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Radiance extrapolation
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Radiance extrapolation
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Radiance extrapolation
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Radiance extrapolation

HL(

! .

[15L(x)e
1A A2 Ast SR \/ 47r\(/\7;)|

Eigenvalues

of Hessian Error threshold

19 Sponsored by ' /






Derivative computation

Y

v
Yzl

—

TRANSRM SHBISTBENINGOMING

Wo
/0\ FUNCTION RADIANCE

- Sponsored by ‘ 4

E S



Derivative computation

[Jarosz et al. 2008]
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Derivative computation

[Jarosz et al. 2008]
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Derivative computation

[Jarosz et al. 2008]
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Derivative computation

[Jarosz et al. 2008]
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Derivative computation

Our method
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Derivative computation

Our method
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Derivative computation

Our method
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Derivative computation

Our method
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206 + Marcoetal

merged together the phase function f;(x, &.d,) and scattering
coefficient ps(x) as a directional scattering function f(x, 3¢, do) =
p15(x) f(x, Bt Bo), to make the following derivations simpler.
Differentiating Equation (6) with respect to x provides approxi-
mations for the first and second order derivatives:
- VLj(x,do)
VL(x, &o) e — 8)
pdiir;)
nER (€L,
) HL;(x,3,) .
HL(x, Jo) .ZRI,ZZ. —dfy ©)
which in turn require differentiating the radiance from each seg-
ment
Unfortunately, we cannot compute Equation (7) and its deriva
tives analytically in closed-form, while computing it numerically
would be prohibitively expensive. We instead introduce a set of
to build a closed-f

o For a sufficiently fine subdivision the angle y tends to 0, so

@j can be regarded as constant for the whole segment, and
L&), with &y a fixed direction from
X to a point in segment £
e Forally € £, we assume constant T,(x,y) = T,(x, y¢). and
L(y, ;) = L{y. ;). Following existing approaches for sur-
face irradiance, we choose y, as the furthest point in the seg-
ment £, which will be the first to be occluded/unoccluded.
These assumptions allow us to significantly simplify the integral in
Equation (7) to:

Ly(x. o) = f(x. B¢, Bo) To(x. ¥e,) LUye, B »j Glx.y) dy

= f(x.d¢,. o) Tr(x.yz,) Llye, . &i) Fz,(x), (10)
which now admits a closed-form solution in both 2D and 3D (see Ap-

pendices B and C). More ly, this allows us to approximate

of L; in closed form as:

= LgVf + VLgf, (11)
LeHf + VLpVTf + VfVTLg + HLEf, (12)

Vip = L,VF, + VL, F,, (13)
HLf = LHF; + VL,VTF, + VE,VTL + HL Fr.|  (19)
VL, = LVT, + VLT,, (15)
HL, = LHT, + VLVTT, + VT, VTL + HLT, (16)

For brevity we have omitted function parameters, and we express
gradients and Hessians in terms of the scaled radiance Ly = F¢L,
and the reduced radiance L, = LT,. While Equations (10-16) are
general, we restrict our work to Lambertian surfaces and isotropic,
homogeneous media (in Section 7 we discuss how to extend it to
anisotropic and heterogeneous media). This means that both L and
f are constant, and therefore their derivatives cancel out as VL =
HL = Vf = Hf = 0, removing directional dependences; this allows
us to simplify Equations (11) and (12) to:

VL, = Lf (T,VF; + VT, Ff), (17)

= Lf (T,HF; + VTI,VTF; + VF,VTT, + HT,F;).  (18)
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We refer to Appendices A, B and C for all the terms.

By construction, our formulation in Equation (6) and its deriv:
tives (Equations (8) and (9)) are biased but consistent estimators of
Lix,dy), VL(x,d,), and HL(x. &,), respectively. In addition the as-
sumptions imposed in Equation (10) introduce some additional bias
due to the piecewise assumption in the scattering f transmittance
T, and radiance terms L. However, as shown in Figure 3 our formu-
lation converges accurately to the actual derivatives. Note that we
use this biased but consistent approximation only to compute first-
and second-order derivatives of media radiance (Equations (8) and
(9)), while computing actual radiance values (Equation (1)) using
the standard unbiased Monte Carlo estimator. In the following, we
describe how to use the derivatives in Equations (8) and (9) for in-
terpolating radiance from a set of cache points, and define an error
metric for such interpolation.

