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In this paper we derive a physically based model for simulating rainbows.
Previous techniques for simulating rainbows have used either geometric op-
tics (ray tracing) or Lorenz-Mie theory. Lorenz-Mie theory is by far the
most accurate technique as it takes into account optical effects such as dis-
persion, polarization, interference, and diffraction. These effects are critical
for simulating rainbows accurately. However, as Lorenz-Mie theory is re-
stricted to scattering by spherical particles, it cannot be applied to real rain-
drops which are non-spherical, especially for larger raindrops. We present
the first comprehensive technique for simulating the interaction of a wave-
front of light with a physically-based water drop shape. Our technique is
based on ray tracing extended to account for dispersion, polarization, inter-
ference, and diffraction. Our model matches Lorenz-Mie theory for spheri-
cal particles, but it also enables the accurate simulation of non-spherical par-
ticles. It can simulate many different rainbow phenomena including double
rainbows and supernumerary bows. We show how the non-spherical rain-
drops influence the shape of the rainbows, and we provide a simulation of
the rare twinned rainbow, which is believed to be caused by non-spherical
water drops.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—; I.3.5 [Computer Graphics]: 3D Graphics and
Realism—

General Terms: Rainbows

Additional Key Words and Phrases: Lorenz-Mie theory, optical properties,
phase function, appearance modeling, realistic rendering.

1. INTRODUCTION

Rainbows are among the most visually stunning phenomena in na-
ture. They are caused by the interaction of sunlight with small wa-
ter drops in the atmosphere, and they appear in the form of mul-
ticolored arcs. The appearance of rainbows can vary significantly
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depending on the lighting conditions and the raindrop distribution.
Figure 2 shows examples of a full double rainbow, a close-up show-
ing the darkening of Alexander’s band, supernumerary bows and a
rare twinned rainbow.

Even though the study of rainbows can be traced back more than
two thousand years [Lee and Fraser 2001], they are still not fully
understood. For instance, twinned rainbows (which strangely are
visible on the primary bow but not the secondary, as seen in Fig-
ure 2f and 17), are believed to appear due to water drops not being
perfect spheres, but there is no solid theory to confirm this.

The first studies of rainbows assumed simple geometric optics
where light is refracted as it enters or leaves the water drop. This
model can explain the basic primary and double rainbow configu-
ration, but it fails at explaining supernumerary bows that are caused
by interference. To account for interference it is necessary to con-
sider the sunlight as a wavefront interacting with the raindrop. This
can be accomplished using Lorenz-Mie theory, which accounts
for reflection, refraction, dispersion, polarization, interference, and
diffraction, and it turns out that all of these optical effects are nec-
essary to accurately simulate rainbows. Unfortunately, Lorenz-Mie
theory is limited to spherical water drops, and this not only yields
wrong predictions in some cases, but it ultimately limits the types of
rainbows that can be explained as well. It is well-known that water
drops become non-spherical as they get larger, and this heavily in-
fluences the distribution of the scattered light. Unfortunately, there
is no theory available that can explain the consequence of physical
water drops, and this is one of the reasons why rainbows continue
to be an active research area.

In this paper we develop the first comprehensive model for rain-
bows in computer graphics. We explain the optical events that cause
rainbows, and we develop an accurate ray tracing algorithm that
accounts for the full spectrum of optical effects including disper-
sion, polarization, interference, and an efficient approximation for
diffraction. We show how our model matches the results of Lorenz-
Mie theory for spherical water drops, and how it extends to also
account for non-spherical water drops. The result is the first ac-
curate simulation of sunlight scattered by water drops of realistic
non-spherical shape. We show how even a slight variation in the
raindrop shape gives rise to changes in the position and shape of
the rainbow. Our simulation can be used to explain the strange ap-
pearance of twinned rainbows, as well as the more common double
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(a) (b) (c) (d) (e)

Fig. 1: Our rendering results for different types of rainbows: (a) Rainbow derived from Lorenz-Mie theory. (b) Single primary rainbow with
considering the angular view of the sun. (c) Double rainbow with a flipped secondary rainbow. (d) Multiple supernumerary rainbows caused
by small water drops with uniform sizes. (e) Twinned rainbow resulted from mixture of non-spherical water drops and spherical ones.

rainbows and supernumerary arcs (see Figure 1). We also provide a
database of tabulated phase functions to the academic community1.

Our work falls in the domain of precise light simulation be-
yond the traditional limitations of pure geometric optics. Similar
approaches have been undertaken before in graphics, for instance
in the field of gem modeling [Guy and Soler 2004] or, the simula-
tion of interference in thin layers [Gondek et al. 1994]. While we
focused here on rainbows, we believe the model we develop can
be used for other phenomena involving scattering by small parti-
cles (for example halos). Furthermore, accurate predictive render-
ing models of atmospheric phenomena, like the one we present,
can have wider-reaching impact in areas such as meteorology e.g.,
by providing a key component in deducing the size of water drops
from photographs [Narasimhan and Nayar 2003].

2. PREVIOUS WORK

Rainbows have traditionally been considered a fascinating topic,
from scientists to philosophers, and are arguably one of the most
beautiful displays of nature [Greenler 1990; Minnaert 1993; Lynch
and Livingston 2001]. Different theories have been developed over
the centuries, and some of them have been adopted by the com-
puter graphics community to simulate rainbows with varying de-
grees of realism. Some techniques are based on a simplification of
the process, in order to achieve interactive frame rates, while others
present rainbow simulations in the context of atmospheric model-
ing. However, the complete (and quite complex) physics of rainbow
formation has not been fully researched in the field of computer
graphics.

