Non-linear sphere tracing for rendering deformed signed distance fields

DARIO SEYB, Dartmouth College

ALEC JACOBSON, University of Toronto

DEREK NOWROUZEZAHRAI, McGill University
WOJCIECH JAROSZ, Dartmouth College

i

-

(a) Deformed Space (b)

Undeformed Space (©

Initial Value Problem

S 5 L
e
Linear Blend . Regularized
Skinning Free Form Deformation Kelvinlets

(d) Example Deformations

Fig. 1. We tackle the problem of rendering deformed signed distance fields (a), by phrasing sphere tracing in object space (b) as an initial value problem.
Under non-linear deformation the straight deformed space ray becomes a curve, which we follow via numerical integration (c). We go to great lengths to avoid
computing the inverse deformation. This enables us to easily apply many modern deformation techniques to signed distance fields (d).

Signed distance fields (SDFs) are a powerful implicit representation for mod-
eling solids, volumes and surfaces. Their infinite resolution, controllable
continuity and robust constructive solid geometry operations, coupled with
smooth blending, enable powerful and intuitive sculpting tools for creating
complex SDF models. SDF metric properties also admit efficient surface
rendering with sphere tracing. Unfortunately, SDFs remain incompatible
with many popular direct deformation techniques which re-position a sur-
face via its explicit representation. Linear blend skinning used in character
articulation, for example, directly displaces each vertex of a triangle mesh.
To overcome this limitation, we propose a variant of sphere tracing for
directly rendering deformed SDFs. We show that this problem reduces to
integrating a non-linear ordinary differential equation. We propose an effi-
cient numerical solution, with controllable error, which first automatically
computes an initial value along each cast ray before walking conservatively
along a curved ray in the undeformed space according to the signed distance.
Importantly, our approach does not require knowledge, computation or
even global existence of the inverse deformation, which allows us to readily
apply many existing forward deformations. We demonstrate our method’s
effectiveness for interactive rendering of a variety of popular deformation
techniques that were, to date, limited to explicit surfaces.

CCS Concepts: » Computing methodologies — Ray tracing; Volumet-
ric models; Animation.

Additional Key Words and Phrases: sphere tracing, signed distance fields,
deformation, non-linear ray tracing

Authors’ addresses: Dario Seyb, dario.r.seyb.gr@dartmouth.edu, Dartmouth College;
Alec Jacobson, jacobson@cs.toronto.edu, University of Toronto; Derek Nowrouzezahrai,
derek@cim.mcgill.ca, McGill University; Wojciech Jarosz, wjarosz@dartmouth.edu,
Dartmouth College.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3355089.3356502.

ACM Reference Format:

Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz.
2019. Non-linear sphere tracing for rendering deformed signed distance
fields. ACM Trans. Graph. 38, 6, Article 229 (November 2019), 12 pages.
https://doi.org/10.1145/3355089.3356502

1 INTRODUCTION

Explicit and implicit surface representations have unique and com-
plementary advantages. Over the past decades, computer-aided
design, interactive graphics, computer games and visual effects in-
dustries have gravitated toward explicit representations such as
triangle meshes, NURBS or subdivision surfaces. While modeling
an initial explicit surface can be tedious and error-prone, explicit
surfaces are very easy to deform. For example, animating a triangle
mesh of a video-game character is as simple as prescribing new
vertex positions as a function of time.

In contrast, implicit surfaces boast a number of advantages over
explicit surfaces during modeling, such as: infinite resolution, con-
trollable continuity, trivially robust constructive solid geometry
operations, domain repetition and smooth blending. Implicit repre-
sentations are differentiable, tend to require less storage, and can si-
multaneously model volumes, solids and surfaces. These advantages
are fueling a resurgence of interest in implicit functions, especially
signed distance functions (SDFs), in computer vision and machine
learning (due to differentiability), in “clay sculpting” VR content
creation (due to globally classifying inside-outside regions), and
in creative coding communities (due to platforms like SHADERTOY
that enable programmatic authoring of SDFs). While convenient
for modeling, implicit functions are unfortunately not directly com-
patible with popular surface deformation techniques developed for
animating explicit surfaces. A common but unsatisfactory solution

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356502
https://doi.org/10.1145/3355089.3356502

229:2 « Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz

is to convert an implicit surface into an explicit mesh (e.g., via march-
ing cubes) before animation, inevitably losing surface information
and many of the aforementioned advantages.

We propose a non-linear variant of sphere tracing for directly
rendering deformed solids, volumes and surfaces defined as SDFs.
We show how the problem can be cast as the numerical integra-
tion of an ordinary differential equation (ODE), and we provide
an automatic construction to determine the initial value for this
integration, before leveraging efficient ODE solvers. In this way, we
maintain the strengths of SDFs while enabling the rich palette of
real-time deformation and animation techniques (e.g., linear blend
skinning, free-form deformations, Kelvinlets) that were previously
only compatible with explicit representations. We demonstrate the
effectiveness of our method with a prototypical implicit model-
ing/animation tool inspired by state-of-the-art VR content creation.

1.1 Related Work

Implicit surface modeling and rendering has a rich history in com-
puter graphics [Bajaj et al. 1997; Blinn 1982; Fujita et al. 1990; Hart
1996; Wyvill et al. 1986b; Wyvill and Trotman 1990] with many appli-
cations [Jones et al. 2006; Pasko et al. 1995]. Beyond graphics, SDFs
are also a natural representation for object reconstruction [Curless
and Levoy 1996; Ilic and Fua 2006], tracking [Park et al. 2019; Schmidt
et al. 2014; Taylor et al. 2017] and recognition tasks in vision/learn-
ing [Genova et al. 2019; Tulsiani et al. 2017]. They also play a key
role in physical simulation for collision detection [Koschier et al.
2016] and fluid simulation [Sethian and Smereka 2003]. The ability
to directly render deformed SDFs would enrich each of these appli-
cation areas. Below, we focus on works related to rendering SDFs
and other implicit surfaces, as well as the deformation techniques
we would like to support.

Directly deforming implicits. For simple deformations (e.g. affine)
it is sometimes possible to directly transform the parameters of the
implicit function (e.g., a translated/scaled/rotated sphere is a general
quadric) or transform rays by the inverse transformation (rays map
to rays under affine transforms). Particle systems [Hart et al. 2002;
Turk and O’Brien 1999; Witkin and Heckbert 1994] and composition
trees [Wyvill et al. 1999] can also be used to directly deform or
combine more complex implicit functions. Individual components
of a compound implicit can be bound to animated affine transfor-
mations, simulating soft/deformable materials or simple articulated
characters [Cani-Gascuel and Desbrun 1997; Desbrun and Gascuel
1995; Russell 1999; Wyvill et al. 1986a].While these tools can be used
for some types of animation, the degrees of freedom in the anima-
tion are strongly tied to the underlying surface representation. Still,
these approaches have witnessed a resurgence with the accessibility
of recent implicit modeling tools for VR and AR [Brinx Software
2019; Evans 2015; Facebook Technologies 2019; Media Molecule
2019; Unbound Technologies 2019], and platforms like SHADER-
Toy for creative coding [Korndorfer 2015]. While such methods
can leverage blending of the constituent implicits to provide some
smoothness [Gourmel et al. 2013], the resulting deformations re-
main limited compared to those available in professional animation
pipelines.

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

Explicit forward deformation. The majority of deformation tech-
niques used in animation - including smooth skinning [Jacobson
et al. 2014], Kelvinlets [De Goes and James 2017], and free-form
deformation (FFD) [Sederberg and Parry 1986] or cages [Joshi et al.
2007] - are forward deformation methods that map positions in
undeformed space to the deformed space. Such deformations are
easy to use in conjunction with explicit geometric representations,
like subdivision surfaces or meshes, by simply applying the forward
transform to (control) vertices. Implicit functions have also been
used to push around (forward deform) explicit geometry for im-
proved contact control and volume preservation [Vaillant et al. 2013,
2014]. We treat the converse problem of applying general forward
deformations to implicit model representations, which has generally
not been possible since there are no explicit world-space positions
on which to apply the forward deformation function.

Deforming implicits via meshing. Meshing the implicit function
using e.g., marching cubes [Lorensen and Cline 1987; Wyvill et al.
1986b] or related techniques [Ju et al. 2002; Kobbelt et al. 2001],
enables any forward deformation technique and has currently been
the dominant strategy in the aforementioned application areas. Un-
fortunately, this process is lossy, and it is hard to capture small
details and sharp edges. This can be overcome by meshing at a
higher resolution (at the cost of storage and speed), but it remains
impractical for procedural fractal geometry [Barnsley et al. 1988;
Ebert et al. 2003]. The mesh must also be recomputed any time the
underlying implicit is modified, making it expensive to handle rapid
editing updates, or time varying implicits (e.g., animated water).

