Recent advances
in facial appearance capture have enabled the creation of
life-like digital renditions of real actors. In all these appli-
cations, photo-realism is generally desired, but also elusive,
as humans are extremely sensitive to subtle aspects of facial
appearance. The way light penetrates below the skin surface,
the change of skin color due to fluctuations of blood circula-
tion, and fine scale surface details like wrinkles are all cues
that audiences expect from a realistic face.

This state of the art report will survey a variety of tech-
niques from the last two decades that are concerned with
achieving photo-realistic facial appearance capture. Ideally,
the ultimate goal would be to have the ability to render a
virtual actor under arbitrary lighting conditions and from any
viewing position, including fine geometric details such as fa-
cial hair and peach fuzz, and to dynamically change the skin
appearance (for instance, to simulate variations in blood flow).
While capturing a complete virtual actor generally implies re-
constructing the (macroscopic) geometry as well as the scalp
hair, we will not consider these aspects within this report, and
instead restrict ourself to capturing the interaction of light
with the skin, though we do consider mesoscopic geometry
and facial hair as part of facial appearance. While the prob-
lem of performance capture is orthogonal to capturing appear-
ance, geometry and corresponding surface normals are often
required for appearance capture methods. Here, high-quality
geometry is usually employed, which can be reliably recon-
structed with state-of-the-art capture methods assuming con-
trolled illumination [ZSCS04, BHPS10, BHB∗11, HCTW11].
For an extended view of the field of digital characters, we
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refer the reader to previous reports. Igarashi et al. [INN07]
cover existing models with a focus on accurate bio-physical
modeling of the skin, up to the cellular level. Weyrich et
al. [WLL∗09] consider the principles of appearance acqui-
sition in general, where facial appearance is one of many
applications. Jung et al. [JKK∗11] consider interactive virtual
characters, including behavior control, real-time animation,
and real-time rendering. Ward et al. [WBK∗07] survey hair
modeling, including capture from photographs.

The central component of facial appearance is skin itself—
which has a complex multi-layered structure—and more
specifically, how light interacts with skin. A portion of light
will reflect directly off the oily skin surface, resulting in view-
dependent highlights that expose the finer geometric details
of skin, such as its pores and wrinkles. Light that does not
reflect off the skin surface then travels through the various
layers of the skin, each of which has different characteristics,
and therefore interacts differently with the light. In addition
to the complex cumulative effect of the various skin layers
on color, this travel allows light to exit the skin from a dif-
ferent position than it entered, which effectively smooths the
reflectance, giving skin its characteristic soft appearance. All
interactions that occur below the surface are by definition
difficult to measure, and this problem is compounded by the
fact that capturing facial appearance has to be done rapidly
to be practical. Methods that aim to capture facial appear-
ance must cope with the complexity of light interactions with
skin, and two broad categories can be distinguished: image-
based methods and parametric methods. Image-base methods
exhaustively capture the exact face appearance under (poten-
tially many) different lighting and viewing conditions, and
then solve the rendering problem through weighted image
combinations. Parametric methods instead aim at modeling
the structure of skin with suitable approximations, which then
allows a more lightweight and flexible representation of the
skin at the cost of a potentially inexact reproduction.

The structure of this report is build around the broad clas-
sification between image-based and parametric methods. We
start by presenting general capture methodologies developed
over the years, which introduce different illumination and
capture configurations that have been used throughout the
capture methods (Sec. 2). We then present a variety of image-
based (Sec. 3) and parametric (Sec. 4) methods that have
been proposed. We focus mainly on how the various methods
relate to each other, and therefore keep the exposition at a
high level. Lastly, we discuss more practical concerns that
arise when capturing or editing facial appearance (Sec. 5) and
identify some considerations for future work (Sec. 6).

2. Capture Methodologies

Our goal is to capture the appearance of skin from real-world
measurements. As we have mentioned, the skin structure is
very complex including an uneven oily surface and several
different scattering layers. The overall appearance is defined

by the way light from all directions and wavelengths interacts
with the skin and surrounding objects, and then bounces
into the observer’s eye from any particular viewing angle at
any particular moment in time. This appearance problem is
incredibly complex and it is generally not feasible to capture
all possible light paths. For this reason, various different
capture methodologies have been developed to sample the
illumination, the viewing angles, and the temporal variation,
which we will now describe.

2.1. Illumination

We first consider methods to sample the incoming illumina-
tion. These approaches fundamentally rely on the linearity
of light transport, which states that the light reflected from
a surface illuminated simultaneously by two different light
sources will equal the sum of the reflectance when illuminat-
ing by each light source independently. This implies that if
a subject is measured while individually lit from n different
directions, the appearance under any linear combination of
these n directions can be synthesized by linearly combining
the n acquired measurements. One methodology is thus to
illuminate the subject from a series of independent directions,
which we will refer to as the canonical basis. The canoni-
cal basis cannot be used to synthesize light from directions
that were not sampled, so the more illumination directions
acquired the better. The downside, of course, is the time it
takes to perform these individual measurements. This may
be overcome by using spherically smooth and continuous
illumination bases, such as spherical harmonics, which allow
the acquisition of reflectance statistics and require far fewer
measurements. The need to sample the incoming illumination
directions has led to the design of a series of light stages
over the past two decades, so-called because the idea is to
surround an actor with light. The main practical challenges
in the design and construction of these devices are sampling
density and acquisition time.

A basic approach is to sample light directions individu-
ally by moving a single point light to the desired position
in space and recording a measurement for each light posi-
tion [MWL∗99, DHT∗00, FBLS05]. Most of these devices
have mechanical components with two degrees of freedom
and effectively rotate the light to the desired position, al-
lowing to continuously sample both longitude and latitude
(see Fig. 1). While this approach has the flexibility to very
densely sample incident angles, it comes at the cost of acqui-
sition time, often requiring several minutes for a complete
measurement during which time the subject must remain
very still. Acquisition time can be reduced by distributing
more lights spatially around the actor, since turning a light
on and off is considerably faster than mechanically moving it
to the desired position. Matusik et al. [MPN∗02] add lights
along the vertical axis on an arc, which they rotate around
the object. This replaces one of the mechanical degrees of
freedom with a set of fixed light positions. Activating these
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Figure 1: Upper row: early illumination capture methodolo-
gies sampled light directions by rotating lights on mechanical
gantries around the subject [DHT∗00, MPN∗02, HWT∗04].
Lower row: Illumination can be sampled faster using a sparse
set of fixed lights mounted around the subject [WGT∗05,
WMP∗06, ECJ∗06].

lights synchronized to the rotation of the arc allows to sam-
ple the incident illumination continuously in longitude but
discretely in latitude. This is sufficient to capture a canonical
basis in just a few seconds by strobing the lights [HWT∗04].
Tunwattanapong et al. [TFG∗13] extend this by increasing
the light density on the arc to the point that they can produce
a smooth incident illumination condition, allowing capture
under the canonical and also the spherical harmonics basis.

To further decrease acquisition time and to reduce com-
plexity and physical limitations introduced by the mechanical
components, Debevec et al. [DWT∗02] discretely distribute
fixed lights all around the actor. These devices have been
employed both to capture canonical [DWT∗02, WMP∗06]
and smooth bases [MHP∗07, GCP∗09, TGD11], as well as
other illumination conditions [WGT∗05]. Furthermore, with-
out moving parts one could also consider larger capture vol-
umes [ECJ∗06]. These approaches, while faster in acquisition
than rotating light sources, come at the cost of sparser direc-
tional sampling because it becomes impractical to place more
than a few hundred lights in a dome (see Fig. 1).

All these devices so far are concerned with generating
distant illumination, where the light incident on the surface
does not vary spatially. Spatially varying illumination can
be achieved by employing projectors. On the one hand, pro-
jected stripe patterns are often used to estimate facial geom-
etry [ZSCS04, MHP∗07, MJC∗08, WLVGP09], but a com-
plete survey is beyond the scope of this paper. On the other
hand, light projection can also be used for appearance cap-
ture to help estimate how light scatters beneath the skin by
sampling a subset of light paths using a variety of binary
patterns [NKGR06, TGL∗06], and this approach can even be
combined with fixed spherical illumination [GHP∗08].

Figure 2: Image-based approaches inherently capture all
real world effects, allowing for highly realistic relighting
effects [WGT∗05].

2.2. Viewing Direction

We now turn to approaches for sampling the outgoing illumi-
nation. Not surprisingly, the most straightforward method
is to capture the fixed bundle of rays that lead to a sin-
gle photographic camera. Naturally, angular sampling can
be increased with a multi-camera setup. Additionally, the
subject can be placed on a turn table to increase sample
density [MPN∗02, ECJ∗06, TFG∗13]. One can also use mir-
rors to add additional virtual views, by spatially multiplex-
ing them onto the same sensor. This obviously comes at
the cost of reduced spatial resolution for the individual
views [GHAO10, IRM∗12].

2.3. Temporal Domain

Finally, it is also important to consider the temporal domain,
as facial appearance changes over time. Temporal variation
in position or shape of the skin can affect global illumination
due to changes in occlusion and interreflections. Further-
more, physical changes in skin appearance may be caused
by time-varying blood flow or perspiration. A basic approach
is to sequentially acquire multiple individual measurements
spaced out over time, for example as the subject undergoes
extreme facial expressions [JSB∗10]. Alternatively, appear-
ance information from live performances can be acquired
using high-speed video cameras [FHW∗11] or restricting the
performance to repetitive motions [ECJ∗06].

In summary, the capture methodologies described above
are used in various approaches for image-based and paramet-
ric facial appearance capture, as we describe in the following
sections.

3. Image-based Approaches

The key idea of image-based methods is to perform a
weighted superposition of captured responses to different
illumination patterns. The data is directly used for rendering
and not fit to any model, which is the main difference to
parametric approaches. Image-based methods are not bound
to the limitations of a specific model and, hence, are able to
reproduce all real-world effects accurately, if an appropriate
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basis of image data is available (Fig. 2). As the data is di-
rectly used for rendering, generating images usually does not
require extensive computation. On the downside, however,
image-based methods are bound to the data that has been
captured and are usually very data intensive. Artistic control
and editing of the face appearance also poses a formidable
challenge.

3.1. Reflectance Field

The interactions of light with an object can be arbitrarily
complex, making explicit modeling of these interactions ex-
tremely challenging. For image-based techniques however,
only the observed result of these interactions is relevant,
which can be mathematically encapsulated with the notation
of reflectance field. Lets assume the object is enclosed in an
imaginary convex manifoldM, as shown in Fig. 3. Then the
complex light interactions taking place inside this manifold
can be considered a black box which is fully described by the
boundary conditions: the incoming and outgoing light rays at
the manifold surface. This reflectance field has eight degrees
of freedom. Four degrees describe the incoming light field:
light entering the manifoldM at a point xi from a direction
~ωi. The other four degrees specify the outgoing light field:
light exiting the manifoldM at a point xo in direction ~ωo.
The concept of a light field was proposed simultaneously in
graphics by Levoy et al. [LH96] and Gortler et al. [GGSC96]
and extended to a reflectance field in the context of facial
appearance capture by Debevec et al. [DHT∗00]. In addition
to these eight dimensions, one may also consider time as
additional ninth dimension.