Simplified solutions include the work by Musgrave [1989],
which follows Descartes’ model from a classical geometric optics
perspective. Frisvad and colleagues [2007] presented a real-time
simulation using Aristotle’s rainbow formation theory based on re-
flections in clouds. Although these models may provide intuitive
explanations about rainbow formation, geometric optics by itself
fails to capture more complex aspects such as supernumerary arcs
(see Figure 2e).

Lorenz-Mie theory [Lorenz 1890; Mie 1908] provides an exact
solution for scattering by spherical particles in non-absorbing me-
dia. Given its computational complexity, it was not deemed useful

1http://graphics.ucsd.edu/~iman/Rainbows/

until van de Hulst published results as tabulated data [1957]. Un-
fortunately, this work is limited to very small spheres, and thus not
directly suitable for rainbows. This theory was later introduced to
the graphics community by Rushmeier [1995], and was used re-
cently to compute scattering properties of different materials [Fris-
vad et al. 2007].

Lee [1998] investigated the differences between results obtained
using Lorenz-Mie theory and Airy theory [Airy 1838], including
perceptual issues. Jackèl and Walter [1997] simulate rainbows by
adding a rain layer to the atmosphere and making use again of
Lorenz-Mie theory to compute phase functions for single scatter-
ing. In their work, raindrop sizes follow a normal distribution. A
similar approach with a log-normal distribution was introduced
by Riley et al. [2004], who achieve interactive frame rates with
simplified lighting models. Phase functions are obtained based on
the work by Laven [2003], which implements the algorithm from
Bohren and Huffman [1983] to obtain scattered intensities. A sim-
plified, texture-based GPU implementation has also been devel-
oped [nVIDIA 2004]. Recently, Gedzelman [2008] explored the in-
fluence of the atmospheric environment on the appearance of rain-
bows; although valid conclusions on overall brightness and visibil-
ity were reached, the results did not aim to be photorealistic.

Most of these approaches are based on Lorenz-Mie theory
which, unfortunately, can only provide an accurate solution in the
case of spherical water drops. However, real water drops diverge
from perfect spheres due to the combined effects of gravity and
surface tension [Beard and Chuang 1987; Beard et al. 1991; Bringi
et al. 1991; Villermaux and Bossa 2009]. This translates into inac-
curate simulations in the best case, and the impossibility to simulate
certain effects like the twinned rainbow in the worst case. In this
paper, we introduce a novel algorithm based on a ray-tracing ap-
proach, which for the first time matches the predictions of Lorenz-
Mie theory for the ideal case of spherical water drops, but natu-
rally generalizes to handle actual, real-world water drop geome-
tries. This allows us to produce excellent simulations of rainbows,
while extending the validity of such simulations to include scatter-
ing from non-spherical drops of water.

The most practical solution for computing the scattering prop-
erties of particles with arbitrary shapes, are the finite difference
time domain (FDTD) methods [Yee 1966; Taflove 1998]. These
methods can simulate Maxwell’s time-dependent equations on a
discrete lattice in order to compute the behaviour of the electro-
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Fig. 2: Different rainbows seen in nature: (a) primary rainbow, (b) double rainbow (both reproduced with permission ©Dan Bush -
http://www.missouriskies.org/rainbow/february rainbow 2006.html), (c) double rainbow, (d) Alexander’s dark band, (e) multiple supernu-
merary bows (reproduced with permission ©Ian Goddard - http://www.atoptics.co.uk/rainbows/bowim46.htm), (f) twinned rainbow (repro-
duced with permission ©Benjamin Kuehne - http://www.nachtwolke.de/temp/regenbogen2.htm), (g) cloud bow (reproduced with permission
©Les Cowley - http://www.atoptics.co.uk/rainbows/cldbow.htm), and (h) red bow.

magnetic wave. These brute-force methods have been used to simu-
late the light scattering behaviour of complex objects [Umashankar
and Taflove 1982] as well as ice crystals [Yang and Liou 1995;
1996]. However, they are computationally very expensive for three-
dimensional grids and can take days on multi-core processors.
Furthermore, the generalizations of Lorenz-Mie theory to non-
spherical particles by Frisvad et al. [2007] cannot be used as it only
applies to the computed scattering cross-section, while the appear-
ance of rainbows are caused by variations in the angular scattering
profile (the phase function).

There has been other work focusing on the light scattering by
non-spherical particles [Mishchenko et al. 2000; Xu et al. 2010]
but none of them focus on the physically-based geometries of water
drop particles and their effect on the appearance of rainbows. To
the best of our knowledge, we are the first to simulate the light
scattering by physically-based water drop shapes.

3. BACKGROUND THEORY

Rainbows are created from the interaction between light and a par-
ticipating medium composed of water drops suspended in the air.
The most important visual effects are due to single scattering (note
that we consider multiple light bounces within a single water drop
as single-scattering). The complex phase function resulting from
this interaction produces the rich and varied angular distribution of
radiance we observe as rainbows. Multiple scattering is responsi-
ble for the grayish background that appears behind the rainbows
themselves. The effect of absorption on rainbow formation is neg-
ligible since the absorption of light in water reaches a maximum of
3.5 × 10−8 (expressed as the imaginary part of its refractive index
[Pope and Fry 1997]). In the following we describe the formation of
rainbows, from geometric optics to wave effects, and introduce the

actual shape of water drops, all of which will become the physical
basis for our simulation algorithm described in Section 4.