Numerical root finding with inverse deformations. If we can ef-
ficiently compute the inverse of the deformation at any point in
(world) space, then we could render the deformed surface directly
by evaluating the implicit function at each step of a numerical root
finding [Barr 1986] method, like ray marching [Perlin and Hoffert
1989] or interval arithmetic [Knoll et al. 2007, 2009; Mitchell 1990].
For SDFs, sphere tracing [Balint and Valasek 2018; Hart 1996; Kein-
ert et al. 2013; Reiner et al. 2011] is the preferred alternative to ray
marching, since it provides automatic adaptive stepping and an-
tialiasing. Unfortunately, it is not currently compatible with general
non-linear deformations since they invalidate the SDF’s distance
metric, and appropriate Lipschitz bounds are not always easy to
calculate. More importantly, even for simple deformations like lin-
ear FFDs (i.e., cubical voxel cages with trilinear interpolation), the
inverse transformations simply do not exist (e.g., the forward trans-
form is not bijective) or are not known.

One alternative is to use even simpler deformation building blocks
which do admit analytic inverses. Shell mapping [Porumbescu et al.
2005], for instance, applies implicitly defined fine-scale detail to
a mesh via a surrounding tetrahedral shell. Since the tets define
a piecewise affine deformation of space, the inverse deformation
within each tet only requires a 4 X 4 matrix inverse. Unfortunately,
such piecewise affine deformations cause C! discontinuities at tet
boundaries. Smooth shell mapping [Jeschke et al. 2007] reduces these
discontinuities by replacing the tets with bilinear prisms, but this
causes rays to bend, complicating the resulting inverse calculation.

Instead of computing inverses of a desired forward deformation,
an alternative is to define a new class of inverse deformations which

Non-linear sphere tracing for rendering deformed signed distance fields « 229:3

Modeling and Rigging Hull Generation

SDF
+

Conservative
Marching Cubes

Brushes

=
©

4 Rendering

Non-linear
Sphere Trace

World Space
Intersect

Deformed Space Undeformed Space

Fig. 2. Shown here is a high level overview over our method applied to linear blend skinning. After having modeled an implicit surface using a combination of
analytic brushes and having defined an appropriate skeleton, we generate a triangle mesh hull that encloses the implicit surface via marching cubes at a low
resolution. We then deform this hull with the chosen forward mapping deformation technique and rasterize it. The deformed space position retrieved from
rasterization is easily transformed back to undeformed space via barycentric interpolation across the corresponding hull face (Section 3.2). A non-linear sphere
tracing procedure is then started at the approximate undeformed space position (Section 3).

natively map from (deformed) deformed space to (undeformed) un-
deformed space. Unfortunately, these approaches tend to not be as
versatile as the forward ones, since the resulting deformations create
surface duplication for large deformations (space warping [Beier
and Neely 1992; Chen et al. 2001]), are difficult to control artisti-
cally (level-set evolution methods [Osher and Sethian 1988]), or
suffer from numerical dissipation and other degradation of the sur-
face after repeated blending operations (variational warping [Sug-
ihara et al. 2010; Turk and O’Brien 2005]) which needs to be cor-
rected [Slavcheva et al. 2017].

Deformation via non-linear ray tracing. Non-linear ray tracing
methods that account for light rays bending due to gravity or other
forces [Groller 1995; James et al. 2015; Satoh 2003] or from pass-
ing through media with a continuously-varying index of refrac-
tion [Berger et al. 1990; Cao et al. 2010; Gutierrez et al. 2005; Seron
et al. 2004; Sloup 2003; Stam and Languénou 1996] can also be used
to render deformed objects. These methods typically work directly
with the forward deformation, but since they model specific physical
phenomena, the resulting deformations are quite limited. Kurzion
and Yagel [1995] proposed “ray deflectors” which deform space
only locally for better artistic control. Our approach is conceptu-
ally similar, though we derive our “deflectors” or “attractors” to
directly model a chosen forward deformation, like smooth skinning
or Kelvinlets, and we operate in undeformed space where distances
are preserved to enable efficient rendering with sphere tracing.

1.2 Overview

We pose non-linear sphere tracing as an application of parametric
curve deformation [Barr 1984], which we express as an initial value
problem using the Jacobian of the (inverse) deformation (Section 3).
Neyret [1996] similarly locally linearized a deformation, effectively
solving this initial value problem with Euler integration. We enable
the use of arbitrary ODE solvers and crucially, we decouple the
steps needed to faithfully represent the curved ray trajectories from
the expensive SDF lookups needed by sphere tracing (Section 3.1),
allowing real-time performance with low error. This approach, how-
ever, still requires computing the inverse at least once to seed the

initial value, so it remains incompatible with complex deformations
like smooth skinning where a unique inverse does not exist or is not
known. We solve this problem (Section 3.2) by transitioning from
world- to object-space at the boundary of a coarse hull mesh enclos-
ing the implicit surface, entirely avoiding the need for (potentially
non-existent) deformation inverses, while providing quantifiable
error control. Figure 2 illustrates our approach, and we apply it to a
combination of several common forward deformation approaches,
like smooth skinning and Kelvinlets, in Section 6.

2 PROBLEM STATEMENT

We assume our geometry is represented by a signed distance field
S :R3 - R for some subset of R3 and ||VS]|| ~ 1. How this mapping
is described, which regions of space can be evaluated, and how much
attention is paid to the gradient bound depends on the application.

This geometry is deformed by a deformation function D. In this
work, we limit ourselves to space deformations, which means that D
is a function D : R3 i R3 for a volumetric subset of R? instead of
for some set of explicit points on a surface. Luckily, many forward
deformations used in practice either define space deformations or
can be easily made to do so, as we will discuss in Section 4.

We wish to visualize the 0-isosurface of the distance field S di-
rectly. While some simple distance fields admit analytic ray-isosurface
intersection methods, these do not exist in general. To be more
specific, we want to find the point on a ray x : R +— R3 with
x(s) = p + sw which simultaneously lies on the isosurface S(x) = 0.
We use italic (e.g., s) for scalars, bold lowercase letters (e.g., p, x) for
points in R3, and e always represents a unit-length direction vector
in R3. Disregarding deformation for now, this task is equivalent to
finding the roots of S(x(s)) = 0. There are a few methods to do this
and we build on sphere tracing [Hart 1996] which works very well
for implicit surfaces with ||VS|| ~ 1 and requires ||VS|| < 1.

Sphere tracing is a form of ray marching that iteratively steps at
points x; along the ray, but uses the distance value returned by the
SDF at each point as the next stepping distance (see Fig. 3):

Xi+1 = xi +|S(x;)| @ with xp = p. (1)

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

229:4 « Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz

Fig. 3. Unbounding spheres along a straight ray.

Since ||VS|| < 1, each evaluation of the SDF defines an “unbounding
sphere” which is guaranteed to be intersection-free. The process
continues until we reach some user-specified threshold |S(x;)| < e.
The common method to apply a deformation D to an SDF is to
solve (S o D™1)(x(s)) = 0 instead. We could accomplish this by still
stepping along the ray in deformed space while transforming each
point back into undeformed space to sample the distance field:

xi+1 = X; +[(S o DTH(x)| @.)

While conceptually simple, this makes two limiting assumptions.
Most importantly, D! has to be available and cheap to compute.
While this is the case for affine transformations and even many non-
linear ones, such as twists and bends [Barr 1984; Wyvill et al. 1998],
it is not the case in general. Even for, e.g., a simple FFD based on tri-
linear interpolation, an analytic inverse does not exist. Furthermore,
even when D! is available, we have to ensure that ”V(S) D71)|| <1
in order to use sphere tracing [Hart 1996]. Unfortunately, S gives
us the distance from the surface in undeformed space, but we are
stepping in deformed space. If D is Lipschitz continuous then we
can step according to |[S(x;)| /A if we know the associated Lipschitz
constant A > ||V(S o D_l)”. Again, for affine transformations this
is trivial [Stander and Hart 1994], but for more complicated defor-
mations Lipschitz constants can be tedious or even impossible to
compute analytically. Moreover, assuming we know the Lipschitz
constant A for a given D, adjusting the distance function by this con-
stant value for every point in space can significantly degrade tracing
performance if A is very large. This is particularly problematic if we
have A > ||V(S) D’l)(x)“ > 1 for some small region x € A, but for
most regions of space x ¢ A, we have ||V(S) D_l)(x)“ ~ 1. Here,
we would be forced to take unnecessarily small steps for x ¢ A since
|S(x)| /A < 1. Computing local Lipschitz constants would solve this
problem but requires a non-negligible computation whenever the
deformation changes, i.e., every frame in most scenarios.

All of this complexity arises from the fact that we are tracing in
deformed space, but the distance values we sample are defined in
undeformed space. If we could trace in undeformed space instead, we
would not have to worry about Lipschitz bounds. The issue now
is that for non-linear transformations, the straight ray in deformed
space is deformed to some, potentially complex, curve in undeformed
space (Fig. 4).