The above description of the reflectance field uses an en-
tirely manifold centric parametrization. Since the reflectance
field is traditionally captured using cameras—each of which
captures a 2D slice of the outgoing light field—it can often
be more convenient to use a view-centric perspective for the
outgoing portion of the reflectance field. In this view-centric
parametrization the locations of the cameras and pixels of
the captured images define the 4D set of rays of the outgoing
light field. We refer to the viewpoint domain as the locations
of the cameras, and the image plane domain as the resolution
of each camera in this parametrization.

Sampling the complete 9D reflectance field is still chal-
lenging and depending on the use case authors reduce the
dimensionality by fixing certain dimensions. The most obvi-
ous one is certainly to only consider static scenes, thus fixing
the temporal dimension and reducing it to the eight dimen-
sions originally introduced. Another very common reduction
to assume distant illumination. In this case light from a given
direction~ωi hits the manifold at all points equally, thus remov-
ing the spatial variability and reducing the dimensionality by
two. Capturing from only a single camera removes the view-
point domain sampling of the outgoing light field, reducing
the dimensions by two as well.

As we will elaborate in the following sections, different
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Figure 3: The 8D reflectance function encapsulates the com-
plex light interactions inside an imaginary manifold S via
the boundary conditions on the surface of the manifold: the
incident position xi and direction ~ωi, as well as the outgoing
position xo and direction ~ωo.

authors have focused on sampling different sub-spaces of the
reflectance field. We first start with papers that are concerned
with static faces only and then look at subsequent work that
samples the temporal dimension as well.

3.2. Static Faces

Building on early work in image-based rendering [NSD95],
the seminal work of Debevec et al. [DHT∗00] and the advent
of a series of light stages introduced effective methods for
acquiring the reflectance field of a human face. This work
sparked a large body of research, and also had high impact on
the movie industry. Their main goal was to enable relighting
of an actor after capturing, an important step towards the
virtual actor. The basic approach is to measure the reflectance
field of a face introduced in the previous section. To make
the problem tractable, the sampling domain of the reflectance
field was reduced to 6D by assuming distant illumination.
Furthermore, they captured the outgoing illumination from
only two fixed viewpoints. Therefore the viewpoint domain
is only very sparsely sampled, leaving only four dimensions.
These four dimension are sampled by moving a light to fixed
positions around the subject (64×32 light directions cover-
ing a full sphere) and acquiring images with the two cameras.
According to the capture methodologies introduced in Sec. 2
this sampling pattern is a canonical basis. Due to the linear-
ity of light transport these canonical images can be linearly
combined to synthesize any illumination condition that could
be physically produced by combinations of the sampled illu-
mination directions.

While densely sampling the incident illumination direc-
tions enables high quality relighting, the synthesis is tied to
the viewpoint used to acquire the images. To allow synthesis
under novel viewpoints, the viewpoint domain needs also
to be densely sampled, which amounts to sampling a 6D re-
flectance field. This requires excessive capturing as well as
data storage.

Instead, Debevec et al. [DHT∗00] suggest to only sparsely
sample different viewing directions and additionally estimate
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the geometry and surface normals to guide a view interpola-
tion technique. They estimate the surface normals from the
acquired image basis and employ an external system to ac-
quire the geometry. However, even with geometry, the view
interpolation is not a trivial task as the skin does not exhibit
Lambertian reflection behavior. Therefore the authors split
the reflectance into a view-independent (diffuse reflection)
and a view-dependent component (specular reflection). Sep-
arating these two components will be a recurring theme in
subsequent papers and several different methods have been
explored as summarized in Sec. 4.1. To synthesize a novel
view, the specular component is transformed using the esti-
mated surface normals and merged with the constant diffuse
component to form the final image.

To reduce the number of required photographs, Tunwat-
tanapong et al. [TGD11] propose an optimization procedure
to determine an optimal illumination basis, taking into ac-
count typical surface reflectance functions. The resulting ba-
sis is a combination of a smooth illumination basis (spherical
harmonics) and a set of distant local lights, representing both
low and high frequency components, and requires an order
of magnitude less data compared to conventional sampling.

3.3. Dynamic Faces

The goal of the first approach that supports live performances
is to ease the composition of an actor into a virtual environ-
ment [DWT∗02]. For this the illumination within the virtual
scene and illumination of the actor needs to be matched. To
do so, Debevec et al. [DWT∗02] constructed the first light
dome with 156 static red/green/blue LEDs to illuminate a
subject inside the dome. By sampling the potentially con-
tinuous environmental illumination down to the 156 lights,
they can physically capture the subject under a discretized
approximation of the target illumination. Since the lights
are controllable, they can also be used to simulate dynamic
illumination, e.g., capturing the face of a subject as if the per-
son is walking through a virtual environment. This approach,
however, does not allow for changing the illumination or
viewpoint post-capture as in their earlier work [DHT∗00].

A first step towards increased post-processing capabili-
ties for an animatable face was proposed by Hawkins et
al. [HWT∗04] (Fig. 4). Their main assumption is that facial
geometry fully defines the appearance of a face, hence, there
is a direct mapping of geometry to appearance. The key idea
is that a database with associations of geometry to reflectance
could be queried to return the appearance for any target geom-
etry. They start by building the database with the reflectance
information (using Debevec et al.’s [DHT∗00] approach) for
various static facial expressions, but also for different head
poses as well as mouth and eye positions. They reconstruct
the corresponding geometry with the help of facial markers.
A typical database contains about 60 expressions, imaged
from 6 cameras, each with geometry data and 4D reflectance
information based on 480 distant lights. They then estimate

(a) (b) (c) (d)

Figure 4: Animatable facial reflectance fields. Given novel
distant illuminations (a), an actor can be relit under different
points of view (b,d), and expression (b,c,d) [HWT∗04].

the reflectance for any novel geometry and illumination in
a two step approach. First, they relight the captured images
as in Debevec et al.’s earlier approach [DHT∗00]. Second,
they linearly combine the relit images, weighted according to
the similarity of the target geometry and the geometry of the
database entries. The quality of the synthesized reflectance
thus highly depends on how similar the closest match in the
database is to the current geometry. This restricts novel per-
formances to only similar expressions as have been stored in
the database. Further, geometry estimation and shape retrieval
are non-trivial and active research fields of their own.

A more basic approach was specially designed for the
movie The Matrix. Borshukov et al. [BPL∗03, BL03] capture
a running footage of a registered soft ambient lit performing
face. Reconstructing geometry not just allows them to trans-
form the capture to a geometry-independent texture space,
but also serves as a starting point for artistic shape manip-
ulations. They then apply the animated albedo texture onto
the virtually deformed face geometry. For relighting they
add two secondary layers of illumination from an assumed
directional light: a specular and an ad-hoc diffuse compo-
nent directly convolved in texture space so as to simulate
subsurface scattering. Details, potentially changing over time
(such as underlying blood flow and pore structure) are ef-
fectively preserved up-close through the capture. However,
relighting capabilities are limited due to the lack of capturing
other lighting bases than the ambient or fitting more material
parameters such as parametric methods (Sec. 4).

To avoid geometry completely, Wenger et al. [WGT∗05]
use a more direct approach to extend reflectance scanning
to live performances. They time-multiplex illumination pat-
terns and capture the performance at high framerates with a
highspeed camera. Using the lighting apparatus of Debevec
et al. [DWT∗02], each light source can be switched on and
off rapidly. Although they manage to capture all 156 illu-
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minations within a twelfth of a second, motion within this
time still causes smearing effects after linearly combining
the captured images for relighting. The key is to apply mo-
tion compensation via an estimate of optical flow [HS81].
Since optical flow does not handle varying illumination well,
Wenger et al. interleave additional fully lit tracking frames
with the different illumination patterns. This allows for accu-
rate motion compensation and for final relighting at a target
framerate of 24 or 30fps. The method is limited to relighting
within the captured viewpoints, as it samples only five of the
nine dimensions of the reflectance field.

Einarsson et al. [ECJ∗06] go one step further and addi-
tionally sample different viewpoints, effectively sampling
seven dimensions. Naïve sampling of these additional two
dimensions requires many synchronized cameras capturing
the action from different points of view. While this has been
done for BRDF scanning [SSWK13], it poses severe practi-
cal and financial challenges to do so with highspeed cameras
for animated subjects. Einarsson et al. reduce the amount
of cameras required substantially by only placing cameras
latitudinally. The longitudinal dimension is then sampled
temporally by repeating the same performance several times,
each time rotated a few degrees. This trick obviously only
works for very repeatable motions, such as walk cycles and
even this requires strong actor discipline and complex motion
compensation.

Spatially-varying Illumination. All the methods presented
so far are only considered with unoccluded distant illumi-
nation. These methods could for example not synthesize a
shadow cast by a virtual object onto the subject. For a purely
image-based approach, this requires sampling the full 4D
incident illumination. Jones et al. [JGB∗06] propose an alter-
native by leveraging synthesis to simulate 4D incident illumi-
nation, although having only captured reflectance caused by
distant illumination. While this allows to add virtual shadows,
it cannot be used to simulate local light sources. The idea is
simple though; turning a spatially-constant capture into a vir-
tual spatially-varying image requires a scaling/removal of the
occluded light transport paths. For the example of spatially-
varying shadows, it requires to estimate what fraction of light
was captured, but should be excluded. To do so Jones et al.
estimate the indirect illumination that is caused by the distant
illumination in the canonically-lit images. They do this us-
ing a global illumination rendering approach, for which they
require estimates of the geometry and normals. These are
computed from structured light scanning, time-multiplexed
with the canonical basis. The key missing component for a
simulation is reflectance information, hence, they assume a
lambertian reflectance behavior scaled by a recovered albedo
map. Having an estimate of indirect illumination allows Jones
et al. to remove the indirect illumination from the captured im-
ages, modulate the remaining direct illumination in a desired
manner, and re-compose the two illumination components
back together. While the quality of the result directly depends

on the accuracy of the estimated indirect illumination, they ar-
gue that a more accurate surface reflectance simulation could
be used. This directly hints towards parametric approaches,
which try to fit models to allow to completely simulate the
light/skin interaction for any illumination.

3.4. Conclusion

Image-based methods are a very powerful in reproducing
highly realistic detailed facial features and other subtle effects
that cannot be described by existing parameteric appearance
models. However, they usually come at the cost of exten-
sive data capture, and require storing and processing large
amounts of data. In addition, using this approach for mod-
eling the appearance of virtual face models that go beyond
cloning of a real actor or to artistically edit the appearance is
highly challenging. In these cases, often a parametric model
is the method of choice.

