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Abstract
Recently researchers have started employing Monte Carlo-like line sample estimators in rendering, demonstrating dramatic
reductions in variance (visible noise) for effects such as soft shadows, defocus blur, and participating media. Unfortunately,
there is currently no formal theoretical framework to predict and analyze Monte Carlo variance using line and segment samples
which have inherently anisotropic Fourier power spectra. In this work, we propose a theoretical formulation for lines and
finite-length segment samples in the frequency domain that allows analyzing their anisotropic power spectra using previous
isotropic variance and convergence tools. Our analysis shows that judiciously oriented line samples not only reduce the
dimensionality but also pre-filter C0 discontinuities, resulting in further improvement in variance and convergence rates. Our
theoretical insights also explain how finite-length segment samples impact variance and convergence rates only by pre-filtering
discontinuities. We further extend our analysis to consider (uncorrelated) multi-directional line (segment) sampling, showing
that such schemes can increase variance compared to unidirectional sampling. We validate our theoretical results with
a set of experiments including direct lighting, ambient occlusion, and volumetric caustics using points, lines, and segment samples.

CCS Concepts
•Computing methodologies → Ray tracing; •Mathematics of computing → Stochastic processes; Computation of trans-
forms;

1. Introduction

While point sampling has dominated the view of Monte Carlo (MC)
in graphics for years, MC integration need not always be a point
sampling process. In fact, researchers have recently started employ-
ing MC-like estimators using line samples for rendering problems
as diverse as anti-aliasing [JP00], motion blur [GDAM10], depth of
field [TPD∗12], hair rendering [BGAM12], as well as density esti-
mation [JNSJ11] or path sampling [NNDJ12, GKH∗13, KGH∗14]
in volumes. While these recent methods have shown considerable
promise, little is currently known about the theoretical properties
of such line-sampling estimators, and their extreme anisotropic na-
ture makes them seemingly incompatible with the wealth of prior
isotropic, point-based analyses. Fig. 1(a), for instance, shows the ex-
pected power spectrum of 3D line samples whose (offset) locations
have a Poisson disk distribution. While this leads to an isotropic
sampling power spectrum within the 2D subspace of offsets, the
radially averaged power spectrum (Fig. 1(b), top) obscures this fact.
More generally, for d-dimensional unidirectional line samples, the
power spectrum resides within a (d-1)-dimensional subspace.

Lines and segment samples have already been studied in the fre-
quency domain [SZG∗13], however, this previous analysis did not
provide any tools to analyze the variance and convergence rates

of MC integration using such samples. In this work, we perform a
theoretical analysis of lines and segment (finite length) samples in
the frequency domain which reveals that the expected power spec-
trum of lines and segment samples have an isotropic counterpart
that allows us to analyze their inherently anisotropic power spectra
using previous isotropic [PSC∗15] variance and convergence tools.
Our analysis further shows that judiciously oriented line samples
can pre-filter C0 discontinuities, thereby improving the variance and
convergence rates beyond dimensionality reduction. However, with
finite length segment samples we can only expect improvements
due to pre-filtering of C0 discontinuities, without any dimensionality
reduction. We further extend our analysis to (uncorrelated) multi-
directional line and segment samples. We validate our theoretical
results with a set of experiments including direct lighting, ambient
occlusion, and volumetric caustics using points, lines and segment
samples.

2. Related work

Point sampling, variance, & convergence. Ever since Cook et
al. [CPC84] introduced MC integration to graphics, researchers
have noted that a careful arrangement of samples can impact the
spectral distribution of error and dramatically reduce its overall
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Figure 1: (a) The expected power spectrum (DC at the center) of
unidirectional parallel line samples (along l‖)—oriented orthog-
onal to the plane (l⊥x , l⊥y )—is shown with Poisson disk line offset
distributions. (b) The radial behavior of (a) is isotropic within the
plane (shown for two directions with blue arrows in (a)) where
the power spectrum is confined, however, the 3D radially averaged
(radial mean) spectrum shown at the top in (b) does not reveal any
Poisson disk characteristics. In (b), α > 0 (more details in (21)).

magnitude in numerical integration [DW85, Coo86, Mit91]. This
has lead to extensive work on generating sample patterns which are
stochastic, yet still maintain a low discrepancy [Shi91] or which
exhibit so-called blue noise frequency spectra [Coo86, LD08]. Re-
cent work [Dur11, SK13, PSC∗15] has established a firm math-
ematical connection between the spectral properties of the sam-
pling pattern and the magnitude of MC integration error. More-
over, careful sample placement—such as jittered [Coo86] and cer-
tain flavors of blue-noise sampling [BSD09, HSD13]—have now
been shown to actually lead to asymptotically faster convergence
rates [Mit96, RAMN12, SK13, SNJ∗14, PSC∗15]. We derive simi-
lar mathematical expressions governing variance and convergence
rate, but for the case of stochastic sampling using line and segment
samples which have inherently anisotropic expected power spectra.