3 NON-LINEAR SPHERE TRACING

Given these issues, we propose Non-linear Sphere Tracing (NLST).
Building on Barr’s [1984] formulation for deforming parametric

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

curves/surfaces, we rewrite the ray equation as an integral

x(s):p+sw:p+‘/oswdt. 3)

Here x’(s) = w is the first derivative of x with respect to the pa-
rameter s and is a constant in deformed space. Applying the inverse
deformation D™ to Eq. (3) gives us the ray expressed in undeformed
space

i(s) =D (p) + /0 o (x(D) wdt, @

where we use o to indicate the object-space equivalent of a world-
space quantity e. Note that we do not have to evaluate D! inside
the integral, but only its Jacobian Jp-1. Moreover, due to the inverse
function theorem, the Jacobian of the inverse deformation at some
world-space parameter location ¢ is the inverse of the Jacobian of
the forward deformation at a corresponding object-space parameter
location £ (i.e., Jp-1(x(t)) =]Bl (x(£))), which is just a 3 x 3 matrix.
So, as long as we have access to the Jacobian of our deformation
function, and that Jacobian matrix is invertible in the region of
space we are tracing through, we can evaluate the integrand. Finally,
we reparameterize the integral (4) with respect to arc-length in
undeformed space to arrive at our final object-space ray integral

Jpi e
5" @l
This allows us to consider § as a distance along x and, in particular,
it means that the parameter § and our signed distance field S(x) are
defined in the same metric space. We are now left with two issues.
First, we cannot compute the integral in Eq. (5) analytically (we do
not even know $ a priori!). Secondly, we still need to evaluate D!

once, for the start point p of our ray in deformed space. We will
tackle these problems in Sections 3.1 and 3.2, respectively.

%(3) =D Y(p) + /0 T o) dt, with G(#) =)

3.1 A Joint Method for Root Finding and Ray Integration

Recall from Section 2 that we are trying to find the smallest world-
space distance s such that (S o D™1)(x(s)) < e. Using the results
from the last section, this is equivalent to finding the object-space
distance § such that S(x($)) < €. Now, the naive extension of sphere
tracing to non-linear sphere tracing is to step along X in increments
of |S(x;)|, which would allow us to evaluate points x; iteratively as

Xip1 = % +|S(%)| d(%;), with %o = D™ (p). (©6)
While this would work reasonably well when S(x;) is small relative
to the ray deformation, error would quickly accumulate when the

ray is highly curved and x; is far from the surface (see Fig. 5 a).
One way to account for the ray deformation is to reduce the step

LA Vet
TImsAWS LN

\

Deformed Space

Fig. 4. Astraight ray in deformed space (left) maps to a curve in undeformed
space under deformation (right).

Non-linear sphere tracing for rendering deformed signed distance fields « 229:5

Fig. 5. With strongly deformed rays, the step size given by S(x;) might be
too large to accurately sample the ray (a). Reducing the step size naively
improves accuracy, but necessitates many more evaluations of S, degrading
performances (b). Our method reproduces the ray to the same accuracy
while only minimally increasing the number of evaluations of S (c).

size by some factor (Fig. 5 b), e.g., using |S(x;)| /10 instead of |S(x;)|
in Eq. (6). While this would allow us to reconstruct the deformed
ray more accurately, reducing the step size sacrifices performance
benefits that we hope to gain from sphere tracing, effectively falling
back to naive non-linear ray marching.

Our insight is that we can separate the step size requirements
of the ray integrator from those of the root finding process by intro-
ducing substeps within each unbounding sphere without requiring
additional SDF lookups. To achieve this, we can pose each linear
sphere tracing step i from X; to x;+; in Eq. (6) more generally as the
solution to a first-order ordinary differential equation y’(x) = @(x)
with initial condition yo = x;. Now we can compute the next sphere
tracing step as xj+1 = R(x;, S(x;)), where R is any ODE solver
taking the initial condition and the target integration duration as
parameters. Equation (6) is just the most simple instantiation of such
a solver using a single forward Euler integration step. We found
that first-order integrator proved impractical for most non-trivial
deformations. Thanks to the common occurrence of ODEs, there is
a wealth of research into higher-order solvers for many problem
types [Butcher and Goodwin 2008]. We will discuss our particular
choice, and how we control error due to numerical
integration in Section 3.3. Importantly, a cho-
sen solver might divide S(x;) into substeps as
needed to reach a given error tolerance, but
it never needs to re-evaluate S(x). Thanks to
the arc-length parameterization of x, any cor-
rect solver will ensure that ||[R(x;,) — x;|| <
S(x;), V§ < S(x;). That s, during each substep we >
are guaranteed to stay inside the unbounding sphere ~ @
around x; and thus never violate the sphere tracing condition.

3.2 Finding the Undeformed Space Ray Start

As discussed in the last section, inverses are very expensive to com-
pute or do not exist at all for most non-trivial forward deformation
methods. While we avoid computing inverses along the ray thanks
to our non-linear sphere tracing method, we still need to find the
ray start point xg = D™!(p) in undeformed space. Since in general D
might not be invertible or even well defined at the camera position,
we propose to automatically generate a low resolution explicit hull

that completely contains the surface in undeformed space. We then
deform the hull vertices using the forward transform and intersect
the deformed triangle mesh with the deformed space view ray. In
our implementation we rasterize the hull mesh to find the primary
intersection point, but ray tracing it via simple ray-triangle intersec-
tions is possible as well. This is a generalization of the bounding-box
technique for determining an initial value proposed by Barr [1986].
Given the intersection point p in deformed space we use barycentric
coordinates for the respective triangle to efficiently obtain the corre-
sponding object-space location p. In fact, this is done automatically in
hardware as object-space vertex positions can be interpolated from
vertex to fragment shading units by the rasterizer. This effectively

constructs the approximate inverse D~1(p) ~ D~ !(p).

Conservative marching cubes. To generate the hull mesh we use a
version of the basic marching cubes algorithm [Lorensen and Cline
1987]. Marching cubes is a good fit because it is easy to implement
efficiently on the GPU. We could employ alternative contouring
methods (e.g., [Wyvill et al. 1986b]) as well, but did not explore
them at this time. Additionally, while more sophisticated algorithms
are available, we would not derive much benefit from them. At this
stage in our algorithm, we do not have to worry about reproducing
sharp features. We simply would like to generate a mesh that roughly
encloses the underlying isosurface. By default marching cubes is
not conservative, but if we offset the original isosurface by the
marching cubes diagonal cell size we can guarantee that the hull
completely contains the original surface. Note that this works if
the surface is defined by an SDF because isosurface offsets directly
correspond to distances. This is necessary because any part of the
isosurface outside the hull would not be rendered, and hull faces
cutting through the isosurface would reveal the inside of the object.

3.3 Principled Methods for Controlling Error

Our method has two possible sources of errors, the numerical in-
tegration of the trajectory and the approximation of the inverse
via hull linearization. That is, when there is error we either do not
follow the ray trajectory accurately or we start the trajectory at the
wrong location in undeformed space. Note that while we are not
necessarily guaranteed to hit the surface in the correct location, we
are guaranteed to not step into the surface thanks to sphere tracing.
Here we show how error can manifest itself in the rendered image.

A
e
22?{2?{4},

Naive I Ours & a4 |
Start Point Error

I
g Ours

Deformation Integration Error

We deform a sphere by a single Kelvinlets brush (left). When we
use naive Euler integration, the surface is not reproduced faithfully
and in extreme cases numerical issues can cause ringing artifacts.
These vanish when using an adaptive integration method (center).
When the hull does not provide enough resolution, the error in
the ray start point causes artifacts and the surface does not seem

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

229:6 « Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz

C1 continuous. This is fixed by subdividing the hull as described
in this section (right). Both of these types of error are particularly
visible in motion and we refer to the supplemental video for a better
impression of the resulting artifacts.

Choosing an appropriate ODE solver. In Section 3.1 we showed
that we can use any existing ODE solver to accurately reproduce the
ray, but we need to consider the solver we choose carefully, because
much of our method’s practicality depends on its performance. Un-
der many forward deformations, the ray stays fairly straight in large
regions of space while being strongly deformed in some small subset.
Additionally, once we get close to the surface, S(x) becomes small
and a simple forward Euler integrator as in Eq. (6) is often sufficient.
If we employ a solver that treats all of these cases uniformly it will
either not reproduce the ray correctly under strong deformation or
incur a large overhead in the common simple case.

Hence we propose a hybrid approach. When S(x) is relatively
large compared to é we use an adaptive Runge-Kutta integrator.
There are many methods we can pick from and we evaluated Runge-
Kutta-Fehlberg (RKF45) [Fehlberg 1970], Dormand-Prince (DP54)
[Dormand and Prince 1980] or Bogacki-Shampine (BS23) [Bogacki
and Shampine 1989]. While RKF45 and DP54 provide a high-order
accuracy, the minimum number of J E)l evaluations they require is
relatively high as well. In practice we have found BS23 to be accurate
enough for our purposes while only requiring a minimum of four
evaluations per step. Still, when we are close to the surface and S(x)
is small anyway, we would like to avoid this additional overhead:
we fall back to simple Euler integration once S(x) is smaller than
a - €, where a is a user-chosen threshold (3 in our implementation).