5 SECOND-ORDER ERROR CONTROL FOR MEDIA
RADIANCE EXTRAPOLATION

The error in radiance caching is controlled by a tolerance value
¢, and depends both on how radiance is extrapolated, and on the
radiance moments at cache point x. These moments define a valid
bounding region N where a point x’ can be used for extrapolation
We provide here the key ideas and resulting equations for the valid
regions in the context of 2D and 3D participating media and provide
detailed derivations in the supplementary material.

Existing work on radiance caching for participating media es-
timates the relative error using radiance gradients at x. However,
ignoring higher-order derivatives creates suboptimal cache distribu-
tions that often oversample regions near surfaces and light sources.
Given the radiance and the first n derivatives at a media point x, we
can approximate radiance at point x’ € N using an n'-order Taylor
expansion. Following previous work [Schwarzhaupt et al. 2012] we
truncate to order one, approximating L(x’, &) as:

L(x", &) = L(x.do) + VL(X, Ho)Ax. (19)

Since we focus on isotropic media, we remove the directional depen-
dence in the following derivations to simplify notation. By using a
second order expansion of L(x) as our oracle, we can approximate
the relative error £'(x’) of the extrapolation as.

o |ALHL(x)A,

B P —— (20)

2L(x)
with HL(x) the Hessian matrix of L(x). This expression is similar
to the second-order error metric proposed by Jarosz et al. [2012]
and follow-up work by Schwarzhaupt et al. [2012], although these
works dealt with surfaces only
By integrating Equation (20) in the neighborhood of x for a given

error threshold ¢, we can express the valid region in two-dimensional
media as an ellipse with principal radii R, (see Equations (S.9)-
(5.12) in the supplemental for the complete derivation):

JaL(x)e

D=\ T
where 4, is the i-th eigenvalue of the radiance Hessian HL(x).
This formula is analogous to the relative error metric presented
by Schwarzhaupt and colleagues [2012] for surfaces, but here the
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APPENDICES

In the following we summarize 2D and 3D expressions of transla-
tional derivatives of transmittance and form factors needed for our
method. We box all relevant final expressions that to the best of our
knowledge are new to the literature. We define column vectors as
¥ and row vectors as ¥7. Expressions such as i -F2 denote dot (in-
ner) products, while expressions such as Fif,’, V(.. )¥T(...), and
(. )T denote vector outer products

A HOMOGENEOUS TRANSMITTANCE DERIVATIVES
H, L e is modeled by the exy | decay
due to extinction,

T, = e 192 (24)

where ||%¥]| denotes distance between source y and shaded point x
Its gradient and Hessian with respect to a translation of x are

(25)

HT, = el

B 2D SEGMENT-MEDIA FORM FACTOR DERIVATIVES
The form factor between a 2D segment £ and a media point x (Fig-
ure 15, left) is defined as the integrated curve-media geometry term
along all segment points. This is equivalent to the angular ratio
covered by £ as seen from x

where r; = ||%¥|. The form factor gradient and Hessian become

Vcos 0
VEdx) = - s
% V1 - cos* 8"

NV cos8")
Vi @
cos’

+ V058’V cos
(1 - cos? §7)3/2

where J is the Jacobian operator, and

J(Veosd') = 7_||

rory

(33)

C 3D TRIANGLE-MEDIA FORM FACTOR DERIVATIVES

The form factor between a 3D triangular face 2 and a media point
x (see Figure 15, right) is defined as the integrated surface-media
geometry term along all points in the triangle. Analogous to 2D,
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Fig 15 Setups for segment-to-media (2D, left) and triangle-to-media (3D,
right) form factors.

this has analytical solution equal to the ratio of solid angle covered
by the triangle as seen from x,

1 cosfl,
Fa(x)= —[ —d,
x=yll

Solid angle 2 of a triangle can be computed as [Van Oosterom and
rackee 1983]

Q = 2arctan

i +(F-R)n+@H)in+{A)n

where #; = Xy7. and r; = [F1] (see Figure 15, right). Note that the

Je winding) with respect to x. Also, when obtaining
nt values, x must be added to the obtained solid