Line sampling in rendering & related fields. While line sam-
pling is relatively new in graphics (the idea being first applied
to anti-aliasing by Jones and Perry [JP00]), it has been used for
some time in related fields. A class of methods from neutron trans-
port simulation known as “expected value estimators” and “track
length estimators” [Spa66] essentially perform MC integration us-
ing line samples. These were independently developed and gen-
eralized in the graphics community in the form of “long beam”
and “short beam” estimators, first for camera rays [JZJ08] and
then for light rays [JNSJ11, SZLG10] in volumetric photon map-
ping, and later adapted to many-light methods [NNDJ12], path
tracing approaches [GKH∗13, KGH∗14], and subsurface scatter-
ing [HCJ13]. Line samples have also cropped up for computing
hemispherical visibility and motion blur [GDAM10, GBAM11],
depth of field [TPD∗12], visibility in hair [BGAM12], and masked
environment lighting [NBMJ14]. Recently, Billen and Dutré [BD16]
demonstrated improvements with line samples due to dimensional-
ity reduction for direct illumination. While all of these approaches
have demonstrated practical improvements for rendering, there is

currently little theoretical understanding of how such anisotropic
sample patterns impact variance and convergence rate in the context
of MC integration. We perform such an analysis, theoretically ex-
plaining and empirically validating the previously observed variance
reduction properties of such line samples and segment samples.

Frequency analysis. Sun and colleagues [SZG∗13] performed a
frequency analysis of line and segment samples and showed that
lines and finite length segments have inherently anisotropic power
spectra. Their analysis was mainly focused on preserving the blue-
noise properties of (uni- and multi-directional) samples to reduce
noise and aliasing artifacts during reconstruction. We instead inves-
tigate the orthogonal problem of integration, presenting a frequency
domain formulation of MC integration using line and segment sam-
ples. Our analysis reveals that these anisotropic sampling power
spectra have isotropic counterparts, allowing us to leverage recently
developed isotropic variance and convergence tools [PSC∗15] to
derive the variance convergence rates for lines and segment samples.

3. Preliminaries

We are interested in computing an integral of the form:

I =
∫
D

f (x)dx, (1)

where D is the unit d-dimensional Euclidean space.

Traditionally, Monte Carlo integration forms an approximation,
IN ≈ I, by averaging evaluations of the integrand f at N point sample
locations p j. For uniformly distributed samples, we can write:

IN =
∫
D

PN(x) f (x)dx, with PN(x)=
1
N

N

∑
j=1

δ(‖x−p j‖), (2)

where PN is a normalized sampling function using N points.

In the frequency domain Φ, this integral takes the form:

IN =
∫

Φ

FPN (ν)F f (ν)dν, with FPN (ν)=
1
N

N

∑
j=1
F(νj), (3)

where F f is the complex conjugate of the integrand’s Fourier spec-
trum,FPN is the spectrum of the normalized point sampling function,
and F(νj) = e−2πiνj with νj = ν ·p j is the Fourier transform of a
single point sample p j at frequency ν. Prior work [Dur11, PSC∗15]
has shown that the variance of IN can be expressed as:

Var(IN) =
∫

Θ

〈PPN (ν)〉P f (ν)dν , (4)

where Θ includes all frequencies except DC, P f (ν) = ‖F f (ν)‖2 is
the power spectrum of the integrand, and 〈PPN

(ν)〉 is the expected
power spectrum of the homogenized† normalized point sampling
function. We build upon this knowledge to express Monte Carlo
estimators using line and line segment samples, as well as their
corresponding variances, in the Fourier domain.

† In the point processes literature [IPSS08], homogenization refers to sta-
tionary point processes for which the average number of points per some
unit of extent such as length, area, or volume is constant depending on the
underlying mathematical space.
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4. Monte Carlo estimator for lines and segment samples

Sun and colleagues [SZG∗13] derived the Fourier spectrum of line
and line segment samples for the purposes of blue-noise sampling
and reconstruction. We build on these definitions below to mathemat-
ically express Monte Carlo integration using such samples, both in
the spatial domain and the frequency domain. We restrict ourselves
initially to the unidirectional case where all lines or segments share
the same direction. Once we start analyzing variance in Section 5,
we will generalize this to the uncorrelated multidirectional case.

4.1. Line samples

We denote a d-dimensional parametric line as: l(t) = l⊥+ l‖t, where
l‖ is a unit d-dimensional vector denoting the direction of the line,
and l⊥ is the point on the line closest to the origin. We can express
Monte Carlo integration using such line samples as:

IN =
∫
D

LN(x) f (x)dx, where LN(x)=
1
N

N

∑
j=1

δ(dist(x, l j)). (5)

Compared to (2), this relies on a normalized sampling function
LN consisting of N uniformly distributed lines where dist(x, l j) =

‖(l⊥j −x)+(x · l‖j )l
‖
j ‖ is the Euclidean distance between x and the

j-th line sample l j.

Fourier Domain. In the frequency domain Φ, this integral takes an
analogous form to (3) but where the point sampling spectrum FPN

is replaced by the line sampling spectrum FLN :

IN =
∫

Φ

FLN (ν)F f (ν)dν, FLN (ν)=
1
N

N

∑
j=1
F(ν⊥j )KL(ν

‖
j ), (6)

where ν
⊥
j = ν · l⊥j denotes the frequency component in the offset

plane, ν
‖
j = ν · l‖j denotes the frequency component along the line

samples, F(ν⊥j ) = e−2π i ν
⊥
j is the Fourier spectrum of the offset

point l⊥j , andKL(ν
‖)= δ(ν‖) is non-zero only for frequency vectors

that are orthogonal to the line sample direction. The power spectrum
is simply PLN(ν) = ‖FLN (ν)‖

2.