Another question is whether an implicit solver could provide addi-
tional benefits. While we did not evaluate this rigorously we would
not expect the implicit solver to perform well. The equations we are
solving tend to not be particularly stiff and we did not observe any
objectionable artifacts when using the Bogacki-Shampine solver.
Since we enforce a constant speed along our ray, situations with
runaway error as the effective step size increases rapidly are not
possible. Additionally, using an implicit solver would incur a mini-
mum performance overhead which is difficult to control adaptively,
as opposed to the small minimum overhead of Bogacki-Shampine.

An adaptive error threshold. The advantage of using an adaptive
integrator is that we can choose an error threshold that is specified
as a distance in undeformed space and the integrator will add as
many substeps as necessary to reach that threshold. The choice of
error threshold is important because it greatly affects rendering
quality as well as performance. If the threshold is too high, we
will get artifacts which manifest as the surface “swimming”, that
is, seeming to be in a different place depending on view direction
(see the supplemental video). Even during traditional sphere tracing
we have to choose a threshold € below which we terminate the ray.
A common way to choose this threshold in a principled manner
is called cone tracing. We construct a cone around the ray with an
opening angle determined by the footprint of one pixel. We can
then compute the error threshold as

E(8) = 315, @

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

Image Plane

Fig. 6. When we step along the deformed ray we keep track of § which
allows us to compute the cone radius. Once S(x) is less than the cone
radius (green), we terminate the ray. This means that the intersection point
is bounded by €. We use the same error threshold for the adaptive integrator
and hence this bound is preserved.

where 7}, is the radius of one pixel in undeformed space. We can

compute r}, as r}, =srp ||]Bll ,that is, the cone radius at the deformed
space intersection point times the inverse Jacobian determinant.
This leads to rays that terminate as soon as the pixel cone intersects
the surface. We propose to apply this same threshold during adaptive
integration.

Reducing hull linearization error via adaptive subdivision. The

other source of error is the approximate inverse D! introduced in
the last section. If the difference between our approximation and
the actual inverse of D is too large, we will not start rays at the
correct positions in undeformed space. When we deform the hull
by deforming its vertices we are in effect sampling the deformation
at a finite number of points and interpolating the samples linearly
across faces. Since the deformation is in general non-linear this in-
terpolation is not exact. The hull triangles should bend in deformed
space but they stay flat. In Fig. 7 we show an example of this in two
dimensions. The shape is bounded by a low resolution hull (Fig. 7 a)
which is deformed by a strongly non-linear deformation. While for

the hull vertices D(D~1(p)) = p holds, this is not true for positions
on the segments lying between vertices. Instead of bending like the
green ground truth shape, the hull segments stay piecewise linear

(Fig. 7 b). This results in an error in the start point when we use D1
to transform the world-space intersection point p to object-space p.

When we reduce the lengths of the individual linear segments our
deformed hull approximates the ground truth much better (Fig. 7 c)
and the error is greatly reduced. This suggests that to limit error we
should limit the size of the triangles in our hull. One way would be
to increase the grid resolution we use when running the marching
cubes algorithm. This reduces the size of the grid cells and hence the
size of the generated triangles as well. Of course, the issue with this
is that it scales poorly as the resolution increases. When we double
the grid resolution on each axis, we have to evaluate 8x more cells.
Additionally, if the deformation is locally linear we do not have to
worry about the size of hull triangles. The deformation can change
continuously, but we would prefer not having to regenerate the
hull every frame, particularly if we would have to run marching
cubes at a high resolution. Our insight here is that to reduce the
error from linearization, the only factor that matters is the triangle
size and not the shape of the hull. A simpler solution to reduce the

Non-linear sphere tracing for rendering deformed signed distance fields « 229:7

Base Hull
E(z;)

Subdivided Hull

PN

.

(@) (b) (© (@
Fig. 7. Using linear interpolation to find E:l(p) ~ D7Y(p) assumes that
D(p) is linear. This is rarely the case in the deformations we discuss here. So
for large triangles (a/b), [ﬂ)‘:l(p) # D71(p) and particularly D(l’)‘:l(p)) #p.
This leads to computing the wrong undeformed space ray start points,
resulting in surface artifacts in the final image. For example, in (a) the
ground truth ray represented by the dashed line does not hit the shape, but
the ray NLST traces (b) generates a hit due to error in the start point. When
we reduce the size of each linear segment, the error reduces as well and the

ray traced by NLST corresponds closely to the ground truth (c/d).

size of triangles is to facet subdivide them. Subdivided triangles lie
in the same plane as the original triangle in undeformed space and
the added vertices are simply deformed by D just as the original
vertices were. Furthermore, it is important to note that while other
methods [Porumbescu et al. 2005; Taylor et al. 2017] linearize the
deformation over the entire volumetric space, we only do so on a 2D
manifold. As such, we can more easily quantify the error introduced
by linearization as

Bp) = |p - O).)
Hence the error over the surface of a deformed space triangle T is
br= [Ep)p. ©)

As the area of T goes to 0, E7 will vanish since E(p) = 0 by definition
when p is a vertex of T. The error for any given triangle T can be
approximated via numerical integration over T's surface. To ensure
that error stays below a given threshold we subdivide T based on
the magnitude of E7. In practice, this is done via hardware tessel-
lation when rendering the hull mesh. This results in an adaptive
subdivision scheme that reduces overall linearization error below a
perceptible threshold at very little additional cost. We evaluate how
the subdivision level affects performance and error in Fig. 10.

4 MAPPING DEFORMATION TECHNIQUES TO NLST

After having described Non-linear Sphere Tracing in the last section,
we will now discuss what is required of a forward deformation
technique to be able to use it in our framework.

One of the strengths of NLST is that it goes to great lengths
to avoid computing inverses. This allows us to use any deforma-
tion technique for which we can compute D and][_)1 in the space
enclosed by the hull mesh. In fact, even if Jp is cumbersome to
derive analytically, we found that a numerical approximation (e.g.
via forward differences) is sufficient in many cases. We can there-
fore directly use a large class of deformation techniques by simply
specifying the forward transform D, the same transform that is used

when deforming an explicit surface. This includes many popular
methods like FFDs, regularized Kelvinlets, and linear blend skinning
(LBS) with weights defined using analytic distance falloff functions.

Mapping techniques that are not naturally defined as space de-
formations are slightly less trivial. The most common example of
this is LBS with skinning weights defined only at vertices. This is
problematic for our technique, because in that context we cannot
evaluate D at any point in space

4.1 Linear Blend Skinning for NLST

The deformation D induced by linear blend skinning depends on a
weight function W. As mentioned earlier, W is classically defined
for each vertex of the mesh we want to deform and hence a discrete
subset of undefomed space positions. For NLST, we do not know
all the positions we will need to evaluate D for a priori. The main
issue we have to solve now is to define W for a volumetric subset of
undeformed space so we can evaluate it, and therefore the deforma-
tion function D, at every point inside the hull. We investigated two
approaches, inspired by analytic vs. painted/stored weight maps
used in traditional LBS.

Analytic weights. One option is to define bone weights analyti-
cally. That is, we define W(x) as some function that is reasonably
fast to evaluate analytically and still somewhat user controllable.
Since we already have the machinery to edit SDFs, using them as
a basis for bone weights is a natural choice. For each bone B, we
define an SDF SB. We can then compute the (unnormalized) weight
of this bone as some transformation of the value of SB. This allows
us to define weights automatically based on simple distance falloff
functions, while still enabling more detailed manual refinement akin
to weight painting, all while requiring very little additional storage.

Tabulated weights. To allow us to leverage the vast literature of
more sophisticated, automatic methods for computing skinning
weights, we also support tabulated/sampled definitions of W. Here
we simply store skinning weights in a regular grid and W is evalu-
ated by interpolating weights inside the relevant grid cell. This is
akin to precomputing skinning weights at mesh vertices, though
defined volumetrically. One issue is that some automated skin-
ning techniques only compute weights over the surface [Baran and
Popovié¢ 2007]. Luckily, more recent techniques such as bounded
biharmonic weights (BBW) [Jacobson et al. 2011] are already defined
volumetrically. While BBW traditionally uses the volumetric data
only during pre-computation and discards it at runtime, we simply
store the volumetric weights instead. We use the implementation of
BBW by Jacobson et al. [2011] which accepts a triangle mesh, com-
putes a tetrahedral mesh and generates weights on the tetrahedral
vertices. We use the hull mesh we already use in our method as the
input triangle mesh. Once we have the weights defined on tetrahe-
dral vertices we rasterize them using barycentric interpolation to a
regular 3D grid.

