Analysis of Sample Correlations for Monte Carlo Rendering

Gurprit Singh Cengiz Oztireli

Kartic Subr

Victor Ostromoukhov

Universität Konstanz

Eurographics2019

Gurprit Singh

Cengiz Oztireli

Kartic Subr

Oliver Deussen

Victor Ostromoukhov

Abdalla G. Ahmed

David Coeurjolly

Ravi Ramamoorthi

Wojciech Jarosz

Gurprit Singh

Cengiz Oztireli

Kartic Subr

Oliver Deussen

Victor Ostromoukhov

Abdalla G. Ahmed

David Coeurjolly

Ravi Ramamoorthi

Wojciech Jarosz

Rendering = Geometry + Radiometry

Geometry / Projection

for pin-hole model is known since 400BC

Rendering = Geometry + Radiometry

Geometry / Projection

for pin-hole model is known since 400BC

Radiometrically accurate simulation is importance of realism

Rendering = Geometry + Radiometry

Geometry / Projection

for pin-hole model is known since 400BC

Raytracing [Whitted 1980]

Radiometrically accurate simulation is importance of realism

Radiometric fidelity improves photorealism

Radiometric fidelity improves photorealism

Krivanek et al. [2014]

Reconstruction: Estimate image samples

Ground truth (high-res) image

Antialiasing using general reconstruction filters

Rendering: reconstructing integrals

Rendering: reconstructing integrals

Each path has an associated radiance value

Global Illumination: Participating media

Each path has an associated radiance value

s-dimensional path space

s-dimensional path space

Rendering = integration + reconstruction

Path-space integration

Frequency analysis of light fields in rendering

Pixel radiance value

Local variation of the integrand

Reconstruction filter

4D Frequency Analysis of Computational Cameras for Depth of Field Extension

Anat Levin^{1,2} Samuel W. Hasinoff¹ Paul Green¹ Frédo Durand¹ William T. Freeman¹ ¹MIT CSAIL ²Weizmann Institute

Standard lens image

Our lattice-focal lens: input

Lattice-focal lens: all-focused output

Figure 1: Left: Image from a standard lens showing limited depth of field, with only the rightmost subject in focus. Center: Input from our lattice-focal lens. The defocus kernel of this lens is designed to preserve high frequencies over a wide depth range. Right: An all-focused image processed from the lattice-focal lens input. Since the defocus kernel preserves high frequencies, we achieve a good restoration over the

PBRT, 16 spp, 403 s

PBRT, 256 spp, 6426 s

Our result, 16 spp, 403 + 10 s (+2,5%)

Figure 1: A scene with complex occlusion rendered with depth of field. Left: Images rendered by PBRT [Pharr and Humphreys 2010] using 16 and 256 low-discrepancy samples per pixel (spp) and traditional axis-aligned filtering. Right: Image reconstructed by our algorithm in 10 seconds from the same 16 samples per pixel. We obtain defocus quality similar to the 256 spp result in approximately 1/16th of the time.

Abstract

Traditionally, effects that require evaluating multidimensional integrals for each pixel such as motion blur depth of field and dramatic reductions in sampling rate, they rely on fairly simple reconstruction that suffers from a number of limitations. First, because they use linear reconstruction kernels and a simple model of local spectrum, they foil near object boundaries, and need to re-

This STAR: Analyze sample correlations for MC sampling

s-dimensional path space

Assessing MSE, bias, variance and convergence of Monte Carlo estimators using spatial and spectral tools

This STAR: Analyze sample correlations for MC sampling

Sample correlations affect light transport / appearance

Jarabo et al. [2018]

Bitterli et al. [2018]

Theoretical Tools

Point Processes

Fourier transform / Series

Samples Quality Assessment

Pair Correlation Function

Fourier Transform / Series

Spatial Domain Formulations

Fourier Domain Formulations

Error Formulations

Error Analysis

Stratification Strategies

Low Discrepancy Samplers

Stochastic Samplers