3.1 Geometric Optics

The basic formation of the primary and secondary rainbow can be
understood using simple geometric optics, considering ray paths
within the circular cross-section of a spherical drop of water. For
spherical drops, due to symmetry, the phase function is a 1D func-
tion of the scattering angle θ between the incident and outgoing
directions. Light rays that undergo one internal reflection in the wa-
ter drop produce the primary rainbow for red light (700 nm wave-
length) for an index of refraction of η = 1.3314 at a scattering an-
gle of θrainbow = 137.7◦ and for violet light (400 nm wavelength) for
η = 1.3445 at θrainbow = 139.6◦ (see Figure 3a). Rainbows can also
be generated by light rays that undergo two or more internal reflec-
tions: in the case of two internal reflections, the resulting secondary
rainbow varies between 129.5◦ for red light and 126.1◦ for violet
light (see Figure 3b). Note the order of the colors of the secondary
rainbow (red on the inside of the arc and violet on the outside) is re-
versed compared to the primary rainbow, as seen in Figure 2c. The
darker area between both rainbows is known as Alexander’s dark
band (better perceived in Figure 2d).

3.2 Wave Optics

Interference. Although geometric optics can provide a good,
basic explanation of the formation of the primary and secondary
rainbows, real rainbows exhibit some features that cannot be ex-
plained with this model. For example, additional arcs (known as
supernumerary arcs) occasionally appear on the inside of the pri-
mary rainbow (and the outside of the secondary): such arcs are typ-
ically violet or blue (Figure 2e). Supernumerary arcs caused great
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Fig. 3: Generation of rainbows from the point of view of geometric optics and wave optics: (a) primary rainbow angle, after a single
internal reflection, (b) secondary rainbow angle, after two internal reflections, (c) supernumerary rainbows are generated from constructive
and destructive interference patterns (inspired by Lee and Fraser [2001]), (d) diffraction extends the wavefront and avoids abrupt intensity
changes.

consternation [Lee and Fraser 2001], because they were not pre-
dicted by geometric optics. However, in the 1830s, scientists such
as Young and Airy realized that they were a consequence of the
wave theory of light: two rays that have different path lengths, must
also have different phases – which result in an interference pattern
consisting of a series of maxima and minima as a function of the
scattering angle (see Figure 3c). This phase difference between the
two rays is also influenced by phase changes due to reflection.

Focal lines. As a wavefront interacts with the water drop, it
gets deformed. The surface that represents this wavefront can be
differentially defined by the curvature at each point. This curvature
defines a radius with respect to a corresponding focus or focal point.
Focal points are actually internal caustics within the water drop. As
light passes through a water drop, the collection of all focal points
lie along a focal line (see Figure 4). Each passage through a focal
line along the path results in a phase advance of π/2 [van de Hulst
1957]. This traversal of focal lines needs to be considered for an
accurate estimation of the phase difference between two interfering
rays.

Fig. 4: A focal line defines the curve along which all the differential fo-
cal points of the wavefront lie. The thick black represents a portion of the
surface of the water drop. The green patches represent the wavefront itself.
Notice how they converge to the red line, which is the focal line.

Diffraction. Another failure of geometric optics is that it pre-
dicts infinite intensity at θrainbow and no scattering light when
θ < θrainbow, while diffraction predicts that this abrupt radiance
gradient cannot happen in reality [van de Hulst 1957] (see Fig-
ure 3d). Airy [1838] produced an elegant mathematical solution
which avoided both of these problems and proved that the peak in-
tensity of the rainbow does not occur at θrainbow = 137.86◦, but at a
slightly higher value of approximately θ = 138.9◦.

Another consequence of diffraction is that scattering from small
droplets of water (such as fog in which the droplet radius is typ-
ically between 5 µm and 20 µm) can generate rainbows that are
essentially white. As the diffraction pattern for small droplets has
very broad maxima in terms of θ, the rainbows corresponding
to different wavelengths in the visible spectrum tend to overlap
each other, thus creating white fog bows or cloud bows. Therefore,
diffraction becomes more relevant as the water drops get smaller.

3.3 Lorenz-Mie Theory

Lorenz-Mie theory [Lorenz 1890; Mie 1908] developed a rigorous
solution to the problem of scattering of light from spheres, taking
into account not only interference, but polarization and radius dis-
tribution as well. Figure 5 shows the result of Lorenz-Mie theory
calculations to simulate the scattering of sunlight by a water drop
with radius 100µm. It shows the primary rainbow near θ ≈ 139◦,
the secondary rainbow near θ ≈ 127◦ and Alexander’s dark band
between θ ≈ 130◦ and θ ≈ 136◦. Note that the primary and sec-
ondary rainbows are strongly polarized: the dominant polarization
is given by the perpendicular component of the electric field (with
respect to the scattering plane). The colored horizontal bars above
the graph in Figure 5 show the colors and relative brightness of
the rainbows: the top bar represents perpendicular polarization, the
middle bar represents parallel polarization while the lower bar rep-
resents unpolarized light (the combination of the two).
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Fig. 5: Graph of intensity as a function of scattering angle for the primary
rainbow caused by scattering of sunlight by a spherical drop of water of
radius 0.1 mm. The color stripes on top represent, from top to bottom, the
phase function for perpendicular polarization, parallel polarization and un-
polarized light, respectively.

ACM Transactions on Graphics, Vol. 31, No. 1, Article 3, Publication date: December 2011.



Physically-Based Simulation of Rainbows • 5

Figure 6 illustrates how the appearance of the primary and sec-
ondary rainbows varies with the radius of the (spherical) water
drop, according to Lorenz-Mie theory: this type of diagram was
first shown by Lee [1998] and is consequently known as a Lee dia-
gram. It shows the complexity of rainbows and their supernumerary
arcs.

