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[Bitterli et. al. 2018] - In the field of light transport it is 
our goal to accurately simulate 
complicated visual phenomena 
such as volumetric media or 
caustics.
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Unbiased solutions
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And ideally, we want solutions which 
are unbiased.
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I

If we denote a ground truth image 
as the quantity I,
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Unbiased solutions
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⟨I⟩

And then denote a stochastic 
estimator for I, as I surrounded by 
angle brackets.
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Unbiased solutions

6

⟨I⟩E [⟨I⟩] = I

Then an unbiased solution is one 
whose expected value is always 
equal to the ground truth.
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Biased solutions
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⟨I⟩E [⟨I⟩] ≠ I

Unfortunately, there are situations in 
rendering where we do not have 
unbiased solutions and instead have 
to fallback on biased ones.

Unbiased and consistent rendering using biased estimators

Biased solutions

8

⟨I⟩E [⟨I⟩] ≠ I

As an example of this consider 
photon mapping. It will give us a 
biased version
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Biased solutions

9

⟨I⟩

Of the actual ground truth.



Motivation

Speaking of photon mapping
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Progressive photon mapping
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[Hachisuka et. al. 2008]

[Knaus et. al. 2011]

there has actually been prior work 
which eventually gets rid of this bias. 
The method is known as progressive 
photon mapping
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Progressive photon mapping
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{ }
[Knaus et. al. 2011]

It works by using an iterative process 
which runs many different instances 
of photon mapping. While each 
individual instance is biased,
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Progressive photon mapping
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{ }
[Knaus et. al. 2011]

When all of them are combined you 
will eventually get the ground truth.
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Progressive photon mapping
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{ }lim
k→∞

[Knaus et. al. 2011]

However, we only get the ground 
truth in the limit of infinite work.
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Our framework
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{ }
Inspired by this process, we instead 
propose a framework that takes the 
results of a bunch of biased 
instances, and
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Our framework
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{ }E

combines them in such a way that 
our algorithm is unbiased and 
always has the correct expected 
value. In essence we propose a 
framework for debiasing biased 
solutions. Our framework is general 
and can be applied across many 
different problems in rendering.
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Related work
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Reciprocal Estimation 

[Booth 2007]

[Qin et. al. 2015]

[Zeltner et. al. 2020]

One such problem is reciprocal 
estimation.
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Related work
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Null Collision

[Novak et. al. 2014] [Georgiev et. al. 2019]

While another example is the null 
collision formulation for volumetric 
media
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But, for our framework to be 
applicable to a problem,
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Applicable problems
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I(k)

We first assume that we have a 
biased algorithm whose expected 
result is denoted as I(k). This 
algorithm has to have a controllable 
amount of bias, which
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Applicable problems
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I(k)

Is directly controlled by the 
parameter k.
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lim
k→∞

I(k) = I

As long as the bias vanishes in the 
limit, then our framework is 
applicable and we can derive 
unbiased estimators.
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Path Tracing - max path depth
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As a simple example of an 
applicable problem, consider hard-
coding the maximum path-depth in 
a typical path-tracer.

I(1)

By setting the maximum path-depth 
equal to 1, we would only visualize 
direct illumination, which is biased.
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I(1) I(∞)I(1)

By setting no maximum path depth, 
we would render the full unbiased 
image.
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Photon mapping
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- As a more complicated example, 
consider photon mapping.
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Photon mapping
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I(k) : r =
1
k

- If we choose to set the radius 
inversely proportional to k, the 
amount of bias in photon mapping 
will
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Photon mapping
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I(k) : r =
1
k

- decrease as k increases.
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Photon mapping
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I(k) : r =
1
k

I = lim
k→∞

I(k)

- And in the limit, photon mapping 
will theoretically result in the true 
ground truth image.
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I = lim
k→∞

I(k)

- Now to formulate unbiased 
estimators we need a formulation 
for this limit that it is amenable to 
unbiased estimation.
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I(∞) = lim
k→∞

I(k)

- Effectively, we want to solve for I of 
the limit itself.
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I(∞) = I(k) + [I(∞) − I(k)]

- And, to do this, we first rewrite the 
problem like so.
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I(∞) = I(k) + [I(∞) − I(k)]

- Trivially, this equation is true as the 
two instances of I(k) are going to 
cancel. We choose to rewrite this 
problem in this way,
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Debiasing
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I(∞) = I(k) + [I(∞) − I(k)]
GT

- because it redefines the ground 
truth,
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I(∞) = I(k) + [I(∞) − I(k)]
GT

- In terms of the sum of a biased 
algorithm,
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Debiasing
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I(∞) = I(k) + [I(∞) − I(k)]
Bias CorrectionBiasedGT

- and a bias correction term since I 
at infinity minus I of k is exactly 
equal to the bias. 
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I(∞) = I(k) + [I(∞) − I(k)]
Bias CorrectionBiasedGT

- Now, this form still can not be 
estimated because we assume we 
cannot directly evaluate I at infinity.
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I(∞) = I(k) + [I(∞) − I(k)]
Bias CorrectionBiasedGT

I(∞) = I(k) +
∞

∑
j=k

[I( j + 1) − I( j)]

- To get around this, we reformulate 
the bias correction term into an 
infinite telescoping series.
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I(∞) = I(k) +
∞

∑
j=k

[I( j + 1) − I( j)]

- With this infinite sum, we can 
choose to evaluate it using Monte 
Carlo.
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I(∞) = I(k) +
I( j + 1) − I( j)

p( j)

- Which involves randomly choosing 
to evaluate a single term of the 
infinite sum based on some 
probability mass function.
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Debiasing
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⟨I(∞)⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

- Finally, by replacing each instance 
of I with an estimator, we 
effectively arrive at an unbiased 
estimator for the ground truth 
which only evaluates biased 
estimates of the original problem.
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

Unbiased Photon-mapping
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- As an example of how to apply this 
estimator in practice, lets walk 
through how an unbiased photon-
mapping estimator would work,
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⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

Unbiased Photon-mapping
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- We first estimate I of k, by running 
photon mapping using some base 
radius with let’s say 1 million 
photons.
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

Unbiased Photon-mapping
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- Then we choose a term, j, 
according to some probability 
mass function.
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

Unbiased Photon-mapping
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- Next, we take the difference of two 
different instances of photon 
mapping which use two different 
radii. This will give us an unbiased 
estimate of the bias.