Note that each line sample’s frequency spectrum (each summand
above) is that of a (d-1)-dimensional point spectrum in the coordi-
nates perpendicular to the line (ν · l⊥j ), and a delta impulse in the

remaining coordinate (ν · l‖j ) along the line. If all the lines share the

same direction l‖j = l‖, then the entire spectrum of the sample set is
that of N (d-1)-dimensional points restricted to lie in a hyper-plane
perpendicular to the lines. Fig. 1(a) illustrates this for d = 3 where
parallel line samples are generated horizontally such that the power
spectrum lies in a plane orthogonal to their direction.

4.2. Segment samples

Similar to lines, we denote a d-dimensional parametric segment as:
s(p, t) = p+ s‖t, where p is the center of the segment, s‖ is a unit
d-dimensional vector denoting the direction of the segment, and
t ∈ [−λ/2,λ/2] where λ is the length of the segment. The Monte

Carlo estimator for N such segment samples can be written as:

IN =
∫
D

SN(x) f (x)dx, where SN(x)=
1
N

N

∑
j=1

S(x,s j) (7)

where SN is the sampling function using N segments with:

S(x,s j) = δ
(
dist(x,s j)

)
H
(

λ

2
−
∣∣∣(x−p j) · s

‖
j

∣∣∣) . (8)

Here, H is the Heaviside function and dist(x,s j) is defined analo-
gously to dist(x, l j) with s⊥j = p−p · s‖ being the point closest to
the origin on the infinite line containing the segment.

Fourier Domain. In the frequency domain Φ, the integral in (7)
takes an analogous form as (3) but where the point sampling spec-
trum FPN is replaced by the segment sampling spectrum FSN :

IN =
∫

Φ

FSN (ν)F f (ν)dν, FSN (ν)=
1
N

N

∑
j=1
F(νj)KS(λ,ν

‖
j ), (9)

where F(νj) = e−2πiνj is the Fourier spectrum of the point sample
p j at the center of the segment. Compared to (6) whose spectral
kernel KL is a Dirac delta function, the spectral kernel for segment
samples,KS(λ,ν

‖
j ) = λsinc(λν

‖
j ), is a sinc function since a segment

corresponds to a finite box filter. As a result, the frequency content of
segments resides in the full d-dimensions, contrary to line samples,
whose spectrum resides in a (d-1)-dimensional subspace. The power
spectrum of segment samples is simply PSN(ν) = ‖FSN (ν)‖

2.

5. Variance formulation

As with Pilleboue et al.’s [PSC∗15] formulation for point samples,
the line and segment samples need to be homogenized (which is
the same as performing Cranley-Patterson rotation [CP76]) to get
the corresponding variance formulations. Samplers like white noise
(random) and ones derived from white noise (Poisson disk [DW85],
CCVT [BSD09], BNOT [dGBOD12]) are homogeneous by con-
struction [PSC∗15]. For other sampling strategies, the samples need
to be homogenized. Homogenizing segments requires homogenizing
the segment centers while line samples only require homogenizing
the (d-1) independent components of the line sample offset l⊥.

Given the sampling spectra for line (6) and segment (9) sampling,
we could express the variance in the Fourier domain similar to that
of point sampling (4):

Var(IN) =
∫

Θ

〈PLN (ν)〉P f (ν)dν for lines, and (10)

Var(IN) =
∫

Θ

〈PSN (ν)〉P f (ν)dν for segments, (11)

where 〈PLN
(ν)〉 and 〈PSN

(ν)〉 are the expected power spectra for N
homogenized line and segment samples respectively.

Unfortunately, these expressions are not immediately useful since
both expected sampling spectra are highly anisotropic. To gain
further insights about how the variance of MC line and segment
sampling relates to points, and to ultimately derive convergence
rates, we will instead consider an alternate interpretation of these
estimators.
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5.1. Alternate interpretation of line and segment sampling

By expanding the sampling functions in (6) and (9), we can rewrite
the Monte Carlo estimators in the Fourier domain as

IN =
∫

Φ

Line sampling in d︷ ︸︸ ︷Original integrand︷ ︸︸ ︷
︸ ︷︷ ︸

Point sampling in d-1 subspace
︸ ︷︷ ︸

Convolved integrand

1
N

N

∑
j=1
F(ν⊥j )KL(ν

‖
j )F f (ν)dν, for lines, and (12)

IN =
∫

Φ

Segment sampling in d︷ ︸︸ ︷Original integrand︷ ︸︸ ︷
︸ ︷︷ ︸

Point sampling in d
︸ ︷︷ ︸

Convolved integrand

1
N

N

∑
j=1
F(ν j)KS(λ,ν

‖
j )F f (ν)dν for segments. (13)

The grouping specified by the over-braces is the original interpre-
tation of the d-dimensional integration where evaluating each line
(segment) sample involves integrating the original d-dimensional
integrand along the line (segment). The grouping specified by the
under-braces, however, shows that by premultiplying the integrand
by the line or segment kernels, we can view this simply as Monte
Carlo point sampling that operates on a pre-filtered integrand.

These two equivalent interpretations are analogous to the equiv-
alence described by the Fourier slice theorem. While both views
are equally valid, the second interpretation provides a clearer expla-
nation for how such samples can provide benefits in Monte Carlo
integration. Firstly, for both lines and segments, the convolution
can potentially increase the effective integrand’s smoothness and
spectral decay, resulting in improved convergence. Moreover, for
line samples, the sampling process is equivalent to point sampling in
one dimension lower, which can provide faster convergence due to
denser stratification. Line segments, on the other hand, correspond to
point sampling in d dimensions, so no such dimensionality-reduction
benefit will arise.