4. Parametric Approaches

In contrast to image-based approaches which use the captured
data directly, parametric approaches use the measurement
data to determine the parameters of some parametric forward
appearance model used during rendering. After fitting pa-
rameters from the measurements, the original data can be
discarded. This strategy has a number of compelling advan-
tages. Firstly, since the parameters of the forward model are
typically lower dimensional than the original measurements,
the fitting process can massively reduce the amount of data
that needs to be stored. Moreover, appropriately chosen para-
metric models can inform the capture process, potentially
reducing the amount of measurements needed while simulta-
neously enabling interpolation and even extrapolation beyond
sparse observations. Finally, parametric models typically al-
low for easier editing and re-use of appearance after capture,
as long as the employed parametric model is intuitive.

For parametric approaches to work well, however, the em-
ployed models need to accurately reproduce all the important
visual effects present in the real world. To make the problem
tractable, most approaches decompose the full physical ap-
pearance into several parametric appearance models, each
accounting for a specific component of facial appearance. For
instance, the appearance of a face could be represented by a
set of parametric models responsible for surface (Sec. 4.2)
and subsurface (Sec. 4.3) scattering, surface details due to
mesogeometry (Sec. 4.6), and facial hair (Sec. 4.7). Such
parametric approaches therefore need to address two key
challenges: 1) how to separate the different effects from one
another in the measured data; and 2) how to fit the model pa-
rameters efficiently and accurately, often from measurements
that only indirectly observe the desired effect.
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Figure 5: Diffuse–specular separation using polariza-
tion [DHT∗00], from left to right: reference image without
polarizers; cross-polarization yields diffuse reflectance only,
parallel-polarization yields diffuse and specular reflectance,
subtracting the cross-polarization image from the parallel-
image yields the specular reflectance only.

4.1. Diffuse–Specular Separation

A shared challenge of most parametric face capture ap-
proaches is to separate the diffuse and specular component of
reflectance, which model the subsurface scattering in the skin
and reflection on the oily layer of skin, respectively. It is pos-
sible to perform this separation by purely optical means that
rely on light polarization or through computational methods
that exploit known characteristics of light transport.

Polarization. Methods that leverage polarization to perform
the diffuse–specular separation exploit the fact that specu-
lar reflections preserve the polarization state of light, while
light that has scattered multiple times rapidly loses polar-
ization. Consequently, a setup with linear polarizers can be
used to perform the diffuse–specular separation. When using
cross-polarization (where the light and camera have orthog-
onal polarizers), the specular reflection is eliminated, while
half of the unpolarized diffuse reflection survives. Parallel-
polarization, on the other hand, preserves the specular reflec-
tion as well as half of the unpolarized diffuse reflection. In
both cases only half of the diffuse light is observed as half of
the randomly oriented (unpolarized) light waves are blocked
by the polarizer in front of the camera. The diffuse reflectance
can be extracted by multiplying the cross-polarization capture
by a factor of two. Conversely, the specular reflectance can be
obtained by subtracting the cross-polarization measurement
from the parallel-polarization measurement (see Fig. 5). Even
though polarization requires two captures (cross- and parallel-
polarization) to get diffuse and specular reflection, its sim-
ple implementation make it the preferred choice for diffuse–
specular separation [MGR00, TGL∗06, MHP∗07, GHP∗08,
DWd∗08, BBB∗10, WGP∗10, FHW∗11, GFT∗11, GTB∗13].
It should be noted however that the separation is not perfect.
What is separated as specular component with polarization,
can also contain other diffuse like transport [NFB93] such
as single scattering [GHP∗08]. Further practical issues for
setups with multiple or moving cameras are discussed in
Sec. 5.1.

Computational. Various computational approaches have
been proposed to perform the diffuse–specular separation.
Debevec et al. [DHT∗00] consider the captured photograph
to be a linear combination of the diffuse color, ~d, the specu-
lar color,~s, and some error color,~e = ~d×~s, assumed to be
orthogonal to the diffuse and specular colors. This defines a
simple linear system which can be solved to get the weight of
each component (diffuse, specular, and noise), and therefore
extract images having only diffuse or specular reflectance.
The color of the specular component is assumed to be that
of the light, while the chromaticity of the diffuse component
is recovered as the median of the red–green and green–blue
ratios over the reflectance for pixels in a certain brightness
range. The luminance of the diffuse color can be fixed arbi-
trarily, as this only incurs a scaling factor on the weight of the
diffuse component. They also introduce further refinements
to the diffuse color estimation to account for an observed
desaturation at large viewing and lighting angles.

Weyrich et al. [WMP∗06] propose an approach based on
the observation that specular reflection vanishes for at least
some view/light direction pairs. Using a light stage capture
device, they look for the pair that has the minimum intensity
(since diffuse reflection is uniform for all viewing angles),
while penalizing observations at grazing angles and discard-
ing the k smallest values to improve the robustness of the
estimation. Once the diffuse reflectance is characterized, it
is removed from the captured data, to isolate specular re-
flectance.

Tunwattanapong et al. [TFG∗13] use spherical harmonic
illumination, and characterize the specular reflectance using
the response of the third- to fifth-order spherical harmonics.
This becomes possible since diffuse reflectance has a low
frequency that is nearly completely captured by the first two
orders of spherical harmonics [RH01]. Once they model the
specular component, they remove it from the response of the
first two orders to characterize the diffuse reflectance.

A conceptional similar approach is taken by Lamond et
al. [LPGD09], who also project distant light of different fre-
quency patterns. One implementation is a binary square wave
pattern with the subject illuminated by half of all directions on
average. They assume that the diffuse reflectance is therefore
simply scaled by 0.5, while the specular lobe from a single
viewing direction averages portions of the environment that
are lit, unlit, or a combination of both. They further assume
that for one of the multiple rotated environmental illumina-
tion patterns, the viewing direction’s specular lobe covers
only the illuminated portions of the environment. Conversely,
there needs to be a rotation without any observable specular
reflection. Which rotation is required to observe either of
these two cases depends on the surface normal and therefore
differs between pixels. A simple per pixel min and max of all
measurements allows them to extract only diffuse (scaled by
0.5) as well as a diffuse and specular, similar to polarization
separation.
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Figure 6: A diagram showing the various types of interac-
tions between light and a rough dielectric surface. The events
depicted in this figure are Surface Reflection (R) and Surface
Transmission (T ). A zoom-in of the surface which is approxi-
mated as a collection of microfacets along with their normals
(µN) is highlighted on the top.

Finally, optical light transport analysis can also be
used to perform surface and subsurface reflectance separa-
tion [NKGR06, ORK12], using structured light instead of
environmental illumination. These methods are, however, not
typically used for diffuse–specular separation for faces.

4.2. Surface Reflectance

Since skin is composed out of several layers (Fig. 14) it
is commonly decomposed into a top layer with a surface
reflectance model and lower layers with a volumetric approx-
imation.

4.2.1. Background BRDF Models

If we assume only surface reflection, the radiance Lo observed
at a surface location x from direction ~ωo requires integrating
the product of the incident lighting Li and bidirectional re-
flectance distribution function (BRDF) f over the sphere of
directions Ω:

Lo(x,~ωo) =
∫

Ω

f (x,~ωi,~ωo)Li(x,~ωi) d~ω⊥i , (1)

where d~ω⊥i is the projected solid angle measure. In the
general case, a spatially-varying BRDF is a 6 dimensional
function (2 for the surface position x and 2 each for the
directions ~ωi and ~ωo).

Parametric approaches assume that this high-dimensional
function can be compactly described using some (typi-
cally small) set of parameters Θ, which we denote as
f (x,~ωi,~ωo |Θ). While some work in capturing surface re-
flectance [FBLS05, GCP∗09, TFG∗13] has utilized empirical,
phenomenological models (such as that of Ward [War92],
largely due to its easy fitting), the vast majority of recent
techniques have relied on micro-facet models [TS67, CT82,
HTSG91, APS00, WMLT07] which have a strong theoreti-
cal basis and have been validated against measurements by
several researchers [TS67, NDM05, WMLT07].

These models assume that, at a microscopic level, a rough

surface is composed of randomly oriented facets—the micro-
facets—which specularly reflect and refract light (see Fig. 6).
The distribution D of micro-facet normal orientations is the
primary parameter which characterizes the shape, or “spec-
ular roughness,” of these parametric BRDF models. This
distribution is most often defined statistically by an analytic
function such as the Beckmann [Bec87], Blinn [Bli77] or
the GGx [WMLT07] distribution, which compactly express
the spherical distribution using just one (m isotropic) or two
(mu,v anisotropic) numbers. According to this distribution
function, a shadowing and masking term is used to account
for the fact that micro-facets can be occluded from the inci-
dent or outgoing directions. The amount of light reflected and
refracted off each micro-facet is dictated by the Fresnel equa-
tions which depend on the relative index of refraction (IOR)
η of the interface. Additionally, a direction-less albedo term
ρ, which scales the amount of scattered light, is sometimes
employed to account for imperfections leading to absorption
at the micro-facets. In summary, the surface scattering off the
top boundary of skin is characterized by the set of parameters
Θ = {mu,v,η,ρ}.

4.2.2. Parameter Estimation

Assuming the specular and diffuse components are separated
using one of the techniques described previously in Sec. 4.1,
the goal is to capture all the data necessary to reliably fit the
parameters of the surface reflectance model while simultane-
ously trying to minimize capture time by means of different
sampling strategies. We summarize the models in Tab. 1.

Ideally, to capture the specular reflectance at every surface
point, one would use a gonioreflectometer, but this is not prac-
tical for skin, since measurements have to be done rapidly
and directly on the subject. One can, however, approximate
this setup using a geodesic dome supporting light sources
and cameras to sample the BRDF domain (refer to Sec. 2.1).
This is the approach taken by Weyrich et al. [WMP∗06],
who used a dome with 150 LED lights and 16 cameras,

Table 1: Comparison of surface parameter estimation meth-
ods. The acronyms in the sampling strategy column are as
follows: G - goniometer, CS - curved surface, GI - gradient
illumination, P - polarimetry.

Diffuse–specular Sampling
separation Roughness strategy

[MWL∗99] polarization object CS
[Geo03] - face G
[FBLS05] - region CS
[GCP∗09] polarization pixel GI
[GCP∗10] polarization pixel P
[GTB∗13] polarization region CS
[WMP∗06] computational pixel G
[GHP∗08] polarization region CS
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Figure 7: Data-driven BRDF fitting. From left to right: input
photograph, synthetic renderings using a spatially-varying
Torrance-Sparrow, spatially-varying Blinn-Phong, and uni-
form Torrance-Sparrow BRDF model [WMP∗06].