The gradient of the form factor with respect to a translation of x
becomes

(38)

15?\{\—\4‘:‘5

AT+ B (39)
Tr B

and its Hessian yields
V(|A|)VT B - VBVT(|A])
A+ B
BJ(V(AD) - |A(VE)
AP + B2
(BY( .4\.7;_4|vn.|\'u.+ +V( »)’}
B T —— (40)
(1412 + B2)*

HF.(x

Note that for computing the terms V(|A]) and J(V]A]), we can
apply the derivatives of the absolute value of a vector function:
(Al = —V’{ “n
14| ]
AJ(VA) + VAVTA  AX(VAVTA
(Vjap = ————— = _
J@l 1A AP
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The gradient of A becomes
VA=) (F2 xF3)f1 + ] (F1)(F2 X F3) (43)
By the Jacobi identity we have that
J(F2 % T5) = T X J(Fs) — T3 X J(F2) (49)
where any vector-matrix cross product ¥ x J(s) can be expressed
by means of the matrix multiplication form

Since J(Ts

Note that (5 — s — y2) and therefore does not depend on
x, and (V)T = (~¥) (see Equation (46)). As a result, the Jacobian
of VA becomes a zero matrix

J(vA) =

The gradient of B becomes

VB = Virirars) + V((f1-2) 13)

+ V((F2-F3)n) + V((Fr-F3)r2)

Virsrars) = oV + ninsVn + 0V

O ((FeFp) r0) = (F7) Veg -G+ 7).

r
Jacobian of VB yields

JVB) = J(V(rirars)) + J (V((Fy
+J(V (G -Fs)ra)) + J(V(GF

where
J(Virir2rs)) = r20)(Vr1) + 11(Vrs¥Tr2 + Va9 7r)
+01r)(Vr2) +12(Ves Ve + ¥y 9Trg)
+0y02)(Vry) + 15(Vr, Ve + 05, 971y)
JVAFeFy) ) = (Fi-F) (Ve ) + 2005
— Uy +7)T - @+ 59T
L EF

T
r

JVr) =
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2D visualization of derivatives
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2D visualization of derivatives
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Statues - Cache distribution

[Jarosz et al. 2008]
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Statues - Cache distribution

Ours
Occlusion-aware, 2nd-order metric
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Patio - Time performance

Our computational overhead

* Triangulation

+9%
* Hessian computation

V(|A[)VTB - VBVT(|A])
|A|2 + B2
, BIV(AD) — [AD(VB)
|A]2 + B?
(BV(|A|)—|A|VB) (V(|A|]?) + V(B2 .nTJ

(lA2 + B2)?

1 |

VA = ((T2)]J(¥3) — (t3)J(T2))T1 — (T3 X T3)
= (T3 — T2)T1 — (T2 X T3).
VB = V(riror3) + V((T1-T2) r3)
+ V((ty-T3)r1) + V((T1°T3) 12)
J(VB) = J(V(ryror3)) + J(V ((f;-T2) r3))
+J(V((F2T3)r1) + J (V ((F1-T3) 12))
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Patio — Time performance

Our computational overhead

* Triangulation

+9%

* Hessian computation

Ours (iso. cache)

Eq ual-time =) 135 min.,, 32k points
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Patio — Time performance

Our computational overhead

* Triangulation

} +9%

* Hessian computation

. [Jarosz et al. 2008]
Eq ual-time =) 136 min., 36k points
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Patio — Time performance

Our computational overhead

* Triangulation

} +9%

* Hessian computation

Same error threshold ,
Ours (aniso. cache)
30% faster = 94min,21kpoints
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Equal-time comparison

Reference EQUAL TIME

Path tracing [Jarosz et al. 2011] [Jarosz et al. 2008] Ours
Progressive photon Occlusion-unaware Second-order
beams first-order occlusion-aware
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Future work

* Extend to support scattering from glossy materials
* Limited to finite light sources

* Extend to anisotropic media and heterogeneous materials
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Conclusions

« Computation of occlusion-aware media derivatives
» Second-order error metric for volumetric radiance caching

e ... radiance derivatives useful for other applications!
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