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

229:8 « Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz

5 IMPLEMENTATION

To show the practicality of NLST we created a prototype modeling
application using the Unity3D game engine [Unity Technologies
2019]. Thanks to the simplicity of our algorithm, the implementa-
tion is fairly straightforward and we are able to do all the necessary
computations on the GPU. We support a variety of SDF represen-
tations but focus on regular grids (interpolated trilinearly or tricu-
bically), SDFs computed procedurally in shader code, and SDFs
defined parametrically via analytic brush lists. We generate the hull
using the basic marching cubes algorithm in a compute shader at
a user-defined grid resolution with grid bounds computed either
automatically or by hand, depending on the SDF representation. To
avoid transferring any data from the GPU to the CPU, we store the
hull geometry in a compute buffer and rasterize it via a procedural
draw call. We implemented NLST in the traditional rasterization
pipeline using a tessellation shader for the adaptive hull subdivision
(Section 3.3). The patch constant function computes the tessellation
error over each original hull triangle and the domain shader trans-
forms the resulting vertices from object to deformed space. The
pixel shader implements the root finding algorithm, retrieving the
undeformed space start point from an interpolated attribute. Once
we have computed the undeformed space intersection point using
NLST, we can trivially transform it to deformed space using D. We
then recompute the camera space depth of this point and use it for
depth testing to easily combine sphere traced objects with explicit
geometry. We retrieve the surface normal from the SDF via finite
differences and transform it to deformed space using the inverse
transpose (]BI)T. Hence, we can do per fragment shading like we
would in a traditional fragment shader. Finally, the shaded color is
written to the target render texture and blended with the rest of
the scene geometry. While we did not spend significant effort opti-
mizing our implementation, it nonetheless easily runs at real-time
frame rates on modern graphics cards.

6 EVALUATION AND RESULTS

We will evaluate NLST and compare it to existing methods for
implicit surface deformation. Additionally, we will demonstrate
NLST’s ability to preserve many of the benefits of SDFs, all while
enabling intuitive control over deformation.

Fig. 8. Above we show the number of SDF evaluations for each pixel in red
and the ground truth shape is overlaid in gray on the rendered images. When
rendering a strongly deformed object (a), naive non-linear sphere tracing (b)
completely fails to reproduce the ground truth shape. Artificially reducing
the sphere tracing step size (c) solves this issue, but greatly increases the
number of S evaluations (visualized in red). Our sub-steps do not require
the evaluation of S, allowing us to accurately reproduce the ground truth
at little additional cost (d).

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

No Hull Subdivision

With Adaptive Subdivision

Fig. 9. When we do not subdivide the hull sufficiently, NLST does not
reproduce the isosurface faithfully (left). This is due to the error E(p) ,
shown in red, in the undeformed space start point (middle left). Once we
apply our adaptive subdivision scheme (middle right), error is reduced to
imperceptible levels (right).

6.1 Evaluating Methods for Error Control

NLST includes several methods to control error. Figure 8 evalu-
ates the impact of our conservative sub-stepping method. Since
we can accurately reconstruct the ray in each unbounding sphere
without having to reevaluate S, we maintain good accuracy while
preserving performance in both strongly non-linearly deformations
regions and in regions of linear deformation. The starting points
of rays are approximate, especially for large hull triangles under
non-linear deformation. Figure 9 shows the resulting artifacts for
large hull triangles, and how this diminishes with our adaptive sub-
division scheme. To validate this scheme, in Fig. 10 we rendered
the deformed shape from Fig. 9 with a progressively smaller error
threshold, showing that as the threshold gets smaller, error reduces
as predicted. Notably, because we leverage the GPU’s optimized
tessellation shader stage, we did not measure any increase in render
time, even with extremely dense tesselations.

6.2 Comparisons to Related Methods

We compared our method to several existing implicit surface defor-
mation techniques.

Error in World Units Render Time / Mean Render Time

10° 10!
A Normalized Render Time

107! 10°

Threshold Max Error

1072 107!
1073
Mean Error

10° 107! 1072 1073
Error Threshold

Fig. 10. We evaluate the performance impact and error characteristics of
our subdivision method. As we decrease the error threshold, the number
of rendered polygons increases. This does not affect render times since
fragment shading is the bottleneck of our method. Note that our error
heuristic successfully reduces both maximum and mean error.

Non-linear sphere tracing for rendering deformed signed distance fields « 229:9

Our Method Marching Cubes

Resolution: 1283 2563 5123

Fig. 11. For many models, running marching cubes at a resolution high
enough to accurately reproduce their isosurface is not feasible. Here, the
elephant ears are thin and not aligned with grid cells. This results in artifacts,
including loss of topology preservation. As with original sphere tracing, our
method guarantees the preservation of thin and sharp features. Note that
even at the lowest resolution shown here, our method is more than twice as
fast as marching cubes (see Table 1).

Isosurface extraction. As a baseline we test how we fare against
isosurface extraction via marching cubes. Note that marching cubes
is certainly not a state-of-the-art isosurface extraction technique.
Here we use it as a representative approach which needs to remesh
when the surface changes. Our main goal is to test whether the
same algorithm we use to generate the hull could be used at a
higher resolution to generate a surface for traditional rendering. We
considered faster [Wyvill et al. 1986b] and more accurate meshing
techniques [Ju et al. 2002], but they come with trade-offs. For ex-
ample, dual contouring can produce non-manifold meshes in some
situations which causes artifacts during lighting computations. Both
approaches, like marching cubes, are also limited in their ability to
reproduce small features as well as sharp creases and corners by the
chosen grid resolution. Still, one of the advantages of isosurface
extraction is that rendering is extremely fast if the isosurface does
not change. But in an editing context we want to enable the user
to quickly change both the deformation as well as the underlying
geometry. Figure 11 shows that we can not rely on marching cubes
in this scenario: computation time is simply too high at resolutions
that approximate the isosurface with reasonable accuracy since the
algorithm scales with the cube of the linear grid resolution. We
still leverage marching cubes to construct our hull, but for this we
rarely need to use resolutions higher than 323. While this would be
inadequate if we where to display the hull to the user, it is accurate
enough to serve as a starting point for NLST, particularly when
combined with our adaptive subdivision scheme.

Table 1. We used an NVIDIA Titan RTX and rendered at 1080p resolution.
Timings are complete frame times in milliseconds averaged while rotating
the object under changing deformation.

Marching Cubes on SxXSxS grid
Scene NLST S=32 64 128 256 512 1024

Dinosaur 10 6 8 26 150 2075 9689
Head 13 6 9 34 193 2326 12220
Elephant 10 6 8 26 150 1983 9385

Articulated distance fields. Taylor et al. [2017] proposed volumet-
rically linearizing deformations to enable articulated SDFs. While
they applied this for hand tracking, we extend and compare to this
approach for rendering. We automatically generate a tetrahedral
mesh and sample the deformation at its vertices. This is conceptually
similar to shell mapping [Porumbescu et al. 2005], but instead of ren-
dering a thin shell derived from an objects surface, the tetrahedrons
cover the whole volume of the object. The robot head in Fig. 12 (a)
was constructed via CSG operations on SDFs. Isosurface extraction
(b) needs to be dense to accurately reproduce the geometry and
small-scale deformations, such as the one forming the nose of the
robot. Even when extracted at 2563 (in 11.2's) there are still obvious
artifacts where the isosurface has sharp features. Taylor et al. [2017]
only linearize the deformation, preserving sharp geometric features.
Unfortunately, to reproduce small-scale deformations without in-
troducing discontinuity artifacts, the spatial linearization needs to
be high resolution, which is not feasible in real-time rendering. The
nose is therefore almost completely lost in (c). While the C! dis-
continuities in the deformation were not a concern for Taylor et al.
[2017] in hand tracking, when used for rendering these disconti-
nuities become problematic. Our method (d) is able to reproduce
both sharp geometry features as well as small-scale deformations,
producing an artifact free image.

6.3 Applying Forward Deformation Techniques

We also map several techniques for explicit surface deformation to
our framework.

Free-form deformations & sculpting brushes. First we show the ease
of applying FFDs within NLST. While Chen et al. [2001] proposed
a method that implicitly defined volumes deformed by FFDs, our
approach allows us to apply FFDs in a much more general framework
without the need for a specialized approach. Figure 13 shows our
implementation of FFDs applied to an implicitly defined head model.
Since it is easy to compose different deformation techniques in NLST,
we additionally deform using De Goes and James’s [2017] sculpting
brushes. These are a great fit for NLST because they are described
analytically, hence are fast to evaluate on the graphics card, while
being sufficiently complex that they do not have an analytic inverse.

f -
4
(a) (b) - © @ ==

Fig. 12. Starting with an analytically described distance field (a) we apply
a forward deformation composed of two Kelvinlet brushes via isosurface
extraction (b), linearizing the deformation (c) and our method (d). Our
method combines the support for small scale deformations that a dense
mesh provides with the accurate reproduction of sharp features typical of
direct implicit surface rendering techniques.

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

229:10 « Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz

—

y
-

(@) (b)

Fig. 13. We apply cubic free form deformation to a signed distance field
(a), resulting in a deformed shape (b). A benefit of our method is that
combining multiple deformations is trivial. We show this by applying a
“Regularized Kelvinlet” [De Goes and James 2017] edit to the result of free
form deformation (c).

Linear blend skinning. To show that NLST supports even more
complex deformation methods, we implement LBS as discussed in
Section 4.1. Figure 14 shows a dinosaur posed in progressively more
extreme poses. Note that for the pose shown in Fig. 14 (c), the head
and the tail of the character almost meet. In traditional implicit
surface deformation techniques this would be practically impossible
to reproduce because of the extremely strong space compression it
causes. Our hull meshing can robustly provide undeformed space
start points relatively close to the isosurface, allowing NLST to
handle this case correctly. Finally, we want to point out that we
can now apply SDF operations at any point. In Fig. 14 (d) we add
procedural surface detail before deformation (and hence it deforms
with the surface) and subtract mass from the character after LBS
allowing us to interact with the geometry in deformed space.