120 130 140 150
0.01

0.1

1

Scattering angle (degrees)

R
ad

iu
s 

(m
m

)

Fig. 6: Lee diagram showing the variation in appearance of primary and
secondary rainbows caused by scattering of sunlight by a spherical water
drop as a function of radius (Lorenz-Mie theory calculations)

3.4 Non-Spherical Water Drops

We consider physically-based water drops that are the same size
and shape throughout the medium. Though water drops suspended
in air are never homogeneous (the distribution of shapes and sizes
can even be time-varying), given the ability to simulate phase func-
tions for arbitrary geometry, such distributions can be accounted
for by calculating and combining a set of phase functions accord-
ing to the distribution. For each water drop size, we use the model
by Beard and Chuang [1987] which accounts for surface tension as
well as hydrostatic and aerodynamic pressure. Beard and Chuang
proposed a cosine series fit to the model, with the shape of the rain-
drop profile given by the polar curve

r = a[1 +
∑

cn cos(nθ)], (1)

where a is the radius of the equivalent volume sphere, while the
coefficients cn are listed as tabulated values (see Table I). Figure 7
shows visualizations of several water drop shapes based on this
work. Other models and approaches (and even water drop distri-
butions) can be trivially used in our simulations, as the algorithm
can handle arbitrary geometries.

4. SIMULATING RAINBOW PHASE FUNCTIONS

A key aspect for an accurate simulation of rainbows is the pre-
cise computation of the phase function, which defines the angu-
lar distribution of radiance for every wavelength. Some of the ap-
proaches discussed in the previous work propose efficient meth-
ods to render rainbows, but they do not actually simulate precise

Table I. : Water drop polar curve coefficients for Equation (1) [Beard and
Chuang 1987]. The a = 0.4 row has been added to account for spherical
water drops. Intermediate values are obtained through linear interpolation.

a(mm) c0 c1 c2 c3 c4 c5 c6 c7

0.4 0 0 0 0 0 0 0 0
1.0 -0.0131 -0.0120 -0.0376 -0.0096 -0.0004 0.0015 0.0005 0
1.5 -0.0282 -0.0230 -0.0779 -0.0175 0.0021 0.0046 0.0011 -0.0006
2.0 -0.0458 -0.0335 -0.1211 -0.0227 0.0083 0.0089 0.0012 -0.0021
2.5 -0.0644 -0.0416 -0.1629 -0.0246 0.0176 0.0131 0.0002 -0.0044
3.0 -0.0840 -0.0480 -0.2034 -0.0237 0.0297 0.0166 -0.0021 -0.0072

0.5 mm 1 mm 1.5 mm 2 mm 2.5 mm 3 mm

Fig. 7: Physically-based raindrop shape with increasing radii as proposed
by Beard and Chuang [1987].

phase functions, which they take from available simulators such
as AirySim2, BowSim3 and MiePlot4. While these simulators do a
great job at approximating the phase function of rainbows under
some conditions, they all have hard limitations: none of them can
handle physically-based water drop shapes, limiting the computa-
tions to spheres BowSim can additionally handle ellipsoids, but
it does not consider interference for its simulations. AirySim, how-
ever, approximates interference using Airy functions. In this section
we focus on this key aspect of rainbow simulation and our proposed
solution for arbitrary geometries. This is our primary contribution.

We compute phase functions for non-spherical water drops by
taking a virtual gonioreflectometer approach. In essence, we simu-
late the way a collection of light rays scatter off a water drop and
gather the resulting information on an infinite collecting sphere.
The problem at hand is thus similar to rendering caustics, and there-
fore a pure Monte Carlo approach would be impractical. Unfortu-
nately, photon mapping would not work either, since interference in
this configuration produces extremely high frequency details which
the radiance estimation technique would fail to reproduce. To in-
clude all the important optical properties of real rainbows we aug-
ment our ray tracing computation to account for dispersion, po-
larization, interference, and diffraction. Unlike Lorenz-Mie theory,
which is limited to spherical drops, our approach allows us to use
the real shape of the drops and thus produce more accurate simula-
tions.

Our algorithm simulates the phase function by following several
steps for each wavelength:

(1) We cast a grid of rays from an emitting plane that represents
the wavefront of a directional light source. Each ray carries
wave information represented using phasors.

(2) These rays interact with the water drop (through reflection and
refraction) a number of times and exit the water drop forming
patches.

(3) The outgoing patches are deposited on an infinite collecting
sphere and stored in an acceleration structure.

(4) The phase function is discretized into tabulated form by query-
ing the acceleration structure along a 2D set of sampling direc-
tions uniformly distributed in longitude-latitude.

The stored tabulated phase function is later used for rendering. All
these steps are illustrated in Figure 8.

In the following, we first explain the basis of our approach from
a classic ray-tracing perspective, for the sake of clarity; we then in-
troduce our phasor notation which allows us to efficiently compute
interference and polarization.

Casting Rays. Inspired by the beam tracing technique [Heck-
bert and Hanrahan 1984], and similar to the work by Collins [1994],
we follow a wavefront of light by casting a grid of rays (3000×3000

2http://www.atoptics.co.uk/rainbows/airysim.htm
3http://www.atoptics.co.uk/rainbows/bowsim.htm
4http://www.philiplaven.com/mieplot.htm
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Fig. 8: Steps of the algorithm. (1) Casting the grid of rays towards the particle. (2) Rays are reflected and refracted towards the water drop,
forming patches. (3) Outgoing patches are collected in an infinite collecting sphere. (4) The stored patches in the collecing sphere are queried
at specific directions, sampling the phase function.

rays for our results). This way, rays that are contiguous and repre-
sent the same wavefront can be identified. Rays are perpendicular
to a reference emitting plane, representing a collimated light source
that emits a parallel wave train (see Figure 8(1)). Each of these rays
is propagated through interactions with the water drop, which can
be of arbitrary geometry. For our tests we use a physically-based
geometric model that accounts for different particle sizes [Beard
and Chuang 1987] although any other model or specific geometry
could be considered instead.

