

THE PREMIER CONFERENCE 8 EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

FROM MICROFACETS TO PARTICIPATING MEDIA: A UNIFIED THEORY OF LIGHT TRANSPORT WITH STOCHASTIC GEOMETRY

DARIO SEYB¹, EUGENE D'EON², BENEDIKT BITTERLI², WOJCIECH JAROSZ¹ 1DARTMOUTH COLLEGE, ²NVIDIA

docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/

6

disneyanimation.com/data-sets/?drawer=/resources/clouds/

UAV LiDAR Scanning System

Application in Historical Relics

The SGGX Microflake Distribution

140

Lay the *foundations* for a new *geometry* representation for *surfaces and volumes*.

GAUSSIAN PROCESS IMPLICIT SURFACES (GPIS)

A SIDE NOTE ON GAUSSIAN PROCESSES (GPS)

A distribution over *functions*

- Completely described by **mean function** and **covariance kernel**
- Closed under linear transforms (including derivatives)
- No relation to **Gaussian Splatting™**

Implicit Surface

Stochastic Implicit Surface

ENSEMBLE AVERAGE LIGHT TRANSPORT

 $\mathbf{E}[\mathscr{L}]u$

Remember: Light Transport is not linear in geometry!

LIGHT TRANSPORT IN STOCHASTIC IMPLICIT SURFACES

COMPUTING RADIANCE

$$L_i(x,\omega) = \int_{\Omega} L_i(x_s,\omega_s)\rho(x_s,\omega_s,n_s)d\omega_s$$

COMPUTING RADIANCE

 $L_i(x,\omega) = \int_{\Omega} L_i(x_s,\omega_s)\rho(x_s,\omega_s,n_s)d\omega_s$

 $\langle L_i(x,\omega) \rangle_{GP} = \int_{GP} \int_{\Omega} L_i(x_s^f,\omega_s) \rho(x_s^f,\omega_s,n_s^f) d\omega_s d\gamma(f)$

COMPUTING ENSAMBLE RADIANCE

$$\langle L_i(x,\omega) \rangle_{GP} = \int_{GP} \int_{\Omega} L_i(x_s^f, \omega_s) \rho(x_s^f, \omega_s, n_s^f) d\omega_s d\gamma(f)$$

COMPUTING ENSAMBLE RADIANCE

COMPUTING ENSAMBLE RADIANCE

ENSAMBLE RADIANCE

Globally Consistent

Globally Consistent Position Consistent +Normal Consistent

PROCESS MEMORY MODELS

Position

Position+Normal

PROCESS MEMORY MODELS

Global

Position

Position+Normal

0

à

4 ...

APPEARANCE SPACE OF STOCHASTIC IMPLICITS

2D heightfields are the special case!

2D heightfields are the special case!

CONNECTIONS TO MICROFACET THEORY

CONNECTIONS TO MICROFACET THEORY

GENERATE SURFACES WITH GIVEN NDFS

OR LOOK AT MORE GENERAL GEOMETRY!

VOLUME-TYPE GPIS APPROXIMATE CLASSICAL MEDIA

CONNECTIONS TO PARTICIPATING MEDIA

A NON-STATIONARY GPIS MODEL

A NON-STATIONARY GPIS MODEL

Surface Volume "Moti

"Motion Blur"

MANUAL EDITING

"posterior editing"

"prior editing"

STOCHASTIC CONSTRUCTIVE SOLID GEOMETRY

STOCHASTIC POISSON SURFACE RECONSTRUCTION

Original Downsampled

Ours

LIMITATIONS

- Find closed-form approximations for transmittance.
- Differentiable rendering algorithm
- Wider range of stochastic processes
- Apply to Monte Carlo PDE solvers

THANK YOU!

Eugene d'Eon

Benedikt Bitterli

Wojciech Jarosz