5.2. Alternate variance formulation

We can now express variance using the alternate pre-filtering inter-
pretation of line and segment samples.

Line sampling. The integration domain becomes the (d-1)-
dimensional subspace and we end up with point samples in this
subspace. The variance (10) can therefore be rewritten:

Var(IN) =
∫

Θ⊥
〈PPN (ν̃)〉P

L
f̃ (ν̃)dν̃ , (14)

where Θ
⊥ is the (d-1)-dimensional Fourier integration domain in

the plane of line offsets, 〈PPN
(ν̃)〉 is the expected point sampling

power spectrum of line offsets in the (d-1) subspace, and PL
f̃ (ν̃) is

the power spectrum of the effective pre-filtered integrand evaluated
at a point ν̃ in the (d-1) subspace.

Segment sampling. If we consider the integrand to be convolved
along the segment directions, followed by point sampling, the vari-

ance (11) can be rewritten as:

Var(IN) =
∫

Θ

〈PPN (ν)〉P
S
f̃ (ν)dν , (15)

where 〈PPN
(ν)〉 is the expected point sampling power spectrum of

the N segment centers, and PS
f̃ (ν) is the power spectrum of the

effective pre-filtered integrand. In contrast to line samples, segments
do not reduce the dimensionality, so (15) remains in the original d
dimensions. Only when the segment lengths span the entire domain—
producing line samples—will we get dimensionality reduction.

Isotropic offset distributions. For line samples with isotropically
distributed offsets, we get an isotropic spectrum in the (d-1)-
dimensional subspace (Fig. 1(a)). Similarly, following the pre-
filtering interpretation of line segments, we obtain an isotropic
expected power spectrum if the segment centers are distributed
isotropically. Consequently, we can further simplify equations (14)
and (15) by radially averaged power spectra (following [PSC∗15]):

Var(IN) =


µL

∫ ∞
0

ρ̃
d−2〈PPN (ρ̃)〉P

L
f̃ (ρ̃)dρ̃ lines

µS

∫ ∞
0

ρ
d−1〈PPN (ρ)〉P

S
f̃ (ρ)dρ segments,

(16)

where µL = µ(Sd−2) and µS = µ(Sd−1) denote the Lebesgue mea-
sures in the respective domains. ρ and ρ̃ are the radial frequencies
in the original d-dimensional space and the (d-1)-dimensional sub-
space, respectively.

5.3. Multi-directional variance formulation

For multi-directional line sampling, if the sample offsets across dif-
ferent directions are uncorrelated then the estimators for different
directions become uncorrelated random variables with additive vari-
ance. Averaging the uncorrelated estimators from m such directions
with Nk samples each results in the average of variances from the
individual estimators, weighted by their squared sample counts:

Var(IN) =
m

∑
k=1

N2
k

N2

∫
Θ⊥k

〈PPNk
(ν̃k)〉PL

f̃k
(ν̃k)dν̃k , (17)

where N = ∑
m
k=1 Nk is the total number of line samples, PL

f̃k
(ν̃k) is

the power spectrum of the effective integrand f̃k which has been
pre-filtered along the k-th direction, and 〈PPNk

(ν̃k)〉 is the expected

power spectrum of sampling the Nk line offsets l⊥k within the (d-
1)-dimensional subspace Θ

⊥
k orthogonal to the k-th direction (see

supplemental section 1 for a derivation in Fourier domain).

Similarly, for uncorrelated multi-directional line segment samples,
the variance formulation from (15) can be rewritten as:

Var(IN) =
m

∑
k=1

N2
k

N2

∫
Θ

〈PPNk
(ν)〉PS

f̃k
(ν)dν . (18)

Isotropic offset distributions. For multiple directions, we can sim-
ilarly generalize (16) for line and segment samples in the radial form
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as follows:

Var(IN)=


µL

m

∑
k=1

N2
k

N2

∫ ∞
0

ρ̃
d−2
k 〈PPNk

(ρ̃k)〉PL
f̃k
(ρ̃k)dρ̃k lines

µS

m

∑
k=1

N2
k

N2

∫ ∞
0

ρ
d−1
k 〈PPNk

(ρk)〉PS
f̃k
(ρk)dρk segments,

(19)

where ρk and ρ̃k are the radial frequencies for the k-th direction in
the original d- and (d-1)-dimensional subspace, respectively.

6. Convergence analysis

We use the variance formulations developed in the last section to
study the convergence rates of line and segment samples. We first
present equations in a unified manner which can directly apply to
line and segment samples (as explained in the second half of this sec-
tion). We start by writing down the expected sampling power spectra
for random and jittered point samples for which the analytical form
is known [Len66, DW85, DW92, GT04]:

〈PPN (υ)〉=

{ 1
N for random,
1
N

[
1−∏

D
i sinc(πυ)2

]
for jittered,

(20)

where υ represents the frequency and D represents the dimensions.
These analytic expressions can be directly fed into (14) for lines
and (15) for segments with a simple change in variables (for υ and
D) to study corresponding variance. Our analysis, however, is not
restricted to only random and jittered sampling patterns. Thanks
to the pre-filtering interpretations for lines (12) and segments (13),
we can exploit the corresponding isotropic‡ expected power spectra
of line offsets and segment centers to leverage (19) for variance
analysis. As a result, we can apply the sampling radial profiles
and the convergence tool proposed by Pilleboue et al. [PSC∗15]—
which works for all sampling patterns with isotropic expected power
spectra—as shown below:

〈PPNk
(rk)〉=


γk
Nk

(
rk

αkNk
1
D

)bk

rk < αkNk
1
D

γk
Nk

otherwise

, (21)

where rk is the radial frequency for samples oriented along the
k-th direction, bk is the monomial degree, Nk is the number of
samples along the k-th direction, γk > 0 and αk ∈ R+/0 is used to
quantify the range of energy-free frequency (around the DC peak)
with respect to the mean frequency.