When a ray interacts with the water drop, its path is reflected
and refracted according to the law of reflection and Snell’s law, re-
spectively. We account for up to four consecutive interactions: a
single reflection, two refractions, two refractions with an internal
reflection (primary rainbow) and two refractions plus two internal
reflections (secondary rainbow). Though further bounces could eas-
ily be handled, they have a negligible effect on the resulting phase
function.

Collecting Sphere. When rays exit the water drop, we store
the outgoing rays and their corresponding adjacency information
as a set of patches on an infinite virtual collecting sphere (see Fig-
ure 8(3)). Each vertex of a patch thus represents one outgoing ray
and contains wave data.

The energy of the emitting plane is split among all the grid cells
according to each grid cell’s area ai. When this energy exits the par-
ticle and reaches the collecting sphere, it is transformed into radi-
ance by considering the solid angle si of the resulting patch. There-
fore, the ratio ai

si
determines a patch’s contribution to the phase

function, which amounts to density estimation. While we could ap-
ply this relation directly to photometric units, this would not ac-
count for many of the effects that contribute to rainbows such as
interference, polarization, focal lines, and diffraction. Instead, we
apply this ratio to the corresponding wave data, which is described
in the following section.

4.1 Computing Interference

To account for interference and polarization, we characterize light
in terms of an electromagnetic field E perpendicular to the direc-
tion of the ray. Defining a coordinate system with the z-axis along
the direction of propagation, we can define it in terms of two or-
thogonal phasors of the electromagnetic field [Giancoli 1989]:

Ex = Axe
i( 2π

λ z−ωt+δx) and Ey = Aye
i( 2π

λ z−ωt+δy), (2)

where Ax and Ay are the amplitudes, λ is the wavelength, ω is
the angular frequency, t is time and δx and δy represent phase off-

sets. The irradiance carried by a planar electromagnetic wave rep-
resented by two phasors is A2

x +A2
y .

We assume that all the waves have traveled the same optical path
from the sun (and therefore z is a constant reference path) and also
consider a stationary simulation of the phase function, where ωt
becomes constant. Furthermore, we sample fixed values of λ along
the visible spectrum and simulate each independently. As a conse-
quence, the only relevant information for each phasor is the am-
plitude A and the corresponding phase offset δ, which is the polar
representation of the phasor.

Following Euler’s formula, eix = cosx + i sinx, we can rep-
resent a phasor Aeiδ by a complex number (rectangular represen-
tation) for which the real part is A cos δ and its complex part is
A sin δ. This rectangular representation is efficient for phasor ad-
dition (interference) and phasor interpolation. Furthermore, it en-
ables a very straightforward simulation of the interactions between
the electromagnetic wave and the water drop, by applying the cor-
responding Fresnel coefficients (as explained below in the text).

Each ray in our algorithm carries the following information:

—Two phasors Ex and Ey represented by complex numbers.
—The traversed optical path l.

Additionally, during ray tracing, we consider the frame that rep-
resents the coordinate system of the two axes of the electromagnetic
wave (perpendicular to the propagation direction). These axes are
rotated as needed for the different interactions.

Phase shifts need to be taken into account; these occur at the
interaction with the water drop, along the traversed optical path,
and at focal lines. As rays are traced, we modify the phasors at the
interactions with the water drop. Phase shifts due to optical path
and focal lines are included after the bilinear interpolation at each
patch (see Subsection 4.1.1).

There has been some previous work for ray tracing polarization
effects [Wolff and Kurlander 1990; Tannenbaum et al. 1994; Wilkie
et al. 2001], all based on coherency matrices. Our approach, on the
other hand is similar to using Jones vectors [JONES 1941] and can
account for interference.

Ray-Water Drop Interactions. Light interacting with a wa-
ter drop gets both reflected and refracted, with the total amplitude
divided between both rays in terms of the parallel and perpendic-
ular components with respect to the plane of incidence. We rotate
the coordinates of the two components of the wave to a parallel-
perpendicular coordinate system. As in previous work by Gondek
et al. [1994], the respective amplitudes are multiplied by the Fres-
nel coefficients t∥, t⊥, r∥ and r⊥, which can be found in most optics
books [Lipson et al. 1995] and can become complex in the case
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Fig. 9: Comparison between the different phenomena simulated by our method (dispersion, interference and diffraction) and the same
simulation from the Lorenz-Mie theory, for a 0.4 mm radius spherical water drop. Left: Graphs for 650 nm wavelength. Right: Renderings
for 33 wavelength.

of total internal reflection. We multiply phasors with these poten-
tially complex coefficients using the rectangular representation of
complex numbers explained before.

Optical Path. The optical path l is defined as l =
∫
P
η dp,

where η is the index of refraction and p refers to the differential
traversed path. In our case the total optical path traversed by a ray
is l = ηipi+ηtpt, where pi and pt are the total distances traversed
outside and inside the water drop, respectively. Given the impossi-
bility of computing infinite path lengths from the sun, we rely on
the fact that interference computations require just relative optical
paths between different rays; we thus consider the common casting
plane to be placed at a distance d from the center of the water drop
(which would represent a distance z from the sun in Equation 2).
In a similar fashion, we set a second reference plane perpendicular
to each outgoing ray, placed at a distance d′ from the center of the
water drop (not from the origin of the ray). The optical path l is
accumulated as the ray traverses the water drop by simply adding
the Euclidean distances between interactions outside and inside the
particle. We account for this effect on phase change during the bi-
linear interpolation step in Subsection 4.1.1.

Focal Lines. Focal lines must also be considered for an accu-
rate simulation of the phase carried by each ray, given that each
passage through a focal line along the path results in a phase ad-
vance of π/2 [van de Hulst 1957]. Unfortunately, both computing
focal lines caused by arbitrary geometry and detecting which rays
actually traverse a focal line are very complex tasks. However, we
can approximate the exact solution by leveraging the fact that we
only need to take into account the area close to the rainbow. Fur-
thermore, for interference, it is again only the phase difference that
needs to be taken into account. We thus analyze the sign of the
derivative of the outgoing angle θ with respect to the impact pa-
rameter b = u2 + v2 (where u and v are the parameters that de-
fine the projection plane from which the rays are cast, as illustrated
in Figure 8(1)). When this derivative is positive, we consider one
extra focal line than when the derivative is negative. The deriva-
tive (and therefore the number of focal lines) is easily computed at
each of the patches from its corners. We consider that any direc-
tion inside a patch represents a ray that has crossed that number of
focal lines. Figure 9 shows that this approximation of the real phe-
nomenon leads to accurate interference simulation, needing mini-
mal computational overhead, as opposed to numerically detecting
the focal lines and intersecting them with all rays, which would be
prohibitively expensive.

4.1.1 Interference. In order to save the phase function to the
hard drive (so it can be later used in a renderer), we tabulate it
per wavelength by generating a 2D set of directions uniformly dis-
tributed in longitude-latitude coordinates. Each of these samples
corresponds to a direction r. We compute the outgoing radiance for
a specific direction r within a patch using bilinear interpolation of
the data stored at the four vertices of the patch. This bilinear inter-
polation is equivalent to assuming that the wavefront at each of the
patches is planar, and the error we commit by making this assump-
tion becomes negligible as the resolution of patches increases.

We then combine the interpolated data at each of the patches that
contain a direction to account for interference between wavefronts.
For efficiency we consider the whole set of patches as a virtual ge-
ometry and we create a bounding volume hierarchy (BVH) over
them. Given an outgoing direction r, we find the set of patches
Υ(r) that contains r by tracing a ray from the center of the collect-
ing sphere in that direction. We consider all intersected patches for
interpolation and interference.

In Figure 10, we show an example for two patches k1 (red) and
k2 (yellow), which represent two different interfering wavefronts.
The ray at each of the four corners vki of each patch contains in-
formation about the two corresponding phasors Exk and Eyk and
the optical path lk. At each of the patches k ∈ Υ(r) we bilinearly
interpolate this information from the four corners (at the specific di-
rection r). Furthermore, we calculate the number of traversed focal
lines fk for that patch, as explained above. As the irradiance car-

r

v1

v2

v3

v4

v1
v2

v3

v4

k1

k1

k1

k1

k2

k2

k2

k2

Fig. 10: Direction r intersects patches k1 (red) and k2 (yellow) (two parts
of two different wavefronts). At each of both patches, bilinear interpolation
from all the corners vki result into an interpolated electromagnetic wave per
patch. Interference is then computed by combining (adding) all the interpo-
lated electromagnetic waves.
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(a)
(b)

(a)

(b)

Fig. 11: Comparison between our method (a) and Lorenz-Mie theory (b) for different water drop sizes. Top: Renders. Bottom: Plots of the
phase function for the regions of the primary and secondary rainbows. From left to right: Water drops of radius 0.1 mm, 0.2 mm 0.3 mm,
0.4 mm and 0.5 mm, respectively. Our method matches Lorenz-Mie theory for small water drops, which are spherical, but predicts different
behavior as the radius increases by accounting for non-spherical drop shapes.

ried by a planar electromagnetic wave represented by two phasors
is A2

x + A2
y we account for the corresponding radiance (applying

the ai
si

factor, as stated in the previous section) by multiplying each

of the amplitudes by
√

ai
si

. We then obtain the new phasor infor-

mation E ′
xk and E ′

yk including the phase shift due to the traversed
optical path and to the number of traversed focal lines for each in-
terpolated wave as:

E ′
xk = Exke

i( 2π
λ lk+

π
2 fk), E ′

yk = Eyke
i( 2π

λ lk+
π
2 fk). (3)

We then compute the final outgoing radiance due to interference by
adding all the traversed phasors:

Ex(r) =
∑

k∈Υ(r)

E ′
xk, Ey(r) =

∑
k∈Υ(r)

E ′
yk, (4)

where Ex(r) and Ey(r) are the two components of the wave that
exits the water drop towards r.

4.1.2 Diffraction. A fundamental problem with using ray-
tracing techniques to simulate rainbows lies in the fact that geo-
metric optics predicts infinite intensity at the rainbow angle with a
very abrupt transition to zero intensity, as shown by the blue curve
in Figure 9. In contrast, Lorenz-Mie theory predicts that maximum
intensity occurs slightly above the geometric rainbow angle (see
green curve at about 138.5◦ in Figure 9). Note also that this tran-
sition is softened so the intensity at the geometric rainbow angle is
less than the maximum intensity, with some light being scattered
into the zone below the geometric rainbow angle where no geomet-
ric rays can penetrate.

This process is very similar to diffraction by a knife edge in
which some light appears in the shadow zone. An accurate calcu-
lation of the effect of diffraction on the rainbow light field would
require the application of the Huygens-Fresnel principle for each
differential point on each wavefront, which is time-consuming and
impractical. Such techniques would also be able to predict the su-
pernumerary arcs, but this is not necessary as Figure 11 shows that
the supernumerary arcs predicted by our ray-tracing technique are
already in very close agreement with Lorenz-Mie theory. Hence,
we need only to address the diffraction effect, which can be ef-
ficiently approximated by performing a post process on the com-
puted phase function, by first identifying very sharp transitions in
intensity at a given wavelength and then smoothing out the sharp

peaks by applying a domain-specific kernel. The size of the chosen
kernel depends on the size of the water drop. For efficiency rea-
sons, we choose a simple Gaussian kernel, summarized in Table
II for different radii. The values have been obtained from Lorenz-
Mie theory for spherical drops, which our results show offer a good
approximation. For the secondary rainbow we double the standard
deviation of the kernel, to account for the fact that light has been
reflected twice inside the water drop.

Table II. : Standard deviation of the Gaussian filter diffraction approxima-
tion for various water drop sizes.

Radius (mm) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

σ (degrees) 0.70 0.45 0.30 0.25 0.22 0.20 0.18 0.17 0.16 0.15

The addition of the diffraction filter produces some fairly subtle
changes in our simulations, as can be seen in the simulations shown
in Figure 9. In essence, the diffraction filter softens the transitions
near the rainbow angle thus giving a better match to the Lorenz-Mie
simulations. It is important to acknowledge that the parameters for
our diffraction filter have not been thoroughly validated. Further
work based on the application of the Huygens-Fresnel principle
could overcome such concerns, but the increased accuracy of such
techniques would be outweighed by an immense increase in com-
putational complexity. In these circumstances, the diffraction filter
seems to be a sensible approximation that adequately addresses a
fundamental limitation of geometric optics.

5. RESULTS

We have used our technique to simulate several phase functions,
and then used those phase functions to render images depicting var-
ious types of rainbows. Unless stated otherwise, each of the results
shown on this section has been simulated by casting rays from a
3000× 3000 grid for each wavelength, uniformly sampling 33 dif-
ferent wavelengths between 380 and 720 nm. The resulting phase
functions were sampled at an angular resolution of 1800 × 14400
(which is dense enough to account for the cusp of the rainbow and
the high frequency details of interference) and stored on disk. Rain-
bows are obtained by ray marching and computing single scattering
along the volume, importance-sampling the sun (which is modeled
as a disc subtending a solid angle of 0.5◦). On an Intel(R) Xeon(R)
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Fig. 12: The inserts in these images show how our model can reproduce the rainbows in the underlying photographs. Only the background
color of the insert has been matched to the specific photograph. Top row, from left to right: double rainbow (background reproduced with
permission ©Les Cowley - http://www.atoptics.co.uk/rainbows/adband.htm), full double rainbow (background reproduced with permission
©Karl Kaiser - http://home.eduhi.at/member/nature) and supernumerary bows. Bottom row, from left to right: Multiple supernumerary bows
(background reproduced with permission ©Ian Goddard - http://www.atoptics.co.uk/rainbows/bowim46.htm), cloud bow (background re-
produced with permission ©Les Cowley - http://www.atoptics.co.uk/rainbows/cldbow.htm) and red bow.

Table III. : The list of parameters used to produce the rendering results in Figure 12.

Figure Top Left Top Middle Top Right Bottom Left Bottom Middle Bottom Right

Water Drop Size 0.4 mm 0.4 mm 0.3 mm 0.3 mm 0.1 mm 0.4 mm
FOV 20o 100o 30o 10o 100o 30o

Lens Type Rectilinear Fisheye Rectilinear Fisheye Rectilinear Rectilinear
Background Color (107,114,118) (183,202,212) (172,172,172) (69,99,112) (141,180,223) (154,83,58)
Intensity 55% 100% 90% 80% 60% 80%
Illumination D65 D65 D65 D65 D65 D65 + Rayleigh

CPU X5570 at 2.93 GHz, using 8 GB of RAM, our simulations
took an average of 350 minutes to compute for all 33 wavelengths.

To validate our algorithm, we simulated the phase function of
spherical water drops of different sizes, comparing our results with
the predictions of Lorenz-Mie theory. Figure 9 shows this compar-
ison for a 0.4 mm spherical water drop on a log-scale: purple rep-
resents dispersion, the pure geometric interpretation of the phase
function of the rainbow; blue adds interference, and therefore the
oscillations of the supernumerary arcs appear; green adds diffrac-
tion, eliminating the high intensity peaks at the geometric rainbow
angle; and red represents the simulation from Lorenz-Mie theory.
Notice the similarity between the green line (our complete simu-
lation) and the red line (Lorenz-Mie simulation). The main differ-
ences are observed in the Alexander band, due to our diffraction
approximation. Figure 11 shows rainbow renderings from the sim-
ulated phase functions, again exploring variations in size; for small
sizes, where drops can be considered spherical, our results match
Lorenz-Mie’s predictions. However, larger drop sizes (0.5 mm in
the figure) stop being spherical and consequently our algorithm pre-
dicts a different behavior.

Our method accurately reproduces several rainbow-related phe-
nomena seen in nature. For instance, our algorithm can trivially
reproduce the primary and secondary rainbows as seen in Fig-
ure 12 top-left and top-middle). Also, by simulating interference
we are able to simulate supernumerary bows (Figure 12 top-right
and bottom-left). By including also the effect of diffraction on the
rainbow, we can simulate phenomena such as the cloud bow (Fig-
ure 12 bottom middle) in which the colors of the rainbow disappear
into a whitish bow. Simulating the effect of Rayleigh scattering al-
lows us to mimic the effect of a sunset on a rainbow (Figure 12
bottom-right).

When superimposing simulations on images of natural rainbows,
as in Figure 12, it is necessary to estimate the focal length of the
camera lens. Fortunately, this information is often available in the
EXIF data embedded in digital images. The angular performance
of most camera lenses can be approximated by a rectilinear map-
ping function, except for fisheye lenses which are better modeled
by equidistant, equal-area, stereographic or orthographic mapping
functions. However, even with full information about the camera
and its lens, it is also necessary to know the aiming point of the
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0.4 mm 0.5 mm 0.6 mm 0.7 mm 0.8 mm

Fig. 13: Comparison of renderings of rainbows owed to different water drop radii between Lorenz-Mie (left region on each image) and our
solution (right region of each image). As the 0.4 mm radius water drop is spherical, both algorithms lead to equal phase functions. As the
particle gets bigger, the geometry becomes non-spherical and therefore Lorenz-Mie is unable to simulate it, while our solution takes it into
account. Notice, also, that the variation on the secondary rainbow is quite unnoticeable compared to the variation on the primary rainbow, in
agreement with the formation of twinned rainbows.

camera relative to the direction of the Sun or the anti-solar point. In
practice, some of this information is typically missing (along with
the obvious fact that the photographer is unlikely to provide any in-
formation about the size of the water drops causing the rainbows).
Consequently, the simulation parameters generally need to be ad-
justed by trial and error to get a good match with the original image.
The parameters used to produce the rendering results in Figure 12
are listed in Table III.

Figure 1 shows an overview of the different rainbow-related phe-
nomena our algorithm is able to simulate.

0.4 mm 0.5 mm 0.6 mm 0.7 mm

Fig. 14: The effect of different water drop radii on the apparent geometry
of the rainbow.

As discussed in Section 3.4, as water drops get larger they get
deformed due to the impact of air resistance. This drastically af-
fects the appearance of the final rainbow as shown in Figure 13.
Producing these physically accurate phase functions for large wa-
ter drops is, to our knowledge, not possible using any other method.
Figure 14 shows the effect of the size of the water drop on the ap-
parent geometry of a full rainbow.

(a) 0o (b) 20o (c) 40o

Fig. 15: The effect of the inclination of the sun on a non-spherical water
drop (radius 0.5 mm) alters the apparent geometry of the rainbow. This
would not be the case for spherical water drops. The gray line indicates the
horizon line.

While the phase function for spherical water drops is invariant
to the inclination of the sun, non-spherical water drops produce
very different phase functions for each incident direction of light. In
other words, rainbows are actually the result of an anisotropic phase

function within an anisotropic medium. Figure 15 shows the effect
of the inclination of the sun on a 0.5 mm non-spherical particle.
We have set up the viewing direction to be parallel to the direction
from the center of the sun, and we show the full (theoretical) 360◦
rainbow. For reference, the gray line indicates the horizon. Note
that a rainbow due to spherical water drops would look identical in
all these images.

(a) Unpolarized (b) Horizontal (c) Vertical

Fig. 16: The effect of viewing a rainbow through different polarizing filters
(assuming 0.5 mm radius non-spherical water drop)

Furthermore, our algorithm naturally takes into account polar-
ization. This enables us to explore the effects of different light
polarization filters on the perception of the rainbow given by a wa-
ter drop of arbitrary geometry. Figure 16 shows an example of this
for unpolarized viewing and for viewing through polarizing filters
with their transmission axes aligned horizontally and vertically.

Fig. 17: Left: Photograph of a rare twinned rain-
bow (reproduced with permission ©Benjamin Kuehne -
http://www.nachtwolke.de/temp/regenbogen2.htm). Right: Twinned
rainbow simulated using our algorithm, generated from two showers of
0.4 mm and 0.45 mm radius water drops.

Lastly, twinned rainbows can only be explained by a combina-
tion of two types of water drops with different sizes where at least
one of them is non-spherical. Figure 17 shows a simulation of a
twinned rainbow caused by two showers of 0.4 mm and 0.45 mm
radius water drops. Note that slight changes in water drop sizes

ACM Transactions on Graphics, Vol. 31, No. 1, Article 3, Publication date: December 2011.



Physically-Based Simulation of Rainbows • 11

alter their geometry and have a drastic impact on the resulting rain-
bow. Similar results have been reported by simulating the light
scattering from ellipsoids using BowSim5. However, to our knowl-
edge, this is the first time that such a complex rainbow has been
simulated, based on light scattering from water drops with realistic
shapes.

6. CONCLUSION AND FUTURE WORK

We have presented the first comprehensive model of rainbows
suitable for computer graphics applications. We have validated it
against Lorenz-Mie theory for the case of spherical water drops,
and shown how it naturally overcomes the limitations of such the-
ory.

However, our simulations have some limitations and can be im-
proved in the future. One of the main approximations of our model
is the diffraction filter. This filter introduces small errors around
and inside Alexander’s dark band, specially for small water drops.
Further work based on the application of the Huygens-Fresnel prin-
ciple can improve this component. For efficiency reasons, we also
make approximations for computing the traversed focal lines, al-
though less efficient analytical solution might give more accurate
results as the water drop diverges from a spherical shape. Further-
more, by applying interpolation our simulations assume that the
wavefront is planar within each patch, which is an approximation
of the real phenomena. This can be easily improved by increasing
the resolution of the casting grid, although it would be interesting
to explore other types of interpolation (such as bicubic) and their
interpretations from the optical point of view. In addition, our ren-
derings use a homogeneous size and density distribution of water
drops which in turn will make all the features sharper and more no-
ticeable. Real-world imperfections would contribute to additional
blurring of the rainbow. This issue can be resolved by calculating
and combining a series of phase functions according to the water
drop size distribution. Finally, matching a reference photograph
with rendering results is a manual process. A potential extension to
our research would aim to use computer vision techniques to auto-
mate this process.

This research also opens other potential lines of investigation.
Though we did not focus on performance in our work, we believe
that our algorithm could be adapted to the GPU, greatly acceler-
ating the phase function simulation. Further development on our
phase function simulator could lead to new and generalized global
illumination algorithms, taking into account phenomena such as in-
terference or diffraction. We foresee that a wide set of disciplines,
such as meteorology or remote sensing, could benefit from our
technique.
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