Volumetric modeling. Lastly we apply NLST to volume rendering.
Figure 15 shows a density function derived from the value of S and
modified by noise, creating a cloudy appearance. Under deformation,
space is stretched and compressed. As pointed out by Stander and
Hart [1994], we need to take this into account when rendering
our deformed volume and adjust the sampled density accordingly.
Luckily this is trivial in NLST, since we compute the Jacobian of the
deformation function already.

A
L3 ‘/:» \Kf, o Ezﬁ
S

! »
(a) R @

Fig. 14. We generate bounded biharmonic weights [Jacobson et al. 2011]
volumetrically based on a user defined skeleton and the hull mesh (a). We
can then use the weights and the skeleton to derive D. NLST treats this
deformation like any other deformation function and we can pose the char-
acter (b). In (c) we show a pose where the head and the tail of the character
meet and the deformation is globally non-bijective. We can still render this
pose with NLST, since locally (within the head and within the tail), the
deformation is invertible. In (d) we manipulate the underlying SDF before
deformation (for texture detail) and after (for geometry manipulation).

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

7 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We have presented and evaluated Non-linear Sphere Tracing and
showed how to use our method to easily incorporate many defor-
mation techniques in an implicit modeling framework. We hope
enriching SDFs with these capabilities inspires a broader interest in
revisiting implicit representations in settings where explicit repre-
sentations have become the de facto standard.

Of course, our technique is not without downsides. We inherit
the benefits, but also the limitations, of all root finding methods,
and sphere tracing in particular. Since we have to evaluate the SDFs
along the ray, rendering performance tends to be worse than ray
tracing or rasterizing explicit surfaces. Especially at grazing angles,
intersections are expensive to evaluate and the number of maximum
sphere tracing steps has to be limited. This can lead to artifacts for
concave objects where NLST runs out of iterations before hitting the
surface and a fragment is discarded mistakenly. Keinert et al. [2014]
introduce improvements to traditional sphere tracing to alleviate
this issue. These could be applied to NLST as well.

Moreover, sphere tracing is only applicable to SDFs, so we can-
not deform more general implicits for which efficient-to-evaluate
distances/distance bounds are unavailable. While we technically do
support any implicit surface as long as its gradient is less than 1,
the performance of sphere tracing rapidly degrades under those
conditions. Being able to support more general implicit surfaces in
our framework is an interesting avenue for future work.

Due to our implicit workflow, we never “apply” or bake our de-
formations, as you could on explicit vertices. While this creates a
non-destructive editing/deformation workflow, it also means we
have to pay the performance penalty for deformations during ren-
dering which can degrade when layering many deformations. While
we support editing the surface after one set of deformations as
shown in Fig. 14, we would like to investigate supporting an arbi-
trary number of deformation/surface editing layers. An additional
downside is that our method does not support the evaluation of
the implicit function corresponding to the deformed surface at an
arbitrary point in deformed space, even just due to the fact that we
support self-intersecting geometry which classical implicit function
representations do not. This limits NLST’s applicability to problems
such as collision detection. Still, in the supplemental video we do
show a particle simulation that efficiently collides particles with
a deformed SDF, but extra care has to be taken to track particle
positions in undeformed space.

(a) (b) (c)

Fig. 15. We deform a volume with a density function derived from an SDF
with added noise (a). NLST correctly accounts for volume compression and
expansion, making compressed areas darker (b,c).

Non-linear sphere tracing for rendering deformed signed distance fields « 229:11

In Section 3 we pointed out that to trace through some region of
space, we need to be able to compute]131 for points along the ray.
This imposes one restriction on the particular instances of deforma-
tions that we support, namely, they have to be locally foldover-free.
In future work, it would be interesting to try to leverage recent work
on immersions of self-intersecting solids to allow overlaps [Li and
Barbi¢ 2018].

ACKNOWLEDGMENTS

We thank Alex Evans, Milan Grajetzki and the members of the
Dartmouth Visual Computing Lab for helpful discussions, and the
reviewers for their insightful feedback. The dinosaur and elephant
model, created by Iniqo Quilez, as well as the human head model,
created by Thomas Hooper, are shared under the Creative Commons
Attribution-NonCommercial-ShareAlike license. The robot head
model was created by Milan Grajetzki. This work was partially
supported by the National Science Foundation (Grant 1844538) and
the Canada Research Chairs program.

REFERENCES

Chandrajit Bajaj, Jim Blinn, Brian Wyvill, Marie-Paule Cani, Alyn Rockwood, and Geoff
Wyvill. 1997. Introduction to Implicit Surfaces. Morgan Kaufmann.

Csaba Balint and Gabor Valasek. 2018. Accelerating Sphere Tracing. Proceedings of
Eurographics Short Papers (2018), 4 pages. https://doi.org/10/gfz542

Ilya Baran and Jovan Popovi¢. 2007. Automatic Rigging and Animation of 3D Characters.
ACM Transactions on Graphics (Proceedings of SSIGGRAPH) 26, 3 (July 2007), 72.
https://doi.org/10/d2ck5v

Michael F. Barnsley, Robert L. Devaney, Benoit B. Mandelbrot, Heinz-Otto Peitgen,
Dietmar Saupe, Richard F. Voss, Yuval Fisher, and Michael McGuire. 1988. The
Science of Fractal Images (1st ed.). Springer-Verlag. https://doi.org/frdznz

Alan H. Barr. 1984. Global and Local Deformations of Solid Primitives. Computer
Graphics (Proceedings of SSGGRAPH) 18, 3 (July 1984), 21-30. https://doi.org/10/
fewvgw

Alan H. Barr. 1986. Ray Tracing Deformed Surfaces. Computer Graphics (Proceedings of
SIGGRAPH) 20, 4 (Aug. 1986), 287-296. https://doi.org/10/cpqré6g

Thaddeus Beier and Shawn Neely. 1992. Feature-Based Image Metamorphosis. Computer
Graphics (Proceedings of SSGGRAPH) 26, 2 (July 1992), 35-42. https://doi.org/10/
crjpph

M. Berger, T. Trout, and N. Levit. 1990. Ray Tracing Mirages. IEEE Computer Graphics
& Applications 10, 3 (May 1990), 36-41. https://doi.org/10/cfbfc3

James F. Blinn. 1982. A Generalization of Algebraic Surface Drawing. Computer Graphics
(Proceedings of SSIGGRAPH) 16, 3 (July 1982), 273. https://doi.org/10/fgvzkf

P. Bogacki and L.F. Shampine. 1989. A 3(2) Pair of Runge-Kutta Formulas. Applied
Mathematics Letters 2, 4 (1989), 321 — 325. https://doi.org/10/cwedkx

Brinx Software. 2019. MasterpieceVR. https://www.masterpiecevr.com/

John Charles Butcher and Nicolette Goodwin. 2008. Numerical methods for ordinary
differential equations. Vol. 2. Wiley Online Library. https://doi.org/10/fthv3h9

M. Cani-Gascuel and M. Desbrun. 1997. Animation of Deformable Models Using Implicit
Surfaces. IEEE Transactions on Visualization and Computer Graphics 3, 1 (Jan. 1997),
39-50. https://doi.org/10/c6bqg2

Chen Cao, Zhong Ren, Baining Guo, and Kun Zhou. 2010. Interactive Rendering of
Non-Constant, Refractive Media Using the Ray Equations of Gradient-Index Optics.
Computer Graphics Forum 29, 4 (2010), 1375-1382. https://doi.org/10/fbff4n

Huawei Chen, Jurgen Hesser, and Reinhard Ménner. 2001. Fast Volume Deformation
Using Inverse-Ray-Deformation and FFD. In GraphiCon.

Brian Curless and Marc Levoy. 1996. A Volumetric Method for Building Complex
Models from Range Images. In Annual Conference Series (Proceedings of SIGGRAPH).
ACM Press, New York, NY, USA, 303-312. https://doi.org/10/crn3vr

Fernando De Goes and Doug L. James. 2017. Regularized Kelvinlets: Sculpting Brushes
Based on Fundamental Solutions of Elasticity. ACM Transactions on Graphics (Pro-
ceedings of SSGGRAPH) 36, 4 (July 2017), 40:1-40:11. https://doi.org/10/gfz56k

Mathieu Desbrun and Marie-Paule Gascuel. 1995. Animating Soft Substances with
Implicit Surfaces. In Annual Conference Series (Proceedings of SSGGRAPH). ACM,
New York, NY, USA, 287-290. https://doi.org/10/b96ndx

J. R. Dormand and P. J. Prince. 1980. A Family of Embedded Runge-Kutta Formulae. 7.
Comput. Appl. Math. 6, 1 (March 1980), 19-26. https://doi.org/10/cfw5fc

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Kenneth Perlin, and Steven
Worley. 2003. Texturing and modeling: a procedural approach (3rd ed.). Morgan
Kaufmann, San Francisco, CA, USA.