Figure 8: Segmenting the face into regions of similar re-
flectance allows the reconstruction of region-specific BRDF
parameters accurately and quickly, since a single capture
provides many observations. From left to right, the segmen-
tations used by the methods of Weyrich et al. [WMP∗06],
Ghosh et al. [GHP∗08], and Fuchs et al. [FBLS05].

and sequentially turned on each light while capturing with
all cameras. After a computational diffuse–specular separa-
tion (Sec. 4.1), they subtract the diffuse component from
the observations and fit the specular reflectance parameters
using the procedure of Ngan et al. [NDM05]. Weyrich et
al. [WMP∗06] considered three BRDF models of increasing
complexity: Blinn-Phong [Bli77], Torrance-Sparrow [TS67],
and Lafortune [LFTG97]. They performed a per-pixel fit
and found the Torrance-Sparrow BRDF provided the best
results. The Blinn-Phong BRDF tended to over-estimate the
specular component, while the Lafortune model—with its
higher number of parameters—yielded unstable fits. These
observations, in particular the unstability of fitting the Lafor-
tune model, agree with those made previously by Fuchs et
al. [FBLS05] in a similar experiment. Interestingly, Weyrich
et al. found it better to use a spatially-varying Blinn-Phong fit
than a spatially-uniform Torrance-Sparrow fit, which further
underlines the importance of a per-pixel parameterization
(Fig. 7). The Torrance-Sparrow model has been widely used
to model the specular surface reflection of skin [DHT∗00,
Geo03, FBLS05, DJ06, GHP∗08, LPGD09, GTB∗13].

While Weyrich et al.’s approach achieves suitable results,
it requires extensive sampling and a relatively long capture
time, during which the subject has to remain perfectly still.
The capture process can be significantly streamlined, how-

ever, by leveraging the fact that a single photograph captures
the reflectance for many orientations on curved surfaces (as
proposed by Marschner et al. [MWL∗99]). If we assume uni-
form surface properties over a given region, it is possible to
combine data from all pixels in the same region to obtain
denser angular measurement with fewer captures. This idea
was leveraged by Ghosh et al. [GHP∗08] to estimate the sur-
face reflectance parameters from a single camera position
and a single point light source. They used cross-polarization
to perform the diffuse-specular separation, and then recov-
ered a per-region surface roughness (forehead, eyelids, nose,
cheekbone, lip and lower cheeks). An additional capture with
full-on spherical illumination provides an estimate of per-
pixel specular albedo. A similar approach to fitting surface
reflectance parameters was used by Fuchs et al. [FBLS05],
who likewise fitted per-region surface roughness and spec-
ular albedo, as well as a per-pixel diffuse albedo. Georghi-
ades [Geo03] also recover surface parameters from a limited
set of photographs, fitting a single specular roughness and
specular albedo for the whole face. Neither Fuchs et al. nor
Georghiades perform an initial diffuse-specular separation,
and they instead fit all parameters of the model directly on
the captured data.

While the methods of Georghiades, Fuchs et al., and Ghosh
et al. reduce the number of required photographs compared to
a full dome capture, they come at the price of providing only
a per-region (or per-face) estimation of parameters. To get
the best of both world—that is, a full per-pixel parameteriza-
tion using very few photographs—some recent methods have
promoted gathering statistical properties of the reflectance
(e.g. total energy, mean, and variance) instead of discretely
sampling the reflectance function. These methods build on
the spherical illumination framework initially proposed by
Ma et al. [MHP∗07] to recover per-pixel diffuse and specular
normals. In particular, Ghosh et al. [GCP∗09] use second or-
der gradient illumination to capture the reflectance variance,
which they show to be directly proportional to the surface
roughness. Using only nine photographs (one to capture the
reflectance zeroth moment, used to recover the total energy;
three to capture its first moment, used to recover the mean;
and five to capture its second moment, used to recover the
variance), they can recover a full per-pixel parameterization,
including anisotropy.

Ghosh et al. [GCP∗10] later proposed an interesting al-
ternative for estimating surface parameters by analyzing the
polarization state of light, which can be encoded using Stokes
vectors and captured with only four photographs. By lever-
aging Mueller calculus, describing how a Stokes vector is
transformed when light interacts with a surface, they recover a
detailed model of per-pixel surface reflectance, including the
diffuse albedo, the specular albedo, the specular roughness,
and even the index of refraction.
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Figure 9: The 8D BSSRDF function encapsulates the com-
plex light interactions inside of a surface manifold A by re-
lating the incident light at position xi and direction ~ωi to the
outgoing light at position xo and direction ~ωo. This is related
to the reflectance field (compare to Fig. 3).

4.3. Sub-surface Reflectance

We now turn our attention to various approaches that try to
capture and parametrically model the sub-surface reflectance
of skin. While it is possible to fit parametric BRDF models
also to this sub-surface reflectance as in the previous section,
since these models assume that light enters and exits at the
same surface location, they are not expressive enough to
account for the soft, translucent appearance of skin due to sub-
surface scattering. BSSRDF models relax this assumption by
more accurately modeling the skin surface as a boundary of a
volumetric participating medium.

4.3.1. Background BSSRDF Models

The bidirectional surface scattering reflectance distribution
function (BSSRDF) is the generalization of the BRDF that
encapsulates how light incident from direction ~ωi at surface
boundary location xi scatters out at some other location xo in
direction ~ωo (see Fig. 9). To compute the outgoing light, we
therefore have to consider the incident radiance at all other
locations of the surface, from all directions, which leads to a
generalization of Eq. 1:

Lo(xo,~ωo) =
∫

A

∫
Ω

S(xi,~ωi; xo,~ωo)Li(xi,~ωi) d~ω⊥i dxi. (2)

In the general case, the BSSRDF is an 8D function (the 6
dimensions from the BRDF, plus an additional 2 for the out-
going position xo), making it impractical to capture densely
using brute-force, image-based techniques. In fact, as can be
seen by comparing Fig. 9 and Fig. 3, these can be viewed
as different parametrizations of the same function, making
dense capturing of the BSSRDF just as difficult as dense
capture of the reflectance field. Parametric approaches try to
make this more tractable by assuming the high-dimensional
BSSRDF arises due to some compact set of parameters Θ,
which typically allows collapsing some capture dimensions.

One option is to interpret the tissue beneath the surface as
a general (potentially volumetrically-varying) participating
medium and obtain the BSSRDF by numerically simulating
the light propagation using techniques such as volumetric
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Figure 10: Diffusion profile of a marble block due to a laser
beam at normal incidence [JMLH01]. The x-axis in the di-
agram denotes distance in millimeters, the y-axis a relative
scale of the radiant exitance.

Epidermis

Upper Dermis Bloody Dermis

Surface

All Layers

Figure 11: A breakdown of the multipole diffusion
model [DJ05]. Surface reflectance is modeled using the Cook
Torrance BRDF. Light that is not reflected off the surface is
channeled to the three homogeneous layers of human skin,
rendered separately using the parameters obtained from lit-
erature [Tuc00]. The final rendering requires a convolution
of the contributions of the layers as light travels through
the upper layers (epidermis) first before reaching the lower
layers (dermis). Transmitted light through epidermis and up-
per dermis is shown in the insets with a red border. This
model forms the basis for current state of the art capture
models [GHP∗08] as well as more specific biophysical skin
models [DWd∗08].

path tracing [HK93]. While this approach is quite general, the
simulation is computationally expensive, and the (potentially
volumetrically-varying) parametric description is arguably
not much more compact than the desired 8D BSSRDF it is
used to describe.

Most practical BSSRDF models therefore make simplify-
ing assumptions about the medium, bounding surface, and/or
mathematical form of the resulting BSSRDF to obtain an ex-
pressive, yet compact parametric model. A common strategy
is to express the multiple scattering in analogy to the so-called
“searchlight problem,” which considers a focused pencil beam
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of light normally incident on the surface of a large (typi-
cally infinite), smooth, planar homogeneous medium (see
Fig. 10 left). In such a configuration, the light exiting the up-
per boundary forms a spatial reflectance profile R(‖xo−xi‖),
which is radially symmetric (1D) about the normally-incident
beam (see Fig. 10 right). By additionally assuming that the
directional and spatial dimensions of the BSSRDF are sepa-
rable, we obtain a common parametric form:

S(xi,~ωi;xo,~ωo|Θ)∝ρ(~ωi |Θ)R(‖xo−xi‖|Θ)ρ(~ωo |Θ), (3)

where ρ(~ω) is typically collapsed to a 1D angular distribution.
This effectively models the behavior of a BSSRDF as a spatial
and angular blur, dependent on some parameters Θ.

Jensen et al. [JMLH01] proposed a practical BSSRDF
of this form, where the reflectance profile R was expressed
using a dipole diffusion approximation, and the angular ρ

terms were the Fresnel transmission functions at the incident
and outgoing directions. The shape of the profile R is con-
trolled by the relative index of refraction η of the boundary
and the medium’s absorption σa and reduced scattering σ

′
s

coefficients. Alternatively, the medium parameters can be
expressed using the reduced albedo α

′ = σ
′
s/(σ

′
s +σa) and

the diffuse mean free path, or translucency, ld of the medium.

Notable extensions to this parametric model include the
work of Donner and Jensen [DJ05], who introduce the mul-
tipole approximation to account for multiple layers of fi-
nite thickness—each with its own set of medium parame-
ters (Fig. 11). d’Eon and Irving [dI11] introduced several
improvements to the diffusion approximation to better han-
dle the separation of single and multiple scattering and in-
corporated more accurate boundary conditions. These ex-
tensions, as well as many other recent improvements that
focus primarily on accelerating the forward rendering prob-
lem [JB02, dLE07, d’E12], all follow the general form of
Eq. 3, with a few exceptions [DJ07, HCJ13].

4.3.2. Parameter Estimation

When considering subsurface scattering in a homogeneous
medium, there are only two parameters to estimate for the dif-
fusion approximation: the absorption coefficient, σa, and the
reduced scattering coefficient, σ

′
s. In their introduction of the

dipole method to computer graphics, Jensen et al. [JMLH01]
also describe how to fit the parameters from a diffusion pro-
file. The profile can be observed by photographing a material
sample illuminated by a normally incident beam of light.
Each pixel in the captured images gives a sample point of the
profile, resulting in hundreds of observations. Jensen et al.
report the fitting to be ill-conditioned and constrain the fit to
preserve the total diffuse reflectance. Unfortunately, neither
the setup nor the required measurement time of Jensen et al.’s
approach are suitable to face measurements.

A more practical approach to the fitting uses the total dif-
fuse reflectance to directly estimate one of the two unknowns.
While neither σa nor σ

′
s can be computed from it, an inversion

of the total diffuse reflection allows to compute the reduced
albedo α

′ [JB02], which together with the translucency ld
gives σa and σ

′
s. The practical advantage is that the mea-

surement of the total diffuse reflectance is very easy, it only
requires a capture with spatially-constant irradiance, which
is usually achieved by a simple full-on illumination capture.
In contrast, this fitting method is potentially less robust com-
pared to Jensen et al.’s constrained profile fitting, as it does
not allow for additional constraints. The remaining parameter,
translucency, has to be estimated from an observed profile.
The following methods differ in the way they observe the
profile on the face and how they overcome the difficult fitting
procedure, an overview is given in Tab. 2.