To analyze convergence rates, we first restrict our pre-filtered
integrands to integrable functions with smooth boundary (e.g. disk
or sphere) [BCT01]. This can, however, be extended to arbitrary
bounded convex regions [BHI03]. The worst case from this class
of functions exhibits a power fall-off of order O

(
ρ
−(d+1)

)
where

ρ > 0 is a radial frequency, and the best case is defined as a function

‡ In our concurrent work [SJ17], we have shown that jittered samples have
anisotropic expected power spectra; however, this mild anisotropy does not
change the effective stratification asymptotically along any direction. It is
therefore safe to asymptotically analyze jittered samples using isotropic
convergence tools [PSC∗15].

Table 1: Variance convergence rates for N d-dimensional jittered
and blue noise (CCVT [BSD09]) point samples [PSC∗15].

Samplers d d = 1 d = 2 d = 3

Jittered Best O
(

N−1− 2
d

)
O
(

N−3
)

O
(

N−2
)

O
(

N−
5
3

)
Jittered Worst O

(
N−1− 1

d

)
O
(

N−2
)
O
(

N−1.5
)
O
(

N−
4
3

)
CCVT Best O

(
N−1− 3

d

)
O
(

N−4
)
O
(

N−2.5
)
O
(

N−2
)

CCVT Worst O
(

N−1− 1
d

)
O
(

N−2
)
O
(

N−1.5
)
O
(

N−
4
3

)

which has constant energy up to a certain radial frequency ρ0 .
The overall variance convergence rates can be summarized in the
following form:

Var(IN)<


O
(

N−1− b
D

)
best-case

O
(

N−1− 1
D

)
worst-case

, (22)

Note that, we can write out the best and worst case convergence
rate by using b = 3 for CCVT [BSD09] and b = 2 for jittered
in (22) [PSC∗15]. Table 1 summarizes the convergence rates for
jittered and CCVT in one, two and three dimensions for points,
which is applicable in the case of lines and segments as discussed
below. Note, however, that due to the convolution interpretation of
lines (12) and segments (13), the integrand is pre-filtered, which can
smooth out C0 discontinuities, improving the spectral decay of the
effective integrand and therefore its variance and convergence rate.

Line sampling. Following (20), we can write down the expected
power spectrum in full d dimensions for line samples with random
offset distribution as:〈PLN

(ν)〉 = 1
N δ(ν · l⊥), whereas, for jittered

samples we can simply replace υ with ν · l⊥ and D by (d-1) in (20).
The product of sinc(·) goes over the (d-1) dimensions spanning the
hyperplane of possible line offsets l⊥. We illustrate these analytic
power spectra for 3D in Fig. 2(a) for multi-directional line sam-
pling where one direction uses randomly generated line offsets and
the other direction uses jittered offsets. In the (d-1) subspace, the
same expected power spectrum can be simplified to the spectrum
〈PPNk

(ρ̃k)〉 of line offset distributions (for samples along the k-th
direction) by simply replacing υ with ν̃ and D with (d-1) in (20) for
each direction.

We can leverage the radial form of the expected power spectrum
from (21) for samplers with unknown analytic form by replacing rk
with ρ̃k and D with (d-1). Contrary to Pilleboue et al. [PSC∗15]—
who apply the radial averaging in the full d dimensions—for line
samples the radial averaging needs to be performed only in the
(d-1) subspace. After plugging (21) back into (19), we obtain the
convergence tool for line samples which would give the convergence
rates shown in (22) for D = (d-1) with the pre-filtered integrands.

Segment sampling. Similar to line samples, Eq. (21) can be used
in (19) to analyze variance from segment samples by replacing rk
with ρk and D with d. The overall convergence rates for the best and
the worst case can be obtained from (22) by replacing D with d for
the pre-filtered integrands. Note that, segments samples have exactly
the same equations as points, but using the pre-filtered integrand.

c© 2017 The Author(s)
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(a) Random + Jittered offsets (b) Jittered + Poisson-disk offsets

Figure 2: Bidirectional line sampling leads to expected power
spectra constrained to the two planes of sample offsets (shown axis-
aligned here for clarity). The line offset sampling process for each
direction determines the spectrum within the corresponding plane
(shown here for combinations of random, jittered, and Poisson-disk).