Unbiased and consistent rendering using biased estimators

⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

Unbiased Photon-mapping
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+

- By combining these two estimates
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

Unbiased Photon-mapping

47

+ =

- We arrive at an unbiased result.
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⟨I⟩ = ⟨I(k) +
I( j + 1) − I( j)

p( j) ⟩
Unbiased Photon-mapping
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+ =

- To improve the convergence rate 
of this estimator, we can utilize 
correlations by sharing the same 
set of photons between all three 
photon mapping estimates.
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

- We can also do something similar 
for estimating transmittance with 
ray-marching.
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Unbiased Ray-marching
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

I = g (∫ f(x)dx)

- Transmittance estimation involves 
estimating an integral over the 
medium density that is then 
modified by some non-linear 
function.
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Unbiased Ray-marching
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

⟨I(k)⟩ = g
k

∑
j=1

f(xj)Δx

- Ray-marching effectively 
approximates transmittance by 
replacing the integral with a 
Riemann sum approximation. For 
any finite k, ray-marching will most 
likely be biased.
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Unbiased Ray-marching
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)
⟨I(k)⟩

⟨I(k)⟩⟨I(k)⟩ = g
k

∑
j=1

f(xj)Δx

- A debiased version would first run 
ray-marching using a fairly large 
step size. The dot here represents 
where we evaluate the medium 
density.
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Unbiased Ray-marching
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

⟨I(k)⟩⟨I(k)⟩ = g
k

∑
j=1

f(xj)Δx

⟨I(k)⟩

- Then we choose a term, j 
according to some probability 
mass function.
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

steps ∝ 2j+1

⟨I(k)⟩

⟨I( j + 1)⟩

⟨I(k)⟩ = g
k

∑
j=1

f(xj)Δx

⟨I(k)⟩
⟨I( j + 1)⟩

- Next we run ray marching again, 
except this time using a number of 
steps proportional to 2 raised to 
the j + 1 power.
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

steps = 8

⟨I(k)⟩

⟨I( j + 1)⟩

⟨I(k)⟩ = g
k

∑
j=1

f(xj)Δx

⟨I(k)⟩
⟨I( j + 1)⟩

- If we choose j equal to 2, we take a 
total of eight steps.
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Unbiased ray-marching
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

⟨I(k)⟩

⟨I( j + 1)⟩

⟨I(k)⟩ = g
k

∑
j=1

f(xj)Δx

⟨I( j)⟩

⟨I(k)⟩
⟨I( j + 1)⟩ ⟨I( j)⟩

- We then repeat the same process 
for I of j, using use half of the 
number of steps. Similar to photon 
mapping, you can also take 
advantage of correlations, 
however, for brevity we will skip 
that.
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Results
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- Now on to some results
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Transmittance estimation
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[Bitterli et. al. 2018]

- Our unbiased ray-marching 
algorithm is the first general 
unbiased transmittance estimator 
that supports any valid 
transmittance function. This is 
demonstrated by rendering a 
cloud using the non-exponential 
Davis model which was introduced 
to graphics in prior work. On the 
right we show convergence rates 
of our unbiased estimator for 
different transmittance parameters 
and also show that our estimator 
has the expected Monte Carlo 
convergence rates.
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Probability mass function
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

- Up until now, we have haven’t 
mentioned how to choose a 
probability mass function. While 
we refer you to the paper for a 
recipe on how to do this, it is worth 
mentioning that for any valid 
probability mass function,
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

E [⟨I⟩] = I

- The expected value will always be 
correct as long as bias vanishes in 
the limit.
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Probability mass function
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⟨I⟩ = ⟨I(k)⟩ +
⟨I( j + 1)⟩ − ⟨I( j)⟩

p( j)

E [⟨I⟩] = I V [⟨I⟩] = ∞

- However, variance can turn out to 
be infinite, but that does not stop 
us from having unbiased 
estimators. It only result in slower 
convergence rates.
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Photon mapping
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- Photon mapping is an example of 
a problem which we prove in the 
paper will always have infinite 
variance. Despite this, we still 
derive an unbiased algorithm.



Progressive PM       Unbiased PM (ours) - In this scene we compare 
progressive photon mapping to our 
unbiased estimator for an equal 
number of photons. Our unbiased 
estimator effectively trades noise for 
bias in the form of blurring.

Here we plot the relative 
convergence rates for our unbiased 
methods versus progressive photon 
mapping. While the error of our 
methods is greater, if you look at the 
blue dashed line versus the red solid 
line you will see that the 
convergence rate, or slope, of our 
unbiased photon mapping 
algorithm is overall fairly identical to 
progressive photon mapping.
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Additional Contributions
• Recipe 
• Taylor series 
• Infinite variance 
• Finite differences
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Additionally, In the paper (click) we 
outline a general recipe for deriving 
estimators for any applicable 
problem. (click) We also discuss 
another estimation technique which 
utilizes a Taylor series expansion. 
(click) We provide a more in depth 
discussion on the infinite variance 
case. (Click) And we also provide 
unbiased and progressive finite 
differences.



Thank you!

Thank you!


