
Thanks for the introduction, and thanks everyone for attending
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Participating media are responsible of pretty cool lighting effects where geometry can 
play a big role in how radiance is scattered across the scene.

Accurately representing these effects [CLICK]
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greatly depends on our ability to represent geometric details during the sampling
process, [CLICK] such as the occlusions produced by the leaves of the tree
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Path tracing based methods are capable of representing many of these effects
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but they don’t leverage the smooth radiance variations often found in participating
media, leading to many redundant computations

[CLICK]
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Inspired by recent work that leverages irradiance Hessians to perform error-bounded
extrapolations on surfaces
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We present a new radiance caching algorithm for participating media that computes 
occlusion-aware derivatives to improve rendering efficiency

[CLICK] We perform extrapolations across media using first-order derivatives to avoid
tracing rays when unnecessary

[CLICK] To make sure we don’t extrapolate where we shouldn’t, we introduce an error 
metric based on second-order derivatives [CLICK] that limits the reach of our
interpolations, [CLICK] and increase the cache ensity where radiance changes are 
stronger. [PAUSE]

But before telling how we do this, let’s take a look to previous literature
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Photon density estimation has fostered a wide number of algorithms for efficient
rendering of participating media, either based on [CLICK] points, [CLICK] beams, 
[CLICK] higher dimensional samples, [CLICK] or even hybrid methods
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[CLICK] Frequency and gradient analysis havs also served for adaptive sampling and 
reconstruction in rendering, or even to improve visual convergence in photon beams.

[CLICK] The use of image-gradients has also helped to improve Metropolis and path
tracing methods with Poisson reconstructions in image space
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Closer to our work, [CLICK] since the publication of the irradiance caching method in 
1988, several works have extended this approach, [CLICK] for example with the
inclusion of gradients during extrapolation
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Some methods have generalized to more complex scenarios by including of neighbor
clamping, adaptive sampling, [CLICK] or support for glossy materials.
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And at the core of our work, the first method for radiance caching in participating
media was introduced in 2011. [CLICK] This method leverages radiance gradients to 
adaptively sample and extrapolate radiance in both homogeneous and 
heterogeneous media. 

However, it presents two main limitations: 

[CLICK] First, it doesn’t account for visibility during gradient computation. This can 
lead to erroneous interpolations of media radiance when geometry produces 
significant occlusions

[CLICK] It also ignores higher order derivatives. As we will show later in this
presentation, this leads to suboptimal distributions of cached points in the scene.
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[CLICK]
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Several works have improved irradiance caching using second-order error metrics, 
[CLICK] and proposing practical modifications to support occlusions, but only
applicable to surface irradiance. 

[CLICK] Inspired by surfaces methods, in our work we extend radiance caching to 
support second-order derivatives of media radiance that account for visibility changes
[CLICK] in both single and multiple scattering. 

Let’s see how we do this [CLICK]
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Participating media usually contains regions with very low frequency content [CLICK]
due to smooth variations of radiance.

This makes extrapolation very convenient, where sparsely shaded points [CLICK] can 
be used to predict radiance at nearby locations. This way we avoid path tracing
radiance at every shaded point
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How is this radiance extrapolated? Ideally, if we knew all translational derivatives at a 
shaded point, we could compute the radiance at any other point by using a Taylor 
expansion.

In this Taylor expansion, [CLICK] the zero order derivative is the actual radiance value
at the source point, and the remaining terms are the translational derivatives.

However, [CLICK] arbitrary media and geometry make it very challenging to compute 
accurate derivatives, and we would need an [CLICK] infinite number of them to 
compute a perfect radiance value, which is unfeasible
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To make extrapolation practical, irradiance caching methods in both surfaces and 
media rely in performing first-order extrapolations, and allow certain error [CLICK] to 
slip through the image.

[CLICK] The exact error introduced is determined by the remaining terms of the Taylor 
expansion, but as we said it’s unfeasible to compute all of them.
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One practical approach that produced good results in the case of irradiance caching
for surfaces, is to use second-order derivatives as an oracle of this error.

Under the assumption that they are that a good estimator of the error of a 1st-order 
expansion, [CLICK] they can be used to define a bounding region is valid for
extrapolation. 

In the case of participating media this bounding region is three dimensional. 
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Thanks to the eigendecompositon of the Hessian [CLICK], we stretch the region along
the axis where radiance gradients are smoother, resulting in an ellipsoidal cache 
point.

By chosing certain error threshold [CLICK], we can determine the size of this ellipsoid. 
This will guarantee that the integrated error from extrapolation is under that value.

For the full derivation of the error-driven bounding regions please refer to the paper
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So we know how to use derivatives to perform error-bounded extrapolations in a 
medium: [CLICK] the gradient extrapolates radiance to nearby points, and [CLICK] the
Hessian guarantees certain error threshold over an ellipsoidal region of medium.

For that purpose we need to compute derivatives that correctly predict the radiance
changes at the sampled cache point. 
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To illustrate it, we can observe the following 2D diagram with an area light source on
the top, some geometry in blue, and the point at which we want to compute radiance
derivatives

Following a geometric formulation, scattered radiance from surfaces at a medium
point corresponds to the [CLICK] integral across all points in light sources and 
geometry. This integral accounts for [CLICK] the phase function, [CLICK] 
transmittance, [CLICK] foreshortening, [CLICK] visibility, [CLICK] and the incoming
radiance
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Previous radiance caching method for participating media assumes point-to-point
derivatives, [CLICK] and ignores the visibility term during gradient computation

This implies that, when we extrapolate radiance [CLICK] at a nearby points, radiance
changes due to occluders are not accounted for
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Previous radiance caching method for participating media assumes point-to-point
derivatives, [CLICK] and ignores the visibility term during gradient computation
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changes due to occluders are not accounted for
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This can also occur in multiple scattering, where for example a path originally
contributing to the shaded point [CLICK] gets occluded during extrapolation, but it’s
not detected by the point-to-point approach

As we will illustrate later in the results section, this leads to erroneous extrapolated
values producing noticeable artifacts.
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As a solution for this, we propose an alternative approach to account for visibility
changes

[CLICK] We can use adjacent points during angular sampling to build a virtual 
triangulation of the surrounding geometry. In this triangulation, [CLICK] potential
visibility changes are represented by slanted triangles, as the one seen as a red 
segment in the 2D example. 