Multi-directional line sampling. For line samples generated over
a range of multiple directions, the variance convergence rate can
be derived for each direction separately using our variance formu-
lation (19). The overall variance behavior can be summarized as a
sum of convergence rates from each (d-1) subspace for each k-th
direction. For example, for two uncorrelated line sampling direc-
tions shown in Fig. 2, the convergence rate can be derived from the
individual 2D subspaces’ power spectra in the following form:

Var(IN) =


O
(

N−2
1

)
+O(N2) best

O
(

N−1.5
1

)
+O(N2) worst

, (23)

where, N1 is the number of line sampling offsets in the 2D subspace
having jittered expected power spectrum and N2 correspond to the
number of line offsets in the other 2D subspace containing random
or Poisson disk line offset distribution (Fig. 2(b)). Depending on the
integrand, the decay rate of variance can show good convergence

3D 2D subspace 2D subspace

(a) (b) Multi-directional (c) Uni-directional

Figure 3: We analyze the multi-directional expected power spec-
trum (a) with m = 16 directions and Nk = 256 jittered line samples
along each direction k, for a total of N = 4096 line samples in 3D.
The dark region around DC for each 2D subspace (b) shrinks with
more directions compared to the unidirectional case (c).

for small N1,N2 value, but asymptotically we will see the worst of
the two, i.e. O(N2) convergence rate in both cases.

Also, by increasing the number of directions while keeping the
total number of lines N fixed, the overall variance will increase. To
explain this behavior, we consider N = 4096 line samples that are
generated with m = 16 different uncorrelated directions in 3D. For a
unidirectional case, all line offsets will be densely stratified in a 2D
subspace orthogonal to the line samples’ direction, resulting in the
expected power spectrum shown in Fig. 3(c). If, however, multiple
uncorrelated directions are used for a fixed N, the number of samples
per direction—and therefore, the stratification density per direction—
will decrease as we increase the number of directions. This would
result in smaller dark region around the DC component Fig. 3(b).
Since variance is the product of the integrand and sampling power
spectra (17), the overall variance will increase.

7. Experiments

We now perform a set of experiments in 2D and 3D integration
domains using different point, segment and line sampling patterns to
validate our theoretical results. We study different isotropic samplers
(random, jitter, CCVT, Poisson disk) and compare these results with
other practical samplers like N-rooks, multijitter and 02Sequence§.
All samplers are homogenized in the random number space. We
generate the line sample offsets using 1D point samples for 2D inte-
gration problems, and 2D point samples for 3D integration problems.
We start by validating the best and worst case variance convergence
rates with analytical functions and later verify these convergence
rates with realistic test scenes including direct illumination, ambient
occlusion, and homogeneous participating medium. We perform
all the renderings using PBRT-v3 [PJH16] and the corresponding
variance analysis using the empirical error analysis code from Subr
et al. [SSJ16].

Best and worst cases. To validate the best and the worst case con-
vergence rates shown in Table 1 we consider a 3D (d = 3) integration
domain [0,1)3 with a sphere as a worst case [PSC∗15] and a 3D
Gaussian function as a best case. While a Gaussian has a frequency
spectrum with infinite extent, it is smooth enough (C∞) to obtain
the theoretical best-case convergence rates.

In Fig. 4, we first integrate using unidirectional line samples.
For the sphere (a), jittered samples give the convergence rate of
O
(

N−1.9
)

instead of the 2D (d = 2) worst case convergence rate

of O
(

N−1.5
)

with line samples. This is because line samples pre-

filter the C0 discontinuities which results in further improvements
on top of dimensionality reduction. For a Gaussian (b), the observed
convergence rate is O

(
N−2

)
which is the best case convergence

rate in d−1 (2D). Since a Gaussian has no C0 discontinuities, pre-
filtering does not further improve the rate of convergence.

§ We use the non-scrambled version of 02Sequence sampler that directly
ships with PBRT-v3, which is based on a paper by Kollig and Keller [KK02]
and uses the first two dimensions derived from the Sobol sampler.
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(a) Sphere (unidirectional ) (b) Gaussian 3D (unidirectional ) (c) Sphere (bidirectional ) (d) Gaussian 3D (bidirectional )

Figure 4: Line samples 3D: Empirical variance convergence rates for the worst (Sphere) and the smooth (Gaussian 3D) case functions
integrated using various unidirectional (a,b) and bidirectional (c,d) line sampling patterns. With jitter and CCVT, Gaussian (b) follows the
convergence rate for d = 2 from Table 1 for this 3D integral. However, for the sphere (a), the experimental convergence rate is much better
than the theoretical one shown in Table 1 for d = 2. This is because line samples not only reduce the dimensionality but also prefilter the C0
discontinuities in the case of sphere. In (c,d), the convergence rate is dominated by the direction with samples having worst convergence.
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Figure 5: Line orientation: We analyze the impact of line sample orientation on variance and convergence rate. Line samples on the light
source are generated parallel to the edge above pixel A. Consequently, the regions below the left side of the triangle occluder see a step
function (shown for Pixel A in second column) and benefit only from dimensionality reduction. The other two sides of the occluder benefit from
both dimensionality reduction and smoothing of the integrand (shown for Pixel B in the second column).

We further extend this experiment to the multi-directional set-
ting with line samples generated from two directions. We use two
uncorrelated samplers along the two directions and visualize the
convergence behavior in Fig. 4(c,d). As predicted by our analysis,
the overall variance convergence rate is ultimately determined by the
line sampler with the worse convergence among the two directions.
For example, even though CCVT gives good convergence rate for
unidirectional samples, when coupled in the bidirectional case with
random or Poisson-disk samples, the overall convergence rate drops
to O

(
N−1

)
.