Alex Evans. 2015. Learning from Failure: a Survey of Promising, Unconventional and
Mostly Abandoned Renderers for "Dreams PS4", a Geometrically Dense, Painterly
UGC Game. ACM SIGGRAPH Course Notes, Article 2 (2015). https://doi.org/10/
gf2v8v

Facebook Technologies. 2019. Oculus Medium. https://www.oculus.com/medium/

E. Fehlberg. 1970. Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung
mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme.
Computing 6, 1 (March 1970), 61-71. https://doi.org/10/cc7qv5

Takushi Fujita, Katsuhiko Hirota, and Kouichi Murakami. 1990. Representation of
splashing water using metaball model. Fujitsu 41, 2 (1990), 159-165. (in Japanese).

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T. Freeman, and
Thomas Funkhouser. 2019. Learning Shape Templates with Structured Implicit
Functions. arXiv:1904.06447 [cs] (April 2019). arXiv:cs/1904.06447

Olivier Gourmel, Loic Barthe, Marie-Paule Cani, Brian Wyvill, Adrien Bernhardt, Math-
ias Paulin, and Herbert Grasberger. 2013. A Gradient-based Implicit Blend. ACM
Transactions on Graphics 32, 2 (2013), 12. https://doi.org/10/gfewk7

Eduard Gréller. 1995. Nonlinear Ray Tracing: Visualizing Strange Worlds. The Visual
Computer 11, 5 (May 1995), 263-274. https://doi.org/10/ffcq74

Diego Gutierrez, Adolfo Muioz, Oscar Anson, and Francisco J. Seron. 2005. Non-Linear
Volume Photon Mapping. In Rendering Techniques (Proceedings of the Eurographics
Symposium on Rendering). Eurographics Association, 291-300. https://doi.org/10/
gfzngk

J.C. Hart, E. Bachta, W. Jarosz, and T. Fleury. 2002. Using Particles to Sample and
Control More Complex Implicit Surfaces. In Shape Modeling International. https:
//doi.org/10/dfw2ss

John C. Hart. 1996. Sphere Tracing: A Geometric Method for the Antialiased Ray
Tracing of Implicit Surfaces. The Visual Computer 12, 10 (Dec. 1996), 527-545.
https://doi.org/10/b3q2p6

S. Ilic and P. Fua. 2006. Implicit Meshes for Surface Reconstruction. IEEE Transactions
on Pattern Analysis and Machine Intelligence 28, 2 (Feb. 2006), 328-333. https:
//doi.org/10/ctgm5g

Alec Jacobson, Ilya Baran, Jovan Popovi¢, and Olga Sorkine. 2011. Bounded Biharmonic
Weights for Real-Time Deformation. ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 30, 4 (July 2011), 78:1-78:8. https://doi.org/10/ckcmsj

Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014. Skinning: Real-Time
Shape Deformation. In ACM SIGGRAPH Course Notes. https://doi.org/10/gf2ng4

Oliver James, Eugénie von Tunzelmann, Paul Franklin, and Kip S. Thorne. 2015. Gravita-
tional Lensing by Spinning Black Holes in Astrophysics, and in the Movie Interstellar.
Classical and Quantum Gravity 32, 6 (Feb. 2015), 065001. https://doi.org/10/gdvj4r

Stefan Jeschke, Stephan Mantler, and Michael Wimmer. 2007. Interactive Smooth and
Curved Shell Mapping. In Rendering Techniques (Proceedings of the Eurographics
Symposium on Rendering), Jan Kautz and Sumanta Pattanaik (Eds.). The Eurographics
Association, 351-360. https://doi.org/10/gfz557

M. W. Jones, J. A. Baerentzen, and M. Sramek. 2006. 3D Distance Fields: A Survey
of Techniques and Applications. IEEE Transactions on Visualization and Computer
Graphics 12, 4 (July 2006), 581-599. https://doi.org/10/bwnmjs

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-
monic Coordinates for Character Articulation. ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 26, 3 (July 2007). https://doi.org/10/bqj5jk

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual Contouring of
Hermite Data. ACM Transactions on Graphics (Proceedings of SSGGRAPH) 21, 3 (July
2002), 339-346. https://doi.org/10/bdg3sp

Benjamin Keinert, Henry Schifer, Johann Korndorfer, Urs Ganse, and Marc Stamminger.
2013. Improved Ray Casting of Procedural Distance Bounds. Journal of Graphics
Tools 17, 4 (Oct. 2013), 127-138. https://doi.org/10/gfz54s

Benjamin Keinert, Henry Schifer, Johann Korndorfer, Urs Ganse, and Marc Stamminger.
2014. Enhanced Sphere Tracing. In STAG: Smart Tools & Apps for Graphics. 8.
https://doi.org/10/gfz549

A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen. 2007. Interactive Ray Tracing of
Arbitrary Implicits with SIMD Interval Arithmetic. In Proceedings of IEEE Symposium
on Interactive Ray Tracing. 11-18. https://doi.org/10/fkxrdv

A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen. 2009. Fast Ray
Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic. Computer
Graphics Forum 28, 1 (2009), 26-40. https://doi.org/10/d5s7kh

Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel. 2001. Fea-
ture Sensitive Surface Extraction from Volume Data. In Annual Conference Series
(Proceedings of SIGGRAPH) (SIGGRAPH ’01). ACM, New York, NY, USA, 57-66.
https://doi.org/10/cbh7f9

Johann Korndorfer. 2015. The Timeless Way of Building Geometry - How to create
content with Signed Distance Functions. https://www.youtube.com/watch?v=
s8nFqwOho-s

Dan Koschier, Crispin Deul, and Jan Bender. 2016. Hierarchical Hp-Adaptive Signed
Distance Fields. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium
on Computer Animation. Eurographics Association, Goslar Germany, Germany,
189-198.

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

https://doi.org/10/gfz542
https://doi.org/10/d2ck5v
https://doi.org/frdznz
https://doi.org/10/fcwvgw
https://doi.org/10/fcwvgw
https://doi.org/10/cpqr6g
https://doi.org/10/crjpph
https://doi.org/10/crjpph
https://doi.org/10/cfbfc3
https://doi.org/10/fgvzkf
https://doi.org/10/cwcdkx
https://www.masterpiecevr.com/
https://doi.org/10/fhv3h9
https://doi.org/10/c6bqg2
https://doi.org/10/fbff4n
https://doi.org/10/crn3vr
https://doi.org/10/gfz56k
https://doi.org/10/b96ndx
https://doi.org/10/cfw5fc
https://doi.org/10/gf2v8v
https://doi.org/10/gf2v8v
https://www.oculus.com/medium/
https://doi.org/10/cc7qv5
http://arxiv.org/abs/cs/1904.06447
https://doi.org/10/gf6wk7
https://doi.org/10/ffcq74
https://doi.org/10/gfzngk
https://doi.org/10/gfzngk
https://doi.org/10/dfw2ss
https://doi.org/10/dfw2ss
https://doi.org/10/b3q2p6
https://doi.org/10/ctgm5g
https://doi.org/10/ctgm5g
https://doi.org/10/ckcmsj
https://doi.org/10/gf2ng4
https://doi.org/10/gdvj4r
https://doi.org/10/gfz557
https://doi.org/10/bwnmjs
https://doi.org/10/bqj5jk
https://doi.org/10/bdg3sp
https://doi.org/10/gfz54s
https://doi.org/10/gfz549
https://doi.org/10/fkxrdv
https://doi.org/10/d5s7kh
https://doi.org/10/cbh7f9
https://www.youtube.com/watch?v=s8nFqwOho-s
https://www.youtube.com/watch?v=s8nFqwOho-s

229:12 « Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz

Yair Kurzion and Roni Yagel. 1995. Space Deformation Using Ray Deflectors. In
Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering),
Patrick M. Hanrahan and Werner Purgathofer (Eds.). Springer-Verlag, 21-30. https:
//doi.org/10/gfz54w

Yijing Li and Jernej Barbi¢. 2018. Immersion of Self-Intersecting Solids and Surfaces.
ACM Transactions on Graphics 37, 4 (2018). https://doi.org/10/gd52q5

William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. Computer Graphics (Proceedings of SIGGRAPH)
21, 4 (Aug. 1987), 163-169. https://doi.org/10/ft9gsh

Media Molecule. 2019. Dreams PS4. https://www.mediamolecule.com/games/dreams

Don Mitchell. 1990. Robust Ray Intersection with Interval Arithmetic. In Proceedings of
Graphics Interface, Vol. Halifax. 68-74. https://doi.org/10/gfz56m

Fabrice Neyret. 1996. Local Illumination in Deformed Space. Technical Report RR-2856.
INRIA.

