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1 PROOF OF CONSISTENCY
In this section we prove the consistency of our progressive formu-
lation,
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where 𝐼 represents a fully converged image containing some par-
ticipating medium, ⟨𝐼 ⟩ is an estimate for that image, and ⟨𝐼 (𝜇 (𝑘 )𝑡 )⟩
corresponds to a single pixel sample evaluation using a specified
combined extinction 𝜇

(𝑘 )
𝑡 . We choose to clamp the real density

whenever the combined extinction 𝜇
(𝑘 )
𝑡 is non-bounding, and we

update the combined extinctions used for subsequent iterations
based on the occurrences of non-bounding events as described in
the main paper.

Clamping results in bias, however, we make the assumption
that after some finite number ( 𝑗 ) of iterations where 𝑗 < 𝑛, the
subsequent combined extinctions 𝜇 (𝑘 )𝑡 for 𝑘 > 𝑗 will all become
bounding. Meaning, for all indices 𝑘 > 𝑗 , ⟨𝐼 (𝜇 (𝑘 )𝑡 )⟩ will be an
unbiased estimate for the true solution 𝐼 .

Based on this assumption, let us first write the problem in terms
of expected values instead of estimators,
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and then split the sum by the first 𝑗 biased iterations and 𝑛 − 𝑗 − 1
unbiased iterations,
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Let us denote 𝛽𝑘 to be equal to the bias for iteration 𝑘 . Then our
modified expected value becomes,
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Combining like terms we arrive at,
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which simplifies to,

𝐼 ≈ 𝐼 + 1
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For simplicity we will denote the total bias as the constant 𝐵 =∑𝑗

𝑘=1 𝛽𝑘 ,

𝐼 ≈ 𝐼 + 𝐵

𝑛
. (7)

Since 𝐵 is a constant it should be obvious that our progressive
formulation, and any progressive formulation where only the first
𝑗 finite iterations are biased, remain consistent since,

lim
𝑛→∞

𝐵

𝑛
= 0, (8)

the bias disappears in the limit.

2 ASYMPTOTIC ANALYSIS OF MSE
CONVERGENCE

Since our goal is to propose a technique for production rendering,
one major consideration is how our progressive formulation and
the introduction of bias will impact the performance in production
scenes. While we do not yet have an extensive practical suite of
scenes showcasing our method, we can perform some asymptotic
analysis to convey how we would expect our method to generally
perform.

We choose to quantify performance by using the mean squared
error. Mean squared error can be defined as the sum of the variance
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and squared bias,

𝑀𝑆𝐸 [⟨𝐼 ⟩] = 𝑉𝑎𝑟 [⟨𝐼 ⟩] + 𝐵𝑖𝑎𝑠 [⟨𝐼 ⟩]2, (9)

of an estimator. Most prior null-scattering techniques are unbiased,
meaning their mean squared error would only be dependent upon
their variance. Since our progressive technique introduces bias we
will first analyze the asymptotic behavior of its bias and variance
independently.

2.1 Asymptotic behaviour of bias
Since we are analyzing the asymptotic behaviour, we choose to
only consider the cases where we have already reached the point
where all future iterations 𝑗 < 𝑛 will be unbiased, meaning we have
already converged to bounding combined extinctions. We make
this assumption, because once 𝑛 > 𝑗 , the total bias 𝐵𝑖𝑎𝑠 [⟨𝐼 ⟩] = 𝐵

𝑛 ,
will behave in a predictable manner,

𝐵𝑖𝑎𝑠 [⟨𝐼 ⟩] = 𝑂 (𝑛−1), (10)

as we showed in Eq. (7). This means that,

𝐵𝑖𝑎𝑠 [⟨𝐼 ⟩]2 = 𝑂 (𝑛−2), (11)

the squared bias disappear at a rate of𝑂 (𝑛−2) as more pixel samples
are evaluated.

2.2 Asymptotic behaviour of variance
The variance of our progressive estimator Eq. (1),
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will simplify to the sum of the iteration variances assuming each
iterations is evaluated independently from one another. However,
the variances of the iterations will not all be the same since the first
𝑗 iterations might use different majorants, while the variances of
the last (𝑛 − 𝑗 − 1) iterations will be identical,
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So let us define 𝑉 + such that,

𝑉 + :=𝑚𝑎𝑥

{
𝑉𝑎𝑟

[〈
𝐼

(
𝜇
(𝑘 )
𝑡

)〉]
: 𝑘 = 1...𝑛

}
. (15)

Assuming that the variance of every iteration is finite then,
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𝑉𝑎𝑟 [⟨𝐼 ⟩] ≈ 𝑂 (𝑛−1), (18)

which is the typical Monte Carlo convergence rate for variance.

2.3 Asymptotic behaviour of MSE
Given both the asymptotic convergence rates for the variance
Eq. (18) and squared bias Eq. (11), we can compute the asymptotic
convergence for the MSE,

𝑀𝑆𝐸 [⟨𝐼 ⟩] = 𝑉𝑎𝑟 [⟨𝐼 ⟩] + 𝐵𝑖𝑎𝑠 [⟨𝐼 ⟩]2, (19)

𝑀𝑆𝐸 [⟨𝐼 ⟩] ≈ 𝑂 (𝑛−1) +𝑂 (𝑛−2), (20)

𝑀𝑆𝐸 [⟨𝐼 ⟩] ≈ 𝑂 (𝑛−1). (21)
Thus, even though we introduce bias through the use of our progres-
sive technique, themean squared error will eventually be dominated
by the variance instead of the bias. Once our majorants have con-
verged to become bounding, the squared bias will converge at rate
which is an order of magnitude faster than the variance.

This implies that in practice, it would be ideal to initialize the
guesses for the bounding majorants and use updating strategies
which learn bounding majorants quickly.
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