Direct illumination. We have rendered two direct illumination
scenes (Figs. 5 and 7) following the approach by Billen and
Dutré [BD16] which performs line sampling directly on an area
light source and computes the visibility function analytically for
diffuse and phong BRDFs. In Fig. 5, we consider a scene with a tri-
angle light source and a triangle occluder of the same size and study
the impact of line sampling orientation (shown as blue lines on the

light source). The first column shows the rendered scene with N = 1
line sample for each shading point. As Billen and Dutré [BD16]
previously demonstrated, the amount of noise is different depending
on the edges of the occluder. We are interested in examining how
the orientation of lines impacts the effective integrand and therefore
the convergence rate in MC integration. To this end, we show in the
second column the original 2D integrands (as seen by traditional
point sampling; top) and the corresponding projected 1D integrands
(as seen by line samples that pre-filter vertically and sample in one
dimension lower; bottom) for two different pixels.

For Pixel A, line samples are exactly parallel to the occluder edge
which leads to a C0 step discontinuity in the effective 1D integrand.
This results in the worst-case variance convergence rate ofO

(
N−2

)
when using 1D jittered samples, as predicted by our theory by setting
d = 1 in Table 1. This implies that, Pixel A benefits only due to
dimensionality reduction.
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Figure 6: Points, Segments & Lines: In the top row, we show the ambient occlusion scene which is rendered with N = 16 jittered points,
segments (of length = 1 radian) and line samples. The reference image is generated with N = 1024 jittered line samples. The bottom row
compares the improvements using segment and line samples over point samples for four different samplers at Pixel A (marked in red in the
reference image). For more comparisons please refer to the supplemental Fig. 1.
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Multi-directions (m = 16)

Figure 7: Multi-directions: We generate 16 point samples per pixel
and perform line sampling in a direction associated to each pixel
sample with a fixed sample count.

For Pixel B, however, the line samples are oriented in such a way
that the effective integrand is pre-filtered, removing the C0 disconti-
nuity. This results in a convergence rate of O

(
N−2.5

)
for this 2D

integral, which is much better than Pixel A. Equation (6) provides a
theoretical justification for this improvement. Similar results can be
observed for other samplers. For point samples, however, the effec-
tive integrand is 2D and we observe 2D (d = 2) convergence rates

from Table 1. In Fig. 7, we compare variance in the Sponza scene for
both unidirectional and multi-directional lines for a fixed number of
jittered samples. We first sample each pixel with 16 point samples
and then associate with each pixel sample a direction to perform line
sampling on the light source. We keep the directions fixed over 100
trials while computing variance to avoid the impact of directional
sampling on variance plots. For m = 16 directions, the correspond-
ing variance for a given number of line samples N is much higher
in the multi-directional case compared to the unidirectional case as
explained in Sec. 6.

Ambient occlusion. We also implemented ambient occlusion inte-
gration using point, segment and line samples. Our approach resem-
bles that of Gribel et al. [GBAM11] which uses line samples over
the hemisphere to compute occlusion from triangle meshes, but our
implementation only considers analytic spheres for simplicity. At
each shade point we are interested in the integral of visibility across
the upper hemisphere:

I =
∫
H2

V (~ω)cosθ

π
d~ω =

∫ π

0

∫ π

2

− π

2

V (θ,φ)cosθ |sinθ|
π

dθdφ. (24)
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(a) Points (b) Segments l = 1 (c) Segments l = π (d) Lines

A A A A

Figure 8: Points, Segments & Lines: We compare the impact of segment length (l) on the variance for the ambient occlusion scene. All
renderings are performed with N = 9 jittered samples. Inset in blue is the zoom-in region of the sphere at the center (marked in (a)). The insets
in red visualize the integrand for Pixel A and the corresponding power spectrum. As the segment length increases, variation of the pre-filtered
integrand (and its power spectrum) diminishes along the vertical axis due to the convolution by the segments. For length l = π, segments cover
the full θ range like line samples, however, the variance due to these long segments is still higher compared to line samples. This is because, by
construction, segment centers span a 2D domain while line offsets span a 1D domain, and can leverage denser 1D stratification. For more
comparisons please refer to the supplemental Figs. 2, 3 & 4.

The Monte Carlo estimators using points, lines and segments are:

IN =



1
πN

N

∑
i

V (θi,φi)cosθi |sinθi|
pdf(θi,φi)

for points,

1
πN

N

∑
i

∫ π

2
− π

2
V (θ,φi) cosθ |sinθ| dθ

pdf(φi)
for lines, and

1
πN

N

∑
i

∫ θ
+
i

θ
−
i

V (θ,φ)cosθ |sinθ| dθ

pdf(θi,φi)∆θi
for segments,

(25)

where ∆θi is the arc-length of the i-th segment, and (θ−i ,θ+i ) =
θ±∆θi. In our implementation we ensure all segments have the
same arc-length by wrapping them across the north pole and equator.

Fig. 6 compares the results from these three different types of es-
timators using a variety of different sampling patterns. We perform
cosine-weighted sampling for point samples whereas for segments
we uniformly sample in spherical coordinates (θ and φ). For lines we
only need to choose φ ∈ [0,π), which we always sample uniformly.
We can see that sampling using segments or lines improves conver-
gence rate due to smoothing, and lines further improve convergence
since their dimensionality reduction provides the opportunity for
denser stratification. In Fig. 8, we compare variance due to different
segment lengths for jittered samples. Note that for segments that
span the full θ ∈ [−π/2,π/2) range (c), the underlying integrand at
Pixel A (c,d) is the same for both segment and line samples; how-
ever, the corresponding variance is higher with segments. This is
because segment centers span a 2D space, whereas line offsets span
a 1D space and can therefore leverage a denser 1D stratification.
However, if we use samplers that densely stratify both in 1D and
2D (e.g., multijitter), then these long segments (length = π) would
perform exactly as line samples.

