PHYSICALLY BASED SIMULATION OF BAINBOWS

Iman Sadeghi¹, Adolfo Munoz², Philip Laven³, Wojciech Jarosz⁴, Francisco Seron², Diego Gutierrez², Henrik Wann Jensen¹

¹UC San Diego
²Universidad de Zaragoza
³Horley, UK
⁴Disney Research Zurich

© Dan Bush

$$L_{\lambda}(x,\vec{\omega}) = e^{-\tau_{\lambda}(x_{0},x)}L_{\lambda}(x_{0},\vec{\omega}) + \int_{x_{0}}^{x} e^{-\tau_{\lambda}(x',x)}\alpha_{\lambda}(x')L_{e,\lambda}(x',\vec{\omega})dx' + \int_{x_{0}}^{x} e^{-\tau_{\lambda}(x',x)}\sigma_{\lambda}(x')\int_{\Omega} p_{\lambda}(x',\vec{\omega}',\vec{\omega})L_{\lambda}(x',\vec{\omega}')d\vec{\omega}'dx'$$

© Dan Bush

Primary Bow

Double Rainbow

Double Rainbow / Alexander Dark Band

Red Bow at Sunset

Multiple Supernumerary Arcs

Twinned Bows

Gravity vs. surface tension vs. air resistance

Gravity vs. surface tension vs. air resistance

Gravity vs. surface tension vs. air resistance

Misconception Small Drops

Gravity vs. surface tension vs. air resistance

Misconception Small Drops

Large Drops

Refraction
 Dispersion
 Interference
 Diffraction

Refraction
 Dispersion
 Interference
 Diffraction

RefractionDispersion

Secondary bow _

Alexander Dark Band

Primary bow

Interference

Diffraction

PREVIOUS WORK

	Interference/ Diffraction	Physically Based Drops	Practical		
Ray Optics	×	×			
Lorenz-Mie		×			
FDTD			×		
Our Goal	~				

OUR APPROACH

- Model physically based shape of water drops
- Compute the scattering profile of a water drop

Use the scattering profile in rendering

PHYSICALLY BASED SHAPESBased on [Beard and Chuang 1987]

Considered:
 Surface tension
 Hydrostatic pressure
 Aerodynamic pressure

- ≻ Key ideas
 - Ray tracing
 - Arbitrary geometry
 - X Interference
 - Keep track of the phase of light
 Interference

Algorithm (per wavelength)

▶ 1. Cast

- E 1. Cast 2. Interact 3. Collect
- Electromagnetic wave information

▶ 1. Cast

- 1. Cast 2. Interact 3. Collect
- From a reference plane
- Grid of rays

- ≥ 2. Interact
 - Geometric optics

 $\theta_i \theta_r$

θ

Refraction: Snell's law

- ▶ 2. Interact
 - Fresnel coefficients
 - Focal lines
 - Optical path

- 1. Cast ▶ 2. Interact - Fresnel coefficients
 - Focal lines

2. Interact

3. Collect

- 2. Interact
 Fresnel coefficients
 - Focal lines
 - Optical path

Inside the particle

To reference plane

2. Interact

3. Collect

From reference plane

- ≻ 3. Collect
 - Finding rays exiting the same direction:

1. Cast

 Idea: Establish a small angular threshold [Gondek 1994]

3. Collect

2. Interact

• Another idea: Use a density estimation kernel (as in Photon Mapping)

- ≻ 3. Collect
 - Finding rays exiting the time direction:
 - Gonder L

1. Cast

2. Interact

3. Collect

Another idea: Use a density estimation kernel (as in Photon Mapping)

- ≻ 3. Collect
 - Finding rays exiting the time direction:
 - Ide includes a subject of a sub

1. Cast

Better idea: Use a density estimation kernel (as in Photon Mapping)

2. Interact

3. Collect

≻ 3. Collect

Finding rays exiting the time direction:

Ide inclusion a sugular threshold

1. Cast

Another idea: Use a density estimation kernel (as in Photon Mapping)

Small angle variation

High optical path variation High phase variation

2. Interact

Simulate for eternity

3. Collect

≻ 3. Collect

TLE 1. Cast 2. Interact 3. Collect

Si

≻ 3. Collect

ai

1. Cast

3. Collect

2. Interact

≻ 3. Collect

1. Cast

3. Collect

2. Interact

- ➤ 3. Collect
 - Query and tabulate data (per wavelength)

1. Cast

atitude

2. Interact

3. Collect

longitude

Diffraction

Diffraction approximation

Diffraction approximation
 – Smooth sharp transitions

Radius (mm)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
σ (degrees)	0.70	0.45	0.30	0.25	0.22	0.20	0.18	0.17	0.16	0.15

OUR MODEL VS. LORENZ-MIE

(a) Our model(b) Lorenz-Mie

(a)

(b)

Spherical (0.4mm)

Nonspherical (0.5mm)

OUR MODEL VS. LORENZ-MIE

Spherical (0.4mm)

Nonspherical (0.5mm)

(a) Our model(b) Lorenz-Mie

Double Rainbow

Double Rainbow / Alexander Dark Band

Double Rainbow with Supernumerary Arcs

Red Bow at Sunset

Photograph

Rendering (0.4 mm & 0.45 mm)

Twinned Bow

SUMMARY

- Rainbow simulation from physically based shapes
 - Match Lorenz-Mie for spheres.
 - Not limited to spheres.
- Matched photographs of real rainbows
 - Double rainbows, supernumerary arcs, fogbows, red bows, etc.
 - First comprehensive simulation of twinned bows

FUTURE WORK

Automate photo matching
 Simulation of other phenomena
 Diffraction Approximation
 GPU implementation

THANK YOU!

OUR MODEL VS. LORENZ-MIE

(a) Our model (b) Lorenz-Mie

OUR MODEL VS. LORENZ-MIE

(left half) Lorenz-Mie

(right half) Our model

SUN'S INCLINATION

Sun's inclination

NON-SPHERICAL WATER DROPS