[CLICK] Now the integral can be estimated as a piece-wise sum of the integrals of 
each subdivision. This triangulation is an occlusion-free approximation of the scene as 
seen by the cached point, [CLICK] and the visibility term can be dropped from the
integral. 
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For multiple scattering, we follow an analogous approach by triangulating media at 
ray-marched steps [CLICKSSSS].

[CLICK]
Media-to-media visibility changes are now represented by triangles with some
vertices lying on geometry found during the ray-marching process
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This visibility-free triangulation still requires integrating the radiance coming from all
their points.

To alleviate this numerical integration, we introduce the following assumptions:

For a sufficiently fine triangulation [CLICK], incoming direction from a triangle barely
changes, and we can assume the phase function is constant [CLICK]

We assume that transmittance and radiance of a subdivision correspond to the
furthest point in the triangle [CLICK], which will be the first to change visibility during
interpolation. [CLICK] This way, only the geometric term remains within the integral. 

For each subdivision this integral has closed-form solution [CLICK] as the triangle-to-
media [CLICK] form factor
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This formulation provides a closed-form solution for every triangle in the subdivision, 
both in single and multiple scattering

In order to compute the derivatives at the cached point, [CLICK] we can differentiate
this expression at every triangle both in single and multiple scattering subdivisions, 
and sum all the terms. This has a closed form solution by applying the product rule. 
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For the full expressions of all the terms in the radiance derivatives, please refer to the
paper
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To illustrate the improvements of our derivative computation, we choose a toy 2D 
scene with an area light on top and an occluder below, showing single scattering. 

[CLICK] We show the reference gradients computed with finite differences, 
represented with orientation at the top row and magnitude at the bottom. The
penumbra region has stronger gradients near the occluder, oriented towards the
right, away from the occluder. 

[CLICK] Previous work gradients fail to capture these changes on the penumbra zone,
[CLICK] while our occlusion-aware method correctly computes gradients across all
medium
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We show also the gradient comparison for multiple scattering, where the penumbra 
and shadow areas are not well defined anymore.

Again, our method is able to compute the the correct gradients pointing away from
the occluder in the penumbra zone, where occlusion-unaware methods fail.  
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And finally let’s see some results of our method in 3D scenarios
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In this first scene we illustrate light shafts coming through the windows in a room
with several statues. We compare against previous methods using similar number of 
cache points. 

If we observe the center row of the blue inset [CLICK], the occlusion unaware metric
doesn’t create enough cache density to capture the boundaries of the shaft produced
by a distant light source.  Our method on the bottom row detects the occlusion, 
increasing sampling density on those regions and computing the correct
extrapolation.

34



The red inset shows radiance coming through a hole in the ceiling, where the light 
source is much closer. While previous work’s method provides higher cache density in 
that region, ignoring visibilty gradients still introduces significant artefacts during
extrapolation. Our method is able to provide both enough cache density and correct
extrapolation thanks to our occlusion-aware derivatives.
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Here we show a top view of the cache generated by the previous method, and a 
depiction of the geometry of the scene. We map the colored statues in the cache 
distributions for reference. 

While decreasing the error threshold in previous methods increases cache density, 
[CLICK] the distributions on the right show how it tends to oversample regions near
surfaces. Setting a minimum cache radius barely helps, and still the extrapolations
would be incorrect.
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Using a similar number of points, our method is able to place cache points following
to the frequency distribution of media radiance in the scene, avoiding oversampling
issues
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Nevertheless our method introduces certain overhead. Each cache point requires
constructing a virtual triangulation, and computing radiance Hessians, [CLICK] which
involve long expressions with 3x3 matrices. The computational overhead of our
method with respect to the previous work is around an extra  [CLICK] 9% during
cache computation. 

Still our method is able to provide better results in equal-time comparisons using
fewer cache points. We show a comparison between our result for this scene [CLICK] 
and rendering with occlusion-unaware gradients in a similar time. 
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Additionally, we can stretch the cache points along the axes of lower change based on
the eigendecomposition of the Hessians. This allows us to provide results under the
same error threshold reducing the computational cost by a 30%.
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Finally we illustrate a staircase scenario with distant lighting coming through the
window. 
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In this equal-time comparison of several methods, we can see how path tracing still
shows significant noise. Progressive photon beams fails to score beams through the
window from distant light sources, introducing variance in the results.. Previous
method of radiance caching still present artifacts due to not accounting for visibility
changes during gradient computation.

Our method on the far right produces a noise-free solution and while representing
shadow details of mixed light shafts through the windows.
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Our method is not free of limitations and chances for future improvement.

First of all, our gradient formulation based on form-factors is limited to diffuse
surfaces, so adding support for glossy and specular materials would be interesting, 
since they tend to generate high frequency light patterns

Making our method work in anisotropic media would require revising the
assumptions made for closed-form triangulation derivatives.
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In conclusion, we have introduced a method to compute participating media 
derivatives that account for occlusion changes, and used them to provide a second-
order error metric in radiance caching.

Finally, our radiance derivatives are not limited to radiance caching, but could also be 
applied for example to compute optimal kernels in density estimation, or improving
quadrature methods.
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