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Variance Convergence Rate of Samplers
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Blue noise sampling  
and beyond

Importance sampling

with correlated samples
Stochastic samplers

QMC samplers

Stratification strategies



Regular grid samples
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Uniformly jittered regular grid
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Randomly jittered samples
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Uniform jitter
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!19
Random jitter

Ramamoorthi et al.  
[2012]

Random jitter 
(RMS 10.4%)

Uniform jitter  
(RMS 13.4%)

Random jitter 
(RMS 8,32%)

Uniform jitter  
(RMS 6.59%)



Polar mapping performs better for some 
samplers compared to concentric mapping
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observed by Andrew Kensler [2013]
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Isotropic jitter = uniform jitter + random rotation
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Blue noise sampling  
and beyond

Stochastic samplers

QMC samplers

Stratification strategies



Fourier analysis of sample correlations
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Expected power spectrum for random samples
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24 Chapter 5. Popular sampling patterns
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Expected power spectrum for jittered samples
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Expected power spectrum for blue noise samples
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Samples Expected power spectrum

5.4 Interpreting and exploiting knowledge of the sampling spectra 27
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods
There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

�
N�1� which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms
Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.

Radial mean



Variance in terms of power spectra
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Variance in terms of power spectra
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Convergence rate depends on the low frequency region
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Jittered samples converges faster than Poisson Disk
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Convergence rate depends on the low frequency region

Var(IN ) / ⇥

Samples' expected  
power spectrum

Integrand 
power spectrum

Samplers Worst Case Best Case
Random

Poisson Disk

Jitter

CCVT

O(N