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[Veach and Guibas '97]

bring MIS to heterogeneous, volumetric media

28



I Our Contributions

29



I Our Contributions

* analytic path pdf for any media

29



I Our Contributions

* analytic path pdf for any media

e MIS in any media

29



I Our Contributions

* analytic path pdf for any media
e MIS in any media

® generalize and improve techniques including:

ratio tracking [Novak et al 2014]

hero wavelength sampling [Wilkie et al. 2014],
spectral tracking [Kutz et al. 2017]

equiangular sampling [Kulla and Fajardo 2012]

volumetric variants of bidirectional path tracing [Georgiev et al. 2013]
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Fig. 3. lllustration of a light transport path in our integral formulation,
which explicitly considers both real and null scattering at path vertices.
Prior formulations consider real scattering only, where this length-8 path
corresponds to the length-4 path x;, X, Xr, Xy, Xy, .

connecting every two consecutive vertices, which does not permit
analytic evaluation or sampling in general heterogeneous media.

To address this inconvenience, we derive a path integral expres-
sion with the same form as Eq. (12) but starting from the null-
scattering VRE (9). In contrast to the formulation of Pauly et al.
[2000], our formulation considers both real and null scattering at
path vertices, and replaces the extinction transmittance T by the
analytically evaluable combined transmittance T (10).

Path space and measure. To properly handle the geometry of null
scattering, we isolate such events into a null-scattering volume Vs
which is simply a copy of V. This extends the traditional path space
and its corresponding differential measure to

o0 k dA(x;), if x; €A,
P=|_JAUVUT dx =] [dxi, dxi={dV(x), if x;€ V. (13)
k=1 i=0 dV('g(Xi), iinE(Vg.

Null-scattering vertices x; are measured along the line connecting
the preceding and succeeding real scattering vertices:

dV5(Xl') = d5x§f<—>x§+ (Xi)’ (14)

where 5x§f<—>x§* (x;) is a Dirac measure restricting the integration
along the line segment connecting the preceding and succeeding
real-scattering vertices x}~ and x}", respectively. The path length k
is the number of segments between consecutive scattering events
of any kind. Figure 3 illustrates a path of length 8 in the space P.

Moraciirerment confribiition Far each nath lenoth + the meaciivrement

T(xs X¢) =

— 2 X

X4 =X, o fn(Xs) T(X6.%7) . (x7)
X6

Gl(x4,%7) = G(XTZ’Xr3 ) X7 =X,

Fig. 4. The classical path integral formulation (top) considers only real
scattering and thus has to evaluate the extinction transmittance T between
such events. Our formulation (bottom) instead evaluates the combined
transmittance T as it considers null-scattering events explicitly.

is given by Eq. (10), and
_ D(x, wxy)V(X’ y)D(y, O)yx)

Gx.y) 2 (16)
Ix -yl
: ) f ﬂ7
D(x.a) = {100 b e (1)
1, ifxevV
L if
Le(X, ) — e(X, wxy)’ 1 Xeﬂa (18)
pa(X)Le(X, wxy), ifxeV
ps(w, x, —d), ifyeA,
plw,x, ) = § ps(X)pm(w, %, ), ifxeV, (19)

un(x)H(w - o), if xe Vs,

where V(x,y) is the binary visibility function between x and y. In
contrast to prior definitions, our generalized scattering term p ex-
plicitly considers null scattering, where H is the heaviside function
which enforces the ordering of the null vertices’

Note that the geometry term G(x, y) is evaluated only between
real-scattering events x,y € A U V. Null-scattering vertices are
constrained to lie on the polyline connecting real-scattering events
which is effectively a path-space manifold. This is similar to the
manifolds studied by Jakob and Marschner [2012] and the changes
in path density through chains of specular (i.e. delta) surface reflec-
tion and refraction between two scattering events. In our case, the
geometry term through a null-scattering chain has a simple form.

3.2 Discussion

By explicitly accounting for null scattering, the problematic extinc-

P T T e o D I TR T I T I

I Our Approach: Path Integral

See paper for more detatls!

atty
alr

4 NULL-SCATTERING PATH INTEGRAL DERIVATION

In this section we derive our path integral formulation (12) from the
null-scattering VRE (9). We first expand the recursions in the VRE,
followed by a change of variables in the resulting high-dimensional
integrals, which we ultimately merge into one path-space integral.
These are the same general steps done in derivations based on the
real-scattering VRE (3) [Pauly et al. 2000; Jakob 2013]. However,
in our case the added null-scattering recursion in Eq. (9) increases
the complexity of the expansion, and the resulting null-scattering
integrals require an appropriate change of variables. Readers not
interested in these technical details may skip over to Section 5,
where we discuss the practical applications of our formulation.
We begin by writing the null-scattering VRE in a compact form:

Lxo) = [ TexyLo(y.0)dy + T(x, Loz 0) 20)
0
Lo(x, w) = Le(x,00) + / pw,x,0) )L(x,0" )D(X,00") do” + pin(X)L(%,0),
SZ

where fi; from Eqs. (8) and (9) cancels out and where we use the nota-
tion from Eqs. (17) to (19) to express the contributions from medium
points y and surface points z = x — zw in L(X, w) using a common
outgoing radiance term L,. We do not consider null scattering (i.e.
transparency) at surfaces, thus pup(x) = 0 for x € A.