Weyrich et al. [WMP∗06] follow the idea of a single beam
of incident light and built a small sensor head that could be
placed safely on the face of a subject. The sensor head con-
tains a linear array of optical fibers, one of which is the light
source, while the others are sensors that capture a coarse sam-
pling of the diffusion profile. From fitting σa and σ

′
s they can

derive translucency, which they average over all subjects. The
average somewhat counterbalances the ill-conditioned nature
of the profile fitting [JMLH01, TGL∗06]. Furthermore, it al-
lows them to use an inter-subject translucency, but a subject
specific total diffuse reflectance. As total diffuse reflectance
is only valid for planar surfaces, they use the average of all
pixels of the observed total diffuse reflectance; hence, they
obtain homogeneous subsurface scattering parameters. To
add back details, they compute a modulation texture, which
is simply the ratio of the per-pixel total diffuse reflectance
observation and the total diffuse reflectance that one would
observe with the per-subject parameters σa and σ

′
s. Due to

the inter-subject shared average translucency, they are able
to fit subsurface scattering parameters for a new subject by
simply computing total diffuse reflectance, requiring a simple
capture with full-on illumination.

Tariq et al. [TGL∗06] instead proposed measuring the
reflectance profile by projecting stripe patterns on the face.
Their approach also allows for spatially-varying parameters,
assuming they are locally constant for the parameter fitting.
To observe full profiles, the stripe patterns on the face need
to be sufficiently spaced for the subsurface reflectance to be

Table 2: Comparison of subsurface estimation methods.
While the direct fitting requires a non-linear optimization,
look-up tables (LUT) are queried by a 1D search by minimiz-
ing sum-of-squares difference metric.

Profile from Fitting Granularity

[JMLH01] beam optimization object
[TGL∗06] stripes LUT pixel
[WMP∗06] beam optimization face
[GHP∗08] black dots LUT region
[ZGP∗13] curvature direct pixel
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Figure 12: Fitting a subsurface scattering model enables
the simulation of the soft appearance of human skin. The
right column shows different scattering layers: deep multiple
scattering, shallow multiple scattering, single scattering, and
specular surface reflectance [GHP∗08]. Note that in contrast
to Fig. 11, these layers are assumed to be additive.

Figure 13: Ghosh et al. [GHP∗08] project black dots to
sparsely acquire subsurface scattering profiles to fit the pa-
rameters. The lower left image shows the reparametrization,
which encodes lines from the dot boundary to the center as
rows in the image. Hence, each row represents a scattering
profile (lower right).

near-zero at the center of the unlit regions. As parameters
are estimated per pixel, each pixel has a single observation
of the profile due to one stripe pattern, although at different
distances from the closest directly illuminated stripe. More
observations are added by shifting the stripes pattern. To
estimate the translucency from the profile, Tariq et al. utilize
a 2D look-up table, which is first indexed by the total diffuse
reflectance (projected white image), and second by matching
the observed profile to precomputed profiles using a sum-
of-squares difference metric. They fill the look-up table by
rendering profiles assuming a normal incident illumination
with stripe patterns.

Tariq et al. and Weyrich et al. estimate parameters for the
dipole model, which assumes a semi-infinite homogeneous
medium. Inspired by the actual structure of skin, Ghosh et

al. [GHP∗08] estimate parameters for a multi-layer model
(Fig. 12). However, instead of convolving the two layers as
dictated by Donner and Jensen’s [DJ05] physically-based
multi-layer extension of the dipole, the contributions of two
layers are simply added. This simplification makes the fit-
ting tractable, but results in a data-driven two-layer model
without bio-physical meaning. As with diffuse–specular re-
flectance, the difficulty lies in separating the shallow and deep
scattering contribution to fit the parameters of each layer in-
dividually. To get a separate total diffuse reflectance, they
adapt the direct/indirect illumination technique of Nayar et
al. [NKGR06]. Projecting four phase-shifted high-frequency
patterns of 1.2mm stripes gives per-pixel (min,max) values.
The difference (max−min) is taken as the shallow (direct
in Nayar et al.) and 2×min the deep reflectance (indirect).
To estimate translucency, Ghosh et al. propose to capture the
diffusion profile by projecting a white pattern with black dots
on the subject’s face (Fig. 13). The diffusion profile can be
directly observed going from the edge of a dot to its center.
Separating the shallow and deep scattering profiles follows
from an assumption that shallow scattering decays quickly.
Hence, they use the inner two thirds of the profile (from the
dot center) to estimate the deep scattering, subtract the fitted
profile from the observations, and fit the residual as the shal-
low scattering profile. The actual profile fitting uses a look-up
table similar to Tariq et al. [TGL∗06]. The dot patterns allow
them to measure per-region translucency.

Following a recent trend in illumination bases, Zhu et
al. [ZGP∗13] derive the diffusion parameters from spherical
gradient illumination. To avoid profile sampling and fitting,
they require a curved sample and add a curvature parameter to
the dipole equations, although this violates the boundary con-
straints of the dipole. Finally, they estimate the translucency
by assuming an observation of the same sample point with
and without curvature under different illumination, which
gives them a ratio from which they derive translucency.

4.4. Biophysically-based Skin Models

While the previous methods use a combination of generic
surface and subsurface models to fit observations, researchers
have also proposed models specific to skin. The main advan-
tage of such models is that they are tightly coupled to the
actual structure and biological nature of skin. This allows the
use of measured data of skin pigments from the biological
and dermatological community, similar to the recent trend
in rendering to use physically-based materials, which leads
to models with an increased predictable behavior that can
represent different skin types as well as biological processes
such as blushing or tanning.

Before introducing the various skin models, let us first
describe the actual structure of skin, illustrated in Fig. 14, as
well as its interactions with light. Skin is covered by an oily
layer, on which light can reflect directly. Light that does not
reflect off the oily layer then travels through the various layers
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Figure 14: Diagram showing a decomposition of skin into
layers. From top to bottom we see the oil layer mixed with the
Stratum Corneum. Below that we have the epidermis layer
consisting mainly of melanin pigments responsible for the
brownish-yellowish color of skin. Then we have dermis mostly
consisting of blood cells with hemoglobin which give the
strong red color. Finally there is hypodermis which consists
mostly of fat cells that reflect most of the light.

of skin. The outer layer of skin, the stratum corneum, consists
mostly of dead cells and only has a marginal influence on
the overall appearance since it is a thin forward-scattering
medium with a very high albedo [KB04]. The next layer, the
epidermis, consists mostly of melanin that reduces UV radia-
tions, but also affects the visible spectrum, and causes colors
from light yellow to dark brown or black [DJ06]. The dermis
layer is thicker and consists mostly of hemoglobin, a pigment
present in blood cells that binds oxygen. Hemoglobin comes
in two different forms, oxygenated and deoxygenated, both
having complex spectral scattering properties, that need to be
properly modeled and simulated in rendering. Oxygenated
hemoglobin has a strong red appearance and a characteristic
W-shape around the 550nm wavelength, which is not present
for deoxygenated hemoglobin. The difference in the absorp-
tion spectra is distinctive that it is used to measure the amount
of oxygen in blood. All of the skin models described in the fol-
lowing section employ a spectral description of the scattering
coefficients to accurately model the scattering. Additional
small-scale cellular structures in the dermis (sweat glands
and ducts, hair follicles, muscles, capillary veins, etc.) also
influence the appearance, though each one only has a minor
individual influence on the overall appearance. Finally, the
hypodermis layer consists largely of fat cells, which strongly
reflect light [KB04], and it is therefore reasonable to neglect
light that penetrates deeper into the skin. Other features are

Table 3: Comparison of specific skin models.

Type Layers Parameters Evaluation

[KB04] BSDF 5 >10 Monte Carlo
[DJ06] BSSRDF 2 4 Multipole
[DWd∗08] BSSRDF 2 6 Multipole

visually important, such as the veins that are roughly at the
boundary between the dermis and the hypodermis, or freckles
and other surface imperfections. Skin thickness, which varies
across the face and the body as a whole, also affects appear-
ance. For example, the ears and nose wings are very thin with
a low amount of fat cells, which causes a very characteristic
translucent look.

For most purposes in graphics, modeling skin and its in-
teraction with light at a molecular or cellular level would be
prohibitive. Skin is therefore usually modeled at a macro-
scopic level, simplifying light interaction to scattering with
particles following statistical distributions. In practice, the
various skin-specific models make a tradeoff between quality
and performance, which is an important practical concern.
The complexity of skin, however allows for various choices
in abstraction and level of detail, which is one of the main
differentiators among the available models (see Tab. 3).

Krishnaswamy and Baranoski [KB04] present the
BIOSPEC model that accurately describes the structure of
human skin. The model mimics a five layer skin consisting
of the stratum corneum, epidermis, dermis (papillary and
reticular), and hypodermis (cf. Fig. 14). Due to the multi-
layer nature and the description of the layers with pigment
concentrations, analytic subsurface models such as dipole
diffusion cannot be applied for the simulation and Krish-
naswamy and Baranoski rely on a brute-force Monte Carlo
estimation. To make the evaluation of the model feasible, an
interface-to-interface tracing approach is used instead of a
physically-based volume rendering—somewhat counteract-
ing the original goal of an accurate model. Hence, scattering
is solely computed at the layer interfaces, although scattering
in real skin is caused by pigments, structures, as well as a
continuous change of index of refraction everywhere within
the skin. In the BIOSPEC model, pigments within the layers
only absorb light due to Mie and Rayleigh scattering. While
the simulated photons have fixed direction along the surface
normal, they compute random directions (using a Rayleigh
phase function) at the interfaces to adapt the absorption com-
putation to the next interface. Hence, the spatial position is
not changed and the overall result is a BSDF (a BRDF de-
fined over the full sphere). Due to the shear number of—and
complex interaction between—parameters, it is difficult to
deviate from previously measured values to simulate different
skin types.

Donner and Jensen [DJ06] were the first to propose a bio-
physically motivated BSSRDF model, but with the two main
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shortcomings of the BIOSPEC model in mind: parameter
space and performance. They model the human skin with
two-layers and a minimal amount of biophysically-based user
parameters that cover a large class of human skin types. More
importantly, they chose parameters with an intuitive behavior
due to their distinctive effect on appearance: melanin and
hemoglobin fraction, a blending weight between eumelanin
and pheomelanin, and an oiliness parameter. These parame-
ters allow simulating Caucasian, Asian, as well as African
skin types. While in reality more parameters are involved,
Donner and Jensen reasoned that the remaining parameters
can be easily fixed or derived with only a minor impact on the
space of possible skin types. To make the approach compu-
tationally efficient, they make use of the multipole diffusion
model [DJ05] instead of a Monte Carlo evaluation.