Participating medium. We also verified our predicted convergence
rates for a simple participating medium rendering problem as shown
in Fig. 9. In this setup, we have a point light source in a homogeneous
medium and place a glass sphere (refractive index = 1.5) at the cen-
ter of the domain, casting volumetric caustics. We use two different
kinds of sampling strategies to simulate this illumination problem,
corresponding to volumetric photon mapping using points [JZJ08],
and the long-photon beam variant [JNSJ11, JNT∗11] which solves
transmittance along each direction analytically, forming line sam-
ples. We also consider both a 2D (flatland) light transport simulation,
as well as a standard 3D simulation.

As we move from flatland to full 3D simulation, the variance
convergence rates deteriorate as we would expect. Conversely, when
we replace point samples with line samples in either domain, the
convergence rates improve. It is interesting to note that the con-
vergence rates in the 2D (flatland) sphere caustics scene rendered
with photon points (Fig. 9(a)) is the same as the 3D sphere caustic
scene rendered with beams/lines (Fig. 9(d)). This is because, as our
theory predicts, the convergence rate is dependent on the sampling
dimensionality (2D in both cases), and not the dimensionality of the
original integrand. Using line samples for 3D light transport requires
sampling the same number of dimensions (2) for the line offsets as
the number of dimensions (2) required to simulated flatland transport
with photon points. We do not see an additional improvement due
to smoothing of the integrands because the smoothing is performed
along (and not across) the visibility discontinuities. All scenarios
therefore retain discontinuities in their integrands, leading to the
worst-case convergence behavior for all samplers and domains.

8. Conclusion, limitations and future work

We expressed Monte Carlo integration using line and segment sam-
ples in both the spatial and frequency domains. By leveraging a dual,
pre-filtered interpretation of the resulting estimators, we showed

c© 2017 The Author(s)
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(a) Spherecaustic 2D (Photons) (b) Spherecaustics 2D (long beams) (c) Spherecaustics 3D (photons) (d) Spherecaustics 3D (long beams)

Figure 9: Points & Lines: We analyze the variance convergence rates for a homogeneous participating medium which is rendered in 2D
(flatland) and 3D using photons (a, c) and long beams (which are photon beams that analytically compute transmittance along each direction)
in (b, d). On the top, we are showing the sampled dimensions for each case.

how to leverage prior isotropic variance and convergence tools for
point sampling to derive concrete expressions for the variance and
convergence rates of a multitude of different line and segment sam-
pling strategies. However, following the concurrent work by Singh
and Jarosz [SJ17] it is now also possible to theoretically analyze line
and segment samples directly in the original d-dimensions and in
the (d-1) subspaces using both the isotropic and anisotropic sample
distributions (e.g. N-rooks, multijitter). Our theory reveals that we
can expect convergence improvements from lines due to dimension-
ality reduction, but also improvements for both segments and lines
due to their pre-filtering of the integrand. We validated this theory
on a number of common rendering scenarios including ambient
occlusion, direct illumination, and participating media rendering.

Correlated multi-directional sampling. A limitation of our mul-
tidirectional analysis is that it requires the samples from different
directions to be uncorrelated. Particularly for segment samples it
could be beneficial to sample directions and offsets in a joint fashion
to obtain a combined sampling power spectrum with desirable vari-
ance/convergence properties. One possible realization of this might
be to use multi-class blue-noise sampling as examined by Sun et
al. [SZG∗13]. More work is needed to evaluate such approaches and
derive the variance of the corresponding, correlated multi-directional
estimators.

Implications for importance sampling. Our pre-filtering interpre-
tation also suggests that obtaining the most benefit from line or
segment samples will require modifying the sampling PDF. We
ran into this problem when implementing segment samples for the
ambient occlusion experiment. Traditional point sampling typically
importance samples the known terms in the integrand (i.e. cosθ sinθ

arising from foreshortening and the Jacobian of spherical integra-
tion), which allows those terms in the integrand to cancel out exactly
with the sampling PDF, reducing variance. When using segment
samples however, the effective integrand is filtered, so it no longer
contains cosθ sinθ, but a convolved version of these terms. Using
segment samples with the same importance sampling density as
points can actually lead to increases in variance since these terms

no longer cancel out (see supplemental Figs. 3 and 5 for more de-
tails). We used a simple constant PDF in spherical coordinates when
sampling segment centers to ensure that the sample weights have
bounded variation, but this also suggests that new strategies need to
be devised that sample proportional to the pre-filtered integrand to
obtain maximum benefit.

Choosing sample directions. Our analysis also reveals that the
choice of line/segment direction can impact whether we obtain vari-
ance/convergence improvements from smoothing. If the convolution
induced by line/segment samples is parallel to discontinuities in the
integrand, then this will not lead to further convergence improve-
ments. We saw that choosing sample directions deterministically can
lead to poor convergence in certain pixels, and distributing the sam-
ple budget across a multitude of directions deteriorates convergence
to that of random sampling in the limit. In the absence of additional
knowledge, using a single (but random) direction for all samples
in a pixel is a reasonable strategy to reduce the risk of selecting a
bad direction while ensuring the maximum possible stratification
density. Intelligently choosing the sample directions (given some a
priori knowledge of the integration problem) may be a promising
strategy to extract further benefit from line and segment samples.
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