4.1 Operator formulation

As in prior formulations [Pauly et al. 2000; Jakob 2013], we will
express the pixel measurement I as a path integral by recursively
expanding the radiance L (20) in Eq. (11). To express this expansion
succinctly, we make use of linear operators [Veach 1997; Arvo 1995].
Substituting L into L, replaces the last two terms of L, by four new
terms, from which we extract four operators:

(Ranh)(x, 0) = /S 2 /0 (0. %,/ T(x, y)D(x. o h(y. ) dyded  (21)

(Rsh)(x, w) = / plw,x, )T (x,z)D(x, & )(z, ') dof (22)
SZ

(Nuh)x.0) = ) | Tox y)hty. o) dy (23)

(Nsh)(x, 0) = un(x)T(x, 2)h(z, 0). (24)

We then define the real- and null-scattering operators, respectively

A null-scattering path integral formulation of light transport « 44:5

Pixel measurement. Our next step is to write the pixel measure-
ment (11) in non-recursive operator form, as a sum of nested inte-
grals. To that end, including W, temporarily in the definition of the
scattering function p (19) allows us to treat the spherical integral in
Eq. (11) as a real-scattering event, such that expanding L in Eq. (11)
using Eq. (20) and then expressing L, using Eq. (26) yields

1=i Z /ﬂ (RSkLe)(x,-)dx:Z /ﬂ (PLe)(x, ) dx, (27)

k=0 S (R N}k PeQp

where the operator under the integral is evaluated with a dummy
direction. The set Qp includes all path operators of the form P = RSy,
where the “camera” real-scattering event is followed (in direction
opposite of the light flow) by k scene scattering events of any type.

4.2 Scattering chain decomposition

To express the pixel measurement (27) as integration over a product
(path) space of surface area and volume, we need to perform an ap-
propriate change of variables in every path operator P = RSy € Qp.
For every k there are 2X possible operators P, each corresponding to
a different k-sequence of real- and null-scattering events. To handle
this combinatorial explosion, we make the key observation that ev-
ery such operator can be written as a sequence of scattering chains,
each starting with a real-scattering event:
n; times n, times n, times

P=RN---NRN---N---RN---N = RNRN™ ...RN™, (28)

where the number of real-scattering events is r and the total number
of null-scattering events is }.'_, n; = k —r, with n; > 0. It thus
suffices to find the change of variables for a general chain RN",
which can then be applied to each chain in every path operator P.

In the absence of null scattering, i.e. when n = 0, the chain
operator RN" simplifies to R; we will address this special case in
Section 4.3 below. When n > 0, assuming no null scattering at
surfaces, we can expand RN" using Eq. (25):

(RN"h)(x, 0) = (RmN"h)(x, ©) + (RN"h)(x, ©) (29)
= (Rm(Np + Ng)"h)(x, ©) = (Ryn(Npy + Ng) I (N, + Ng)h)(x, )
= (RmNZA)(x, ) + RN INGR) (X, 0). (30)

With no null scattering at surfaces, only the medium contribution
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Bunny Scene: Ratio NEE [Novak et al 2014]
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I Independent Tracking
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Smoke Scene: Independent Tracking
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Smoke Scene: Spectral Tracking [Kutz 17]
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Smoke Scene: Independent Tracking
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Smoke Scene: Spectral MIS [Ours]
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Smoke Scene: Spectral MIS + NEE [Ours]

Max Density
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I Future Work

e Unified surface + volume null scattering framework

e Similar null-scattering path for other types of media
- Correlated media / non-exponential media

e Other light transport algorithms
- Joint path sampling, MLT, etc.

 Other rendering techniques

- Photon planes/volumes in heterogeneous media

V/ 5 |_-I A null scattering path integral formulation of light transport
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— green throughput
— blue throughput

{ — red throughput

10K paths 62.5K lookups

I e Ve,
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distance

Spectral tracking [Kutz et al. 2017]
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l — red throughput
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Spectral MIS (ours)
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Path Integral

geometry  transmittance

r—1 k—1
I—[G(Xriaxri+1)) ' (I—[ T(xiaxi+1)) '
1=0 1=0

15
k-1 (15)
(1—[ p(wxixi—l > Xy WX;1X; )) - Le (X, 6‘)Xka—l) ’

3=1

scattering scattering

f(X) = We(x0,0x,%,) -




Path Integral

D(x, wxy)V(x, y)D(y, wyx)

G(X, )=
’ Ix ~ylI® geometry
D(x, ) = n(x) - |, ifxeA,
Le(x, w) = Le(x, wxy)’ ?fXE A,
:Ua(x)Le(X, 6())(y), ifxeV

ps(w,x,—a), if ye A,
p(a), X, 6(),) = 9\ Us (x)pm(w, X, a)’), lf X E (V, Scatterbwg
n(X)H(w - o), if x eV,