In follow-up work, Donner et al. [DWd∗08] increase accu-
racy by adding more parameters, but also extend the model
to handle heterogeneous parameters. Heterogeneous media is
difficult to simulate as the dipole and multipole approaches
assume a homogenous medium which induces a radially sym-
metric reflectance profile. To make the diffusion model appli-
cable, Donner et al. assume a “slow variation relative to the
mean free path of light”. Hence, the final reflectance profile is
the convolution of multiple radially symmetric intermediate
profiles due to reflectance and transmittance, just as for the
multi-layer model [DJ05]. By making the profile dependent
on the point of exitance of a layer, and storing intermediate
convolved results in texture space, Donner et al.’s [DWd∗08]
final reflectance profiles can be non-symmetric. To make this
computationally feasible, they express radially-symmetric
profiles using a Gaussian mixture model [dLE07], which
turns the profile convolutions into Gaussian blurs. They start
by applying a spatially-varying Gaussian blur in uv-texture
space to an irradiance map, which simulates one convolution.
The overall reflectance is calculated in a multi-pass proce-
dure convolving the results of the previous pass with the
spatially-varying parameters of the next layer. While slowly-
varying heterogeneous media was already considered in the
original dipole approach [JMLH01] (by making the profile
size dependent on the light incidence position), Jensen et
al.’s resulting profiles were always radially symmetric since
they only considered a single semi-infinite medium. Finally,
Donner et al. [DWd∗08] add a modulation texture between
the two layers to support strongly absorbing structures not
on the skin surface, such as veins or tattoos. Since these are
contained beneath the epidermis, their appearance is soft and
difficult to model using textures on the skin surface.

The skin models are able to represent typical skin appear-
ance quite accurately. Thanks to the low parameter models of
Donner et al. [DJ06, DWd∗08], the models can be practically
used for actual modeling of virtual actors. However, these
models have two practical shortcomings. Firstly, it is difficult
to fit parameters from observations due to the strong non-
linearity of the parameters. While Donner et al. [DWd∗08]
fit parameters for small skin patches and use texture syn-

thesis to model an entire hand, a fitting for a complete face
remains open. Furthermore, their fitting excludes the visu-
ally important inter-layer absorption texture, which needs to
be modeled manually. Additionally, the models are missing
distinctive skin features that make the appearance unique.
Manual modeling is difficult and tedious, and alleviating this
is the main motivation of the capture techniques discussed in
this STAR. It remains open if such models could avoid fitting
the non-physical albedo map used to represent details.

4.5. Dynamic Appearance

The aforementioned parametric approaches ignore the change
of facial appearance over time. This is because, in contrast to
image-based methods, effects such as change in viewpoint,
occlusion, or interreflection can be fully simulated during
rendering by means of global illumination algorithms. An
animated mesh with a consistent parametrization between sur-
face points and texture space easily allows propagating mate-
rial data from one frame to another, guided by the change of
the geometry. Hence, a large body of work focuses on perfor-
mance capture to estimate geometry and establish a consistent
texture parametrization. A combination of dynamic geome-
try and static skin properties allows for convincing results.
While image-based, the method of Hawkins et al. [HWT∗04]
follows this approach and assumes a unique mapping from
geometry to appearance. Yet, there are also dynamic skin
effects that affect appearance but do not cause a change in
geometry such as sweating, cold, blushing, etc. [WMP∗06].

Jimenez et al. [JSB∗10] focused on the visual effect of
blood perfusion due to changes in geometry. Their appear-
ance model is based on a simplified version of Donner et
al. [DWd∗08]. For dynamic appearance, they only change
the hemoglobin concentration, but leave melanin untouched.
They observed subjects performing different facial expres-
sions and conclude as follows. Firstly, there is a measurable
change in appearance due to a change of blood perfusion.
Secondly, there is a minimal delay between change in ex-
pression and change in appearance. Finally, they noted that
the appearance for different expressions is similar between
subjects on a large scale, but has a subject-specific pattern on
a small scale. They propose to model expression-dependent
spatially-varying concentrations of hemoglobin by storing a
base concentration for a neutral expression as well as the per-
expression relative change. To encode the relative changes,
they first note that a hemoglobin concentration map can be
represented by spatially-varying histograms of local neighbor-
hoods. Interestingly, the histograms exhibit a Gaussian shape,
and hence, can be represented by their mean and variance.
Due to this encoding, the relative change boils down to a
per-pixel shift and scale operation. There are two advantages
of this representation. The base concentration map can be
artistically altered while preserving a valid change to other
expressions, i.e., appearance transfer between subjects be-
comes possible. Furthermore, the shift and scale maps are of
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Figure 15: Dynamic skin appearance can be modeled as a function of facial expression. The model of Jimenez et al. [JSB∗10]
estimates blood perfusion of facial expressions, defining parameters for subsurface scattering. The effect is mainly perceived as
increased redness in the appearance (e.g., see the forehead). Although subtle, this is an important step towards highly believable
virtual characters.

low frequency, allowing for compression. To limit the amount
of capture and storage, Jimenez et al. model only six different
expressions, i.e., one base map and six shift and scale maps.
They follow the discriminative Ekman [EF78] emotions that
fit facial expressions: anger, disgust, fear, happiness, sadness,
and surprise. To support other intermediate expression, they
rely on the concept of blendshapes, which uses a weighted
combination of vertex positions to allow for seamless blend-
ing between expression. They couple the weights with a linear
blending of the shift and scale maps. However, the validity
of this blending is not clear. While they note that there is no
delay in the blood perfusion between expressions, the tran-
sition, which is required to depict other expressions, is not
necessarily linear. The results of their method are subtle, but
likely important to overcome the uncanny valley of virtual
actors (Fig. 15). Besides blood perfusion changes, they also
show results for alcohol drinking and exercises. Recently
Iglesias-Guitian et al. [IGAJG15] extended parametric mod-
els to also take into account the aging of skin, which allows
to simulate how the appearance of a person changes over the
years. Extensions to sweat, heat, or long term effects such as
tanning remain to be explored.

4.6. Surface Details

Geometric details on the skin surface can greatly affect the ap-
pearance of the skin, in particular fine scale variations of the
surface orientation. At a microscopic level, these variations
are not individually perceivable and are thus often quantified
statistically and directly integrated into the appearance model
(e.g. Torrance-Sparrow). At a macroscopic level, the surface
normals can be computed from the reconstructed geometry.
On a mesoscopic scale, surface features are visually appar-
ent but too small to be reconstructed as geometry directly.
Skin pores and fine scale wrinkles typically fall into this last
category. Over the last decades several methods have been
proposed that try to estimate the normals directly, and provid-
ing a comprehensive overview of this body of work is outside
the scope of this report. We therefore focus on work that deals
with estimating mesoscopic surface structure in the context
of faces. Generally speaking, this work can be categorized
into active and passive techniques.

Active Illumination. Active techniques illuminate the face
with a well defined set of lighting conditions. Photomet-
ric stereo [Woo80] is certainly the most widespread active
method for facial mesostructure estimation. While, in theory,
three lighting conditions suffice to estimate normals on Lam-
bertian surfaces, in practice, the non-flat, non-convex shape
of the human face causes self-shadowing and the reflectance
is far from Lambertian. Therefore, Weyrich et al. [WMP∗06]
make use of a light stage (Sec. 2) and capture 150 different
illumination conditions, temporally multiplexed over 25 sec-
onds. This long exposure is problematic, since the person
unavoidably moves during the capture process, leading to
mis-registrations of the data. Ma et al. [MHP∗07] drastically
reduce the illumination conditions required by using a differ-
ent illumination basis. They further show that normals com-
puted from the direct surface reflection only contain higher
spatial detail and they thus separate the specular and diffuse
reflection. Still, their method requires eight frames which
are temporally multiplexed and thus require the actor to re-
main still during acquisition. Wilson et al. [WGP∗10] aim at
overcoming this issue by time-multiplexing complementary
illumination conditions and use optical flow to align them.
Still, optical flow will only work for small motion during
acquisition, which entails fast cameras or slow moving actors.
To overcome the temporal integration problem completely,
authors have started to look into spectrally multiplexing the
illumination conditions instead [BHV∗11, FYD11, VH12].
These methods introduce a different cost, however, in that
that they require white makeup to be applied or they need to
consider the spectrally dependent attenuation of the skin.

To summarize, active techniques can generally recover
the surface details at extremely high resolution, but usually
require time multiplexing to acquire the different lighting
conditions, which is problematic if one wants to capture
objects in motion.

Passive Methods. In contrast to active methods, passive
techniques have the advantage that they only observe the
scene. Typically these methods require only a single frame
to estimate the structure but yield less accurate results than
active methods.
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Beeler et al. [BBB∗10] introduce the concept of meso-
scopic augmentation, where they combine multi-view stereo
with shape-from-shading. Their work assumes constant om-
nidirectional illumination and is thus limited to studio condi-
tions. Wu et al. [WWMT11] extend this concept to arbitrary
illumination by also estimating the environment map. One of
the core problems of these methods is to distinguish between
texture and shading. This separation is ill-posed for a single
image and thus Beeler et al. [BBZG12] propose a follow-up
approach that uses temporal information to overcome this.

Level of Detail. All above methods, both passive and active,
create surface details at a single scale only. The structure
of surface detail at various scales, however, has a combined
impact on appearance. This coupling must be accounted for
both during rendering and during capture.

On the rendering side, displaying high-frequency content
at a distance requires filtering to avoid aliasing artifacts or
expensive super-sampling. The most common way of filter-
ing is texture mip-mapping, which blurs the input at multiple
levels to remove high-frequencies. Unfortunately, such linear
filtering of geometric detail in normal or displacement maps
induces a strong change in appearance, resulting in overly
specular appearance for far away objects. To preserve ap-
pearance, variations present in the high resolution normal or
displacement mapped geometry must be transferred to the
surface roughness as part of the BRDF. Several recent tech-
niques [OB10, DHI∗13, BN12] have considered this for the
general rendering problem. In the context of faces, von der
Pahlen et al. [vdPJD∗14] employed a custom mip-map fil-
tering for the normal map, which concurrently filters a gloss
map to increase roughness.

The problem occurs in exactly the opposite direction dur-
ing capture. Due to the averaging occurring within the extent
of a single pixel, fitting micro-facet roughness to lower res-
olution captures results in overly diffuse appearance when
the surface is view up close. To combat this problem, Gra-
ham et al. [GTB∗13] capture microscale detail patches up
close using a miniaturization of the system proposed by Ma
et al. [MHP∗07] and propose fitting the specular roughness
from these samples instead of the mesoscopic full facial scan.
This has a dramatic effect on the specular appearance of the
skin as illustrated by the difference between Fig. 16 (a) and
(b). Furthermore, they use the microscale patches to inject
high-frequency normal map details into the mesoscopic full
face scan using a constrained texture synthesis framework.
This results in further resolved details as seen in Fig. 16 (c).

4.7. Facial Hair & Velvety Skin

Large parts of the human skin are covered with hair of differ-
ent size, shape and color—ranging from the dense and very
prominent scalp hair to the sparse and almost invisible vellus
hair coating the skin, often referred to as “peach fuzz.” In
this report we limit ourselves to methods that are concerned

(a) mesoscale scan (b) mesoscale scan (c) microscale scan
+ mesoscale BRDF + microscale BRDF + miscroscale BRDF

Figure 16: Graham et al. [GTB∗13] capture the full facial
mesoscale geometry, which they enhance with microscale
details from zoomed-in measurements of small skin patches.

a) b)

Figure 17: A sphere rendered with Lambertian shading (a),
and the same sphere rendered with additional asperity lobe
(b) [KP03]. The typical effects of asperity scattering are
clearly visible: the light bleeding at the shadow boundary to
the left as well as the bright halo at the occluding edge to the
right. These effects are in opposition to those predicted by
standard Lambertian shading.

with sparse, short hair coverage, where the underlying skin
is visible and the hair thus contributes primarily to the skin
appearance.

Koenderink and Pont [KP03] motivate the importance of
peach fuzz. They show that vellus hair produces bright ha-
los at occlusion boundaries and light bleeding at shadow
boundaries—effects which directly oppose Lambertian shad-
ing. These effects are strongest when the light and viewing
directions both span a large angle with the surface normal.
Koendrik and Pont account for these effects by adding an
additional lobe to the surface BRDF, called the asperity lobe.
They model the asperity scattering by assuming the surface
is covered with an atmosphere of a certain thickness and ex-
tinction coefficient in which single scattering occurs. This
extended BRDF reproduces the asperity effects directly and
homogeneously on the surface as shown in Fig. 17. Similarly,
a layer of short non-shadowing curves was found necessary to
provide some missing visual elements on the rendered baby
for the movie Lemony Snicket [Kur11].

The asperity lobe approach may suffice for distant viewing,
where the thickness becomes negligible and the distribution
of the scatterers approaches visual homogeneity. In closer
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Figure 18: Vellus hair on a female face and the visual im-
portance on appearance [KP03]. The effect of this “peach
fuzz” is most apparent under extreme illumination conditions,
such as contre-jour. At this scale, individual vellus hair fibers
are clearly visible and modeling their effect with a spatially
homogeneous asperity lobe would not suffice.

depictions however, such as the ones shown in Fig. 18, it
is important to capture and represent the spatially varying
distribution and shape of the vellus hair.

The work by Beeler et al. [BBN∗12] presents a step in this
direction as it attempts to capture and reconstruct the individ-
ual hair fibers that cover the face. This allows re-rendering the
data faithfully, reproducing the spatially varying look of facial
hair. This approach, however, requires individual hair fibers to
be visible by multiple cameras to conduct multi-view recon-
struction, making the method suitable for capturing thicker,
more prominent facial hair. Capturing and reconstructing the
near-invisible vellus hair is still an open problem.

4.8. Conclusion

Splitting the problem of describing the facial appearance into
sub problems, which can be handled by specific models in-
dependently, enables a full parametric description. The main
benefit is not just the reduced storage, but a complete descrip-
tion of appearance, i.e., a rendering from any viewpoint or
under any illumination with virtually any geometry becomes
possible. It also allows for artistic control, which we will de-
tail further in Sec. 5.5. However, the observations have to be
separated first, such the respective data can be actually fitted
to the corresponding model. The fitting procedure itself is
difficult, especially for the subsurface scattering component
due to the complex structure of skin, which causes the re-
construction to be ill-conditioned. Hence, accurate parameter
estimation requires many observations, which prevents cur-
rent parametric methods from real-time appearance capture.

The discussion so far excluded any details about the actual
capture process, which also poses problems.

5. Practical Considerations

So far we have described a number of methods for capturing
skin appearance, focusing primarily on the scientific aspects
and theoretical capabilities of each method, which at least par-
tially assume an ideal world. In practice, appearance capture
has a number of additional constraints that need to be consid-
ered. This list is not meant to be exhaustive, but rather hints
to some of the practical challenges that need to be considered
for face appearance capture.

5.1. Polarization

In the context of face appearance capture, polarization is
predominantly used to separate the diffuse and specular com-
ponents of reflectance, by exploiting the fact that specular
reflection preserves the polarization state of light, whereas the
diffuse part does not (refer to Sec. 4.1). Practically, however,
multiple factors constrain the use of polarization: firstly, the
view-dependency of the polarization orientation; secondly,
the need for physically changing the filter orientation (of ei-
ther the camera or light source) to capture parallel- as well as
cross-polarization; and lastly, the dependence of the amount
of reflected light on the angle of incidence.

The physical basis for the latter is as follows. Light reflec-
tion at a smooth surface follows the two Fresnel equations
for specular reflections of s- and p-polarized light. The s-
polarized light is orthogonal, while p-polarized light is par-
allel with respect to a reference plane, defined by the two
vectors, light incident direction and the viewing direction. As
the reflection is perfectly specular, the surface normal needs
to be the half vector of both vectors. Importantly, the s and p
components are scaled depending on the angle of the incident
light (as well as the indices of refraction; see Fig. 19 left).
This needs to be considered to scale the observed specular
reflection accordingly. Further, the p component goes to zero
at the Brewster angle, hence, even without a filter in front of
the camera, no specular reflection is observed if the incident
light is fully p polarized, which depends on the orientation
of the polarizer in front of the light source.

Linear Polarization. Ma et al. [MHP∗07] use a single-
camera setup, and fix the camera viewing direction and its
polarizer orientation and optimize the orientation of the po-
larizers of the light sources. This causes perfect cross polar-
ization and can be turned into perfect parallel polarization by
rotating the polarizer of the camera by 90 degrees. The inci-
dent angle dependence of the reflection of s- and p-polarized
light leads to holes in the captured data, as shown in Fig. 19,
right.

In a multi-camera setup, it is not possible to achieve per-
fect cross- or parallel-polarization, since the various cameras
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Figure 19: Linear polarization and Brewster’s angle. Left:
The dependency of the fraction of reflected light on the angle
of incidence of the light. Right: Fraction of expected observed
reflected light for parallel polarization with an optimal setup
for a single viewing direction [MHP∗07]. At the Brewster
angle, no reflection can be observed.

have different viewing directions. To address this limitation,
Ghosh et al. [GFT∗11] propose a latitude and longitude po-
larization pattern. The introduced error is low and due to
the symmetry in the patterns, it allows for placing cameras
around the equator. More interestingly, this setup addresses
the issue of physically rotating polarizers. To get parallel- and
cross-polarization Ghosh et al. switch between the latitude
and longitude pattern in two subsequent captures, i.e., they
virtually change the orientation of polarizers of the lights by
using a different set of physical light sources. This approach,
however, only works for smooth illumination bases such as
the spherical gradient illumination to avoid differences in the
illumination for the parallel- and cross-polarization captures.
Finally, the latitude and longitude patterns allow for a hor-
izontal as well as vertical polarization filter in front of the
camera. However, due to the incident angle dependence, the
vertical orientation is superior [GFT∗11].

Circular Polarization. Circular polarization (light with
equal amount of s and p-polarization, but both phase-shifted)
is an alternative to the commonly used linear polariza-
tion [MHP∗07, GCP∗10, GFT∗11]. The main advantage is
that it does not share the view-dependency of linear po-
larization. However, incident circularly-polarized light be-
comes skewed after reflection (as the s and p-components
are scaled differently at a reflections; see Fig. 19 left), re-
sulting in elliptical polarization with unequal s and p com-
ponents. Elliptically-polarized light is then only partially fil-
tered by a circular-polarizer. The effect increases with the
steepness of the incident light, largely preventing any cancel-
lation for angles larger than 70 degrees [MHP∗07]. While this
makes it impractical for diffuse–specular separation, Ghost et
al. [GCP∗10] still capture circular polarization as part of their
estimation of the Stokes vector that describes the polarization
state of light. They further show how the degree of circular
polarization can be correlated to the roughness of the surface
(refer to Sec. 4.2).

5.2. Cameras

While a pinhole camera model allows for elegant mathemati-
cal modelling, physical realities oftentimes pose severe limi-
tations to the theory. Some of these limitations, such as lens
distortion and vignetting, can be alleviated through careful
calibration. Some, however, cannot be avoided. For example,
cameras have a physical extent and block light, which can
pose problems for algorithms that assume omnidirectional
illumination, especially if multiple cameras are employed.

The Sharpness/SNR Dilemma. The main physical limita-
tion of cameras is the tradeoff between sharpness and the
amount of incident light, which directly impacts the signal-
to-noise-ratio (SNR) of the camera. Lenses integrate light
angularly by redirecting and focusing rays from different di-
rections onto the sensor. Unfortunately, this limits the depth
range that may be imaged in focus, the so called depth-of-
field. The camera aperture is used to control the angular
domain that is integrated, and reducing it will increase the
depth-of-field, but at the same time also reduce the amount
of incident light. Furthermore, lenses are typically built for
a specific aperture range, and reducing it beyond this range
might cause an overall loss of sharpness due to diffraction
effects. The second option is to integrate light temporally
through increased exposure times, which will cause motion
blur for moving objects. A third option is to increase light spa-
tially by employing larger pixel areas, which limits the spatial
frequencies that can be resolved and thus reduces sharpness.
Finally, integrating light spectrally leads to an averaging of
the color features which can be considered a loss of sharp-
ness as well. In the end, a tradeoff has to be made between
depth-of-field, SNR, and motion-blur and the optimal tradeoff
depends on the use-case. Additionally, the use of polarization
filters (as described above) reduces the amount of incident
light substantially (∼ 50%).

Dynamic Range. Another point to consider is dynamic
range: the ratio between the maximum and minimum mea-
surable light intensity. Even modern cameras have limited
dynamic range and may not suffice to capture all elements in
a scene at a suitable exposure. Beeler et al. [BBN∗12], for ex-
ample, report that they were not able of capturing dark facial
hair and fair skin in a single exposure. High dynamic range
imaging (HDR) could alleviate this problem, but most exist-
ing HDR cameras require temporal multiplexing [RBS03],
which again requires the subject to remain very still. There-
fore, most facial appearance capture approaches do not make
use of HDR. An exception is the work of Tunwattanapong et
al. [TFG∗13], which thus requires an acquisition time of ap-
proximately 10 minutes. While suitable for inanimate objects,
this is not practical when acquiring human faces.

5.3. Illumination

Just as for cameras, physical realities also impose limitations
on the illumination hardware, some of which may be compen-
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sated through careful calibration and others that unfortunately
cannot be avoided. For one, distant lights are often not really
distant, and as a consequence incident rays are not parallel.
Also, point lights are not really points but area light sources.
Furthermore, light has a quadratic spatial falloff and typically
also an angular one. These effects may be overcome with
careful calibration [WMP∗05, WMP∗06] or can be safely
ignored when the relative distances of the light to acquired
surface area is sufficiently large.

The sharpness/SNR dilemma discussed previously could
in theory be solved with stronger illumination. Current illu-
minators such as LEDs can provide high illumination density
(the amount of light emitted per area) but typically still have
to employ lenses to focus the light, and as such suffer from
analogous problems as cameras. Apart from angular ampli-
fication through lenses, another option is to add more lights
spatially and turn them on at the same time. The downside
here is that the angular resolution of the incident illumination
is reduced since multiple light sources act effectively as a
point sampled area light source. Wenger et al. [WGT∗05]
investigate different spatial arrangements in their light stage.
They show how activating three neighboring lights increase
the SNR of the captured data over the canonical single light
case, and report only a small decrease of quality due to the
skin BRDF. They also investigate the use of a different distri-
bution pattern, the Hadamard basis, which randomly activates
half of the lights. In theory, this basis allows for the same spa-
tial resolution of the environment light as the canonical case,
but with drastically higher incident light per measurement. In
practice, however, the required inversion performs poorly in
low light areas such as shadows, and Wenger et al. conclude
that it is inferior compared to the canonical case.

Perhaps the best illumination solution would be to increase
the illumination density, and future technology is likely to do
so. However, as lights reach ever higher illumination densities,
the ultimate upper limit on the amount of illumination will
be imposed by the human factor, as described next.

5.4. The Human Factor

One aspect that is oftentimes ignored in theory is the fact that
the intent is to capture a human being. This puts into place
additional limitations, for example the amount of illumina-
tion that can be applied before the subject starts squinting
or has to close his eyes altogether. Furthermore, flashing
lights may not only cause discomfort but could potentially
be hazardous [WGT∗05]. Also, even if the subject is not
performing, but trying to hold an expression, he will not be
able to remain perfectly still during longer stretches of time.
This poses limitations to methods that require temporal mul-
tiplexing or integration, which are even more severe when
acquiring dynamic effects such as blood flow. Outside of the
research environment, the fact that the person whose facial
appearance you want to capture may be a highly-paid, famous

actor puts even more serious constraints on capture time and
safety concerns.

An interesting track for mitigating human constraints is
to reuse, or transfer, as much data as possible, in order to
minimize the incremental data that actually has to be captured.
Peers et al. [PTMD07] propose a method based on quotient
images [RRS99] that capture the ratio of the reflectances due
to a desired illumination and constant spherical illumination.
Assuming large scale geometry can be warped between two
subjects A and B, this allows transferring the reflectance of A
to B as well. To do so, the reflectance of subject A needs to
be captured using any of the methods discussed in Sec. 3 to
obtain the quotient image Q. Capturing the performance of
subject B only under uniform illumination and multiplying
by a warped version of Q gives a relit B. Tunwattanapong
et al. [TGD11] show how multiple quotient images can be
combined artistically.

5.5. Artistic Control

In a production environment, it is common to have artists
manually alter the appearance of virtual characters, usually by
editing texture maps that encode the various attributes of the
rendering model. In practice however, parameters often have
complex, unintuitive behaviors that are difficult for artists to
master. A simple example is drawing or editing albedo maps,
since artists are used to incorporating shading cues in their
art, which would result in an invalid albedo. While this issue
can be addressed through practice and education, some other
cases are more problematic. In the context of subsurface
scattering for instance, the effect of some parameters can
be very difficult to predict, even for more technical users
with the proper mathematical background. The absorption
and scattering coefficients of BSSRDFs models interact in
a non-linear fashion that is not only proving problematic
when fitting data (see Sec. 4.3), but also making them highly
abstract for artists. Even the biophyiscally-based model of
Donner et al. [DJ06], with its parameterization specialized to
human skin (inputs covering such quantities as hemoglobin
and melanin contents), does not lend itself to, for instance,
easily editing in a mole on the subject. An alternative, initially
explored by Jensen and Buhler [JB02] and Hery [Her03,
Her12], instead obtains the BSSRDF parameters using an
albedo inversion, giving much more meaningful and tunable
knobs to the artists, namely the translucency and a regular
diffuse albedo map.

6. Conclusion

The state of the art in facial appearance capture has evolved
drastically over the last two decades. Today, image-based
methods can achieve stunning photo-realistic results, though
they do so at the cost of an extensive capture process (see
Tab. 4). However, practical applications typically need a
more flexible framework, where data can be captured rapidly,
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Table 4: Comparison of image-based methods that support relighting and are discussed in Sec. 3. SV denotes spatially-varying. (*) This method
does not sample SV illumination but can synthesize it.

Dynamic geometry & Sampling
Relighting appearance Novel viewpoints SV illumination dimensionality Illumination basis

[DHT∗00] 4 8 4 8 6D canonical
[DWT∗02] 8 4 8 8 3D canonical
[HWT∗04] 4 4 4 8 7D canonical
[WGT∗05] 4 4 8 8 5D canonical & hadamard
[ECJ∗06] 4 4 4 8 7D canonical
[JGB∗06] 4 4 8 4* 5D canonical & structured
[TGD11] 4 8 8 8 4D canonical & spherical

edited, and extrapolated. This has motivated the development
of parametric methods that can offer more of this flexibility.
This is illustrated by the recent trend in research, with a clear
focus on parametric methods (see Tab. 5). While this has
resulted in vast improvements—to the point where paramet-
ric methods can now achieve near photo-realism—there are
still significant challenges ahead that should be addressed in
future work.

Accuracy of Parametric Models. Current parametric mod-
els are still not able to accurately represent the full and often
subtle complexities of facial appearance. For instance, de-
tailed vellus hair is not considered by existing methods. In
general, most existing models rely on assumptions that are
actually invalid in practice. In the case of subsurface scatter-
ing, many methods rely on the dipole (or multipole) diffusion
model and use its BRDF approximation under the assump-
tion of uniform illumination. This has clear shortcomings.
These models are only valid for homogeneous media, but are
often used for the estimation of spatially-varying parameters.
Furthermore, they assume a flat surface, which is not true
especially in the regions of the nose and ears. While these
limitations do not necessarily preclude reaching acceptable
results, there is still clearly room for improvement.

Model/Capture Discrepancy. The inaccuracy of existing
parametric models is compounded by the fact that discrep-
ancies in the capture setup often introduces further approxi-
mations. For example, when fitting surface parameters, inter-
reflections on the face (such as light reflecting off to nose
towards the cheek) is neglected. Another example is the op-
tical separation of diffuse and specular components using
cross-polarization. This does not strictly filter out specular
reflection but also filters light that scattered a few times and
did not lose polarization yet. This additional component is
included in the fitting of surface reflectance, which is not ex-
plicitly accounted for by the surface reflectance model. Also,
when fitting the dipole parameters, it is common to assume
the skin surface to be a smooth dielectric, even though it
is known to be rough (and usually modeled as such when
fitting the specular reflectance). Future work could consider
improving upon the state of the art by either relaxing the as-

sumptions of the parametric model to better match reality, or
by ensuring that these assumptions are better satisfied during
capture. One example of the latter strategy was proposed by
Donner et al. [DWd∗08], who applied a thin film of ultra-
sound gel to skin, effectively smoothing out the rough surface.
This approach, may however, not be entirely practical for full
facial appearance capture.

Editing and Control. Parameters of existing models are cur-
rently not easily editable by artists [SPN∗14]. Ideally, models
should be efficient to evaluate, their parameters should have
a physical meaning, should be easy to fit, intuitive to edit,
and the required capture should be practical and cheap. In
practice, however, many of these goals are conflicting with
each other. In particular, bridging the gap between parameters
that are intuitive to edit while having a physical meaning is
an interesting area for future work.

Human Perception. A wide range of research has aimed
at photorealism, but it is unclear which effects are essential
for bridging the uncanny valley of human facial appearance.
Deeper insights into human perception of facial appearance
could help to derive new methods that offer better trade-
offs between accuracy and efficiency. Unfortunately, this is a
complex problem where the visual impact and perception of
one feature is difficult or impossible to isolate from others.

Beyond Humans. Movie productions occasionally feature
alien creatures, or other creations, for which facial appear-
ance must be created. Interestingly, humans tend to map their
every day observations to these creations and have implicit
expectations of what alien organic skin should look like. It
would be interesting to develop a framework where current fa-
cial appearance data could be extrapolated to produce fantasy
creatures that still appear plausible to human observers.

Live Action. Since the estimation of parameters or the esti-
mation of the reflectance function requires the observation
of many measurements, it is in general difficult to capture
them on a per frame basis. Motion compensation is strictly
necessary for spatially high-frequency changing parameters
such as albedos or normals. Clearly, this becomes easier with
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Table 5: Comparison of parametric approaches the estimate model parameters as described in Sec. 4. In this table we make the explicit
distinction between local point illumination basis that are not assumed to be at infinity and distant canonical illumination basis, which denotes
point light sources at infinity as used by the image-based methods. We use the following abbreviations for the surface models: LUT – lookup
table, TS – Torrance-Sparrow model [TS67], Ward – Ward model [War92], KSK – Kelemen model [KSK01]

Dynamic Diffuse–specular Surface Subsurface Illumination
appearance separation model Translucency model basis

Surface appearance
[MWL∗99] 8 polarization LUT 8 8 local point
[MGR00] 8 polarization LUT 8 8 local point
[Geo03] 8 8 TS 8 8 local point
[FBLS05] 8 8 TS, Ward 8 8 local point
[GCP∗09] 8 polarization TS, Ward 8 8 spherical gradient
[GCP∗10] 8 polarization TS 8 8 spherical gradient
[GTB∗13] 8 polarization TS 8 8 spherical gradient

Subsurface appearance
[WMP∗06] 8 computational TS 4 dipole distant canonical
[TGL∗06] 8 polarization 8 4 dipole structured
[GHP∗08] 8 polarization TS 4 di-/multipole spherical gradient & structured
[ZGP∗13] 8 polarization 8 4 dipole spherical gradient
[JSB∗10] 4 8 KSK 4 screen-space diffusion -

high-speed cameras as inter-frame motion is reduced. Go-
ing even one step further, it would be interesting to estimate
the parameters in real-time, similar to recent advances in
performance capture [BWP13, LYYB13, CHZ14].

Capture in the Wild. Most setups operate in very controlled
environments, with a confined working volume which re-
stricts the motion of the actor. Relaxing these constraints
already works for performance capture [KSS11], however,
for appearance capture it still poses interesting research chal-
lenges and opens up new application areas.

Fabrication. Current methods have achieved impressive re-
sults for acquiring real-world data and replicating it in a
virtual environment. It would be interesting to investigate to
what extent these methods could be employed for the compu-
tational design of physical replicas, such as prosthetics or an-
imatronics, effectively closing the loop to the real world. The
more stringent requirements of physical appearance replica-
tion will likely put increased pressure on the approximations
currently deemed acceptable for virtual reproduction.

Scalability. From a practical point of view, creating a photo-
realistic virtual actor currently requires a big budget, exten-
sive capture hardware, and the talent of experienced artists.
Investigating capture approaches and models that are more
scalable would be extremely important to transfer what is cur-
rently possible for feature films to other application domains
such as virtual reality, telepresence, games, or post-processing
of personal video footage.

While addressing these problems is important for a faith-
ful capture and reproduction of facial appearance, it is only
one aspect of a complete representation of the human char-

acter. There are plenty of remaining challenges that are ac-
tively researched, including capturing eyes [BBN∗14], teeth,
hair [PCK∗08], the tongue, the rest of the body, and clothing,
which would have to all be integrated in a comprehensive
model.
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