Stanley Osher and James A Sethian. 1988. Fronts Propagating with Curvature-
Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. J. Comput.
Phys. 79, 1 (Nov. 1988), 12-49. https://doi.org/10/cqIw6r

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation. arXiv:1901.05103 [es] (Jan. 2019). arXiv:cs/1901.05103

A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. 1995. Function Representation
in Geometric Modeling: Concepts, Implementation and Applications. The Visual
Computer 11, 8 (Aug. 1995), 429-446. https://doi.org/10/fsqzrw

Ken H. Perlin and Eric M. Hoffert. 1989. Hypertexture. Computer Graphics (Proceedings
of SIGGRAPH) 23, 3 (July 1989), 253-262. https://doi.org/10/fdmsxd

Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth I. Joy. 2005. Shell Maps.
ACM Transactions on Graphics (Proceedings of SIGGRAPH) 24, 3 (July 2005), 626.
https://doi.org/10/d4bh4g

Tim Reiner, Gregor Miickl, and Carsten Dachsbacher. 2011. Interactive Modeling
of Implicit Surfaces Using a Direct Visualization Approach with Signed Distance
Functions. Computers & Graphics 35, 3 (June 2011), 596-603. https://doi.org/10/
fsnj24

Kenneth B. Russell. 1999. IMPS: Implicit Surfaces for Interactive Animated Characters.
Masters Thesis. Massachusetts Institute of Technology.

Tetsu R. Satoh. 2003. Symplectic Ray Tracing: A New Approach to Non-Linear Ray Trac-
ing by Using Hamiltonian Dynamics. In Visualization and Data Analysis, Vol. 5009.
International Society for Optics and Photonics, 277-286. https://doi.org/10/fr5tg6

Tanner Schmidt, Richard Newcombe, and Dieter Fox. 2014. DART: Dense Articulated
Real-Time Tracking. In Robotics: Science and Systems, Vol. 2. Robotics: Science and
Systems Foundation. https://doi.org/10/gf2dr2

Thomas W. Sederberg and Scott R. Parry. 1986. Free-Form Deformation of Solid
Geometric Models. Computer Graphics (Proceedings of SSGGRAPH) 20, 4 (Aug. 1986),
151-160. https://doi.org/10/cb8rr3

F.J. Seron, D. Gutierrez, G. Gutierrez, and E. Cerezo. 2004. Visualizing Sunsets through
Inhomogeneous Atmospheres. In Proceedings of Computer Graphics International
(CGI). 349-356. https://doi.org/10/fg7%hz

J. A. Sethian and Peter Smereka. 2003. Level Set Methods for Fluid Interfaces. Annual
Review of Fluid Mechanics 35, 1 (2003), 341-372. https://doi.org/10/ffqv25

Miroslava Slavcheva, Maximilian Baust, and Slobodan Ilic. 2017. Towards Implicit Cor-
respondence in Signed Distance Field Evolution. In Proceedings of the International
Conference on Computer Vision (ICCV). https://doi.org/10/c935

J. Sloup. 2003. Visual Simulation of Refraction Phenomena in the Earth’s Atmosphere.
In Proceedings on Seventh International Conference on Information Visualization (IV).
452-457. https://doi.org/10/czt7cs

Jos Stam and Eric Languénou. 1996. Ray Tracing in Non-Constant Media. In Rendering
Techniques (Proceedings of the Eurographics Workshop on Rendering), Xavier Pueyo
and Peter Schréder (Eds.). Springer-Verlag, 225-234.

Barton T. Stander and John C. Hart. 1994. A Lipschitz Method for Accelerated Volume
Rendering. In Proceedings of the 1994 Symposium on Volume Visualization (VVS *94).
ACM, New York, NY, USA, 107-114. https://doi.org/10/dxj3vz

Masamichi Sugihara, Brian Wyvill, and Ryan Schmidt. 2010. WarpCurves: A Tool for
Explicit Manipulation of Implicit Surfaces. Computers & Graphics 34, 3 (June 2010),
282-291. https://doi.org/10/dgnmgqj

Jonathan Taylor, Vladimir Tankovich, Danhang Tang, Cem Keskin, David Kim, Philip
Davidson, Adarsh Kowdle, and Shahram Izadi. 2017. Articulated Distance Fields for
Ultra-Fast Tracking of Hands Interacting. ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia) 36, 6 (Nov. 2017), 244:1-244:12. https://doi.org/10/gcgbht

Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik.
2017. Learning Shape Abstractions by Assembling Volumetric Primitives. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer
Society, 1466-1474. https://doi.org/10/gfz56d

Greg Turk and James F. O’Brien. 1999. Variational Implicit Surfaces. Technical Report
GIT-GVU-99-15. Georgia Institute of Technology.

Greg Turk and James F O’Brien. 2005. Shape Transformation using Variational Implicit
Functions. In ACM SIGGRAPH Course Notes. ACM, 13. https://doi.org/10/b6hfjf

Unbound Technologies. 2019. Unbound. http://unbound.io/

ACM Trans. Graph., Vol. 38, No. 6, Article 229. Publication date: November 2019.

Unity Technologies. 2019. Unity3D. https://unity.com/

Rodolphe Vaillant, Loic Barthe, Gaél Guennebaud, Marie-Paule Cani, Damien Rohmer,
Brian Wyvill, Olivier Gourmel, and Mathias Paulin. 2013. Implicit Skinning: Real-
Time Skin Deformation with Contact Modeling. ACM Transactions on Graphics
(Proceedings of SSIGGRAPH) 32, 4 (July 2013), 125:1-125:12. https://doi.org/10/gfz54q

Rodolphe Vaillant, Gdel Guennebaud, Loic Barthe, Brian Wyvill, and Marie-Paule
Cani. 2014. Robust Iso-Surface Tracking for Interactive Character Skinning. ACM
Transactions on Graphics (Proceedings of SSIGGRAPH Asia) 33, 6 (Nov. 2014), 189:1-
189:11. https://doi.org/10/gfz54r

Andrew P. Witkin and Paul S. Heckbert. 1994. Using Particles to Sample and Control
Implicit Surfaces. In Annual Conference Series (Proceedings of SSGGRAPH). ACM,
New York, NY, USA, 269-277. https://doi.org/10/bv24kc

Brian Wyvill, Andrew Guy, and Eric Galin. 1998. The Blob Tree- Warping, Blending
and Boolean Operations in an Implicit Surface Modeling System. Technical Report.
University of Calgary. https://doi.org/gfz57d

Brian Wyvill, Andrew Guy, and Eric Galin. 1999. Extending the CSG Tree: Warping,
Blending and Boolean Operations in an Implicit Surface Modeling System. Computer
Graphics Forum 18, 2 (1999), 149-158. https://doi.org/10/ffd743

Brian Wyvill, Craig McPheeters, and Geoff Wyvill. 1986a. Animating Soft Objects. The
Visual Computer 2, 4 (Aug. 1986), 235-242. https://doi.org/10/ct7psx

Geoff Wyvill, Craig McPheeters, and Brian Wyvill. 1986b. Data Structure for Soft
Objects. The Visual Computer 2, 4 (Aug. 1986), 227-234. https://doi.org/10/dndmwc

Geoff Wyvill and Andrew Trotman. 1990. Ray-Tracing Soft Objects. In Proceedings of
Computer Graphics International (CGI), Tat-Seng Chua and Tosiyasu L. Kunii (Eds.).
Springer Japan, 469-476.

https://doi.org/10/gfz54w
https://doi.org/10/gfz54w
https://doi.org/10/gd52q5
https://doi.org/10/ft9gsh
https://www.mediamolecule.com/games/dreams
https://doi.org/10/gfz56m
https://doi.org/10/cq9w6r
http://arxiv.org/abs/cs/1901.05103
https://doi.org/10/fsqzrw
https://doi.org/10/fdmsxd
https://doi.org/10/d4bh4g
https://doi.org/10/fsnj24
https://doi.org/10/fsnj24
https://doi.org/10/fr5tg6
https://doi.org/10/gf2dr2
https://doi.org/10/cb8rr3
https://doi.org/10/fg79hz
https://doi.org/10/ffqv25
https://doi.org/10/c935
https://doi.org/10/czt7cs
https://doi.org/10/dxj3vz
https://doi.org/10/dqnmqj
https://doi.org/10/gcqbht
https://doi.org/10/gfz56d
https://doi.org/10/b6hfjf
http://unbound.io/
https://unity.com/
https://doi.org/10/gfz54q
https://doi.org/10/gfz54r
https://doi.org/10/bv24kc
https://doi.org/gfz57d
https://doi.org/10/ffd743
https://doi.org/10/ct7psx
https://doi.org/10/dndmwc

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Overview

	2 Problem statement
	3 Non-linear sphere tracing
	3.1 A Joint Method for Root Finding and Ray Integration
	3.2 Finding the Undeformed Space Ray Start
	3.3 Principled Methods for Controlling Error

	4 Mapping Deformation Techniques to NLST
	4.1 Linear Blend Skinning for NLST

	5 Implementation
	6 Evaluation and Results
	6.1 Evaluating Methods for Error Control
	6.2 Comparisons to Related Methods
	6.3 Applying Forward Deformation Techniques

	7 Conclusions, Limitations and Future Work
	Acknowledgments
	References

