TEMPORALLY SLICED PHOTON PRIMITIVES FOR TIME-OF-FLIGHT RENDERING

Yang Liu, Shaojie Jiao, Wojciech Jarosz

Time-of-flight Imaging

Steady-state

Temporally Sliced Photon Primitives for Time-of-flight Rendering

Time-of-flight

http://giga.cps.unizar.es/~ajarabo/pubs/femtoSIG2013/

Sensing through media

• Seeing through fog

https://www.brightwayvision.com/technology

Temporally Sliced Photon Primitives for Time-of-flight Rendering

Reveal buried sketch under painting

Abraham et al. (2010), 'Non-Invasive Investigation of Art Paintings by Terahertz Imaging'

Why simulate time-of-flight imaging

V C . Temporally Sliced Photon Primitives for Time-of-flight Rendering Gruber et al. used synthetic data from video game GTA V to train a gated sensor on generating depth. Gruber et al. (2019), "Gated2Depth: Real-time Dense Lidar from Gated Images"

Why simulate time-of-flight imaging

Marco et al. employed a neural network to correct multipath interference errors from time-of-flight cameras in depth reconstruction. Marco et al. (2017), "DeepToF: Off-the-Shelf Real-Time Correction of Multipath Interference in Time-of-Flight Imaging"

▼ 6 Temporally Sliced Photon Primitives for Time-of-flight Rendering

Volumetric Rendering

Temporally Sliced Photon Primitives for Time-of-flight Rendering

Volumetric Rendering

▼ C |• Temporally Sliced Photon Primitives for Time-of-flight Rendering

Time-of-flight Volumetric Rendering

▼/ <u>€</u> |• Temporally Sliced Photon Primitives for Time-of-flight Rendering

Camera-unwarped vs. warped

Camera-unwarped (ignore time delay in first cam segment)

Marco et al. (2019), 'Progressive Transient Photon Beams'

Camera-warped (count time delay in first cam segment)

Temporally Sliced Photon Primitives for Time-of-flight Rendering

Related Work

Apply photon mapping-based methods to volumetric timeof-flight rendering

- Jarabo et al. (2014)
 - Transient photon mapping
- Marco et al. (2019)
 - Progressive transient photon beams

A time-of-flight animation with many volumetric caustics. Marco et al. (2019), "Progressive Transient Photon Beams"

Related Work

2+ BOUNCES SINGLE	MIS (u, t), (v, t), (u, v) Var: 0.407× MIS 3-planes, cones, cylinders Var: 0.356×	Beams Var: 1.0× OD Planes Var: 1.0×
2+ BOUNCES SINGLE	MIS (u, t), (v, t), (u, v) Var: 0.155× MIS 3-planes, cones, cylinders Var: 0.623×	Beams Var: 1.0× OD Planes Var: 1.0×
2+ BOUNCES SINGLE	MIS (u, t), (v, t), (u, v) Var: 0.555× MIS 3-planes, cones, cylinders Var: 0.209×	Beams Vars 1.0x OD Planes Var: 1.0×

Deng et al. compare their method (left column) with previous work (right column). Deng et al. (2019), "Photon surfaces for robust, unbiased volumetric density estimation"

Temporally Sliced Photon Primitives for Time-of-flight Rendering

Steady-state higher-order photon primitives

- Benedikt et al. (2017)
- Deng et al. (2019)
- New benefits: unbiased, MIS

Goal

time-of-flight setting.

- Unbiasedness
- Multiple Importance Sampling
- Increased Path Reuse

Apply the improvements from higher-order primitives to the

Contributions

- New formulation
- Recipe for sliced photon primitives

Contributions

- New formulation
- Recipe for sliced photon primitives

Path Space

▼ € !. Temporally Sliced Photon Primitives for Time-of-flight Rendering

3D Blur Offset vector $f(\overline{\mathbf{z}}) = f(\overline{\mathbf{x}}) f_{\omega}^{1,1} K_3(\mathbf{g}) f(\overline{\mathbf{y}})$ Camera subpath contribution

Photon subpath contribution

V C . Temporally Sliced Photon Primitives for Time-of-flight Rendering

Phase Function Offset vector $f(\overline{\mathbf{z}}) = f(\overline{\mathbf{x}}) f_{\omega}^{1,1} K_3(\mathbf{g}) f(\overline{\mathbf{y}})$ Camera subpath contribution Photon subpath contribution

▼ € . Temporally Sliced Photon Primitives for Time-of-flight Rendering

V C |-Temporally Sliced Photon Primitives for Time-of-flight Rendering

Bias 🔄

Cannot estimate with Monte Carlo 🔄

▼ € Temporally Sliced Photon Primitives for Time-of-flight Rendering

$\int f(\overline{\mathbf{x}}) f_{\omega}^{1,1} \delta^3(\mathbf{g}) f(\overline{\mathbf{y}}) \, \mathrm{d}\mu(\overline{\mathbf{xy}})$

No bias 😳

▼ 6 . Temporally Sliced Photon Primitives for Time-of-flight Rendering

$\int_{\Xi_n} \int_{\Xi_n} f(\overline{\xi_a}) f_{\omega}^{1,1} \delta^3(\mathbf{g}) \, \mathrm{d}\overline{\xi_a} \, \mathrm{d}\overline{\xi_n}$

Choose 3 dimensions to pre-integrate

▼ 6 . Temporally Sliced Photon Primitives for Time-of-flight Rendering

$$\overline{\xi_a} = \{\underline{t_2}, \underline{t_1}, \underline{s_1}\}$$

 $\int_{\Xi_n} \int_{\Xi_n} f(\overline{\xi_a}) f_{\omega}^{1,1} \delta^3(\mathbf{g}) \, \mathrm{d}\overline{\xi_a} \, \mathrm{d}\overline{\xi_n}$

Choose 3 dimensions to pre-integrate

▼ € -Temporally Sliced Photon Primitives for Time-of-flight Rendering

Jacobian for change-of-variable

Car

▼/ € |· Temporally Sliced Photon Primitives for Time-of-flight Rendering

$$f(\overline{\xi}_{a})f_{\omega}^{1,1} \middle| |\mathbf{J}_{\overline{\xi}_{a}}^{\mathbf{g}} \middle|$$

No bias \bigcirc
Can estimate \bigcirc

 $d\xi_n$

Photon Plane

Temporally Sliced Photon Primitives for Time-of-flight Rendering

▼ € . **Temporally Sliced Photon Primitives for Time-of-flight Rendering**

Our Approach

Spatio-temporal (4D) Extended Path Space

Temporally Sliced Photon Primitives for Time-of-flight Rendering

4D Blur **4D** offset vector $f(\overline{\mathbf{z'}}) = f(\overline{\mathbf{x'}}) f_{\omega}^{1,1} K_4(\mathbf{g'}) f(\overline{\mathbf{y'}})$

Spatio-temporal (4D) Extended Path Space

Temporally Sliced Photon Primitives for Time-of-flight Rendering

Spatial Dimension

Spatio-temporal (4D) Extended Path Space

Temporally Sliced Photon Primitives for Time-of-flight Rendering

▼ € . **Temporally Sliced Photon Primitives for Time-of-flight Rendering**

Temporally Sliced Photon Primitives for Time-of-flight Rendering

Temporally Sliced Photon Primitives for Time-of-flight Rendering

Sliced Photon Parallelepiped

Sliced **Photon Ball**

 $\overline{\xi'_a} = \{t_3, t_2, t_1, s_1\} \quad \overline{\xi'_a} = \{\cos \theta_1, \phi_1, t_1, s_1\}$

▼ € . Temporally Sliced Photon Primitives for Time-of-flight Rendering

Sliced Photon Parallelepiped

Sliced **Photon Ball**

 $\partial \mathbf{g}' \ \partial \mathbf{g}' \ \partial \mathbf{g}'$ $\begin{array}{c|c} \mathbf{J} & \overline{\partial t_3} & \overline{\partial t_2} & \overline{\partial t_1} & \overline{\partial s_1} \\ \hline & & & & \\ \end{array}$

▼ € . Temporally Sliced Photon Primitives for Time-of-flight Rendering

Sliced Photon Parallelepiped

Sliced Photon Ball

$$= |\psi_1 \cdot \mathbf{n}|$$

• **n**

Temporally Sliced Photon Primitives for Time-of-flight Rendering

Sliced Photon Ball (camera-warped)

The searchlight scene

Steady State 300k paths

Steady State 100 paths

Plane

Parallelepiped

Sliced Primitive 100 paths

$\tau_k = 1.1$

Rendered with sliced photon parallelepipeds (unbiased)

Warped and unwarped primitives

Multiple Importance Sampling

- Combine the strengths of different estimators (and avoid their weaknesses)
 - Smart weighted average of the estimators
 - We use the score-based variant [Jendersie18]

$$w_{a}(\overline{\mathbf{z}}) = \langle I \rangle_{a}^{-\beta}(\overline{\mathbf{z}}) / \sum_{k=1}^{m} \langle I \rangle_{k}^{-\beta}(\overline{\mathbf{z}})$$

Sliced Parallelepiped

Sliced Ball

Sliced Parallelepiped Var $= 0.485 \times$

$Var = 1.0 \times$ Sliced Ball

$Var = 0.102 \times MIS$

Results from General Ray Tracer

Subsurface Scattering

Cornell Box

Volumetric Caustic

Subsurface Scattering

Progressive Transient Photon Beam (Prev)

MIS Sliced (Parallelepiped, Ball) (Ours)

Subsurface Scattering

(Prev)

Cornell Box

Progressive Transient Photon Beam (Prev)

MIS Sliced (Parallelepiped, Ball) (Ours)

Cornell Box

(Prev)

(Ours)

Volumetric Caustic

Progressive Transient Photon Beam (Prev)

+ MIS Sliced (Parallelepiped, Ball) (Ours)

Volumetric Caustic

(Prev)

(Ours)

Conclusion

- flight rendering by introducing:
 - the problem

We lay the foundation for accelerating volumetric time-of-

• A novel extended spatio-temporal path space formulation of

• A recipe for deriving and combining a new family of estimators

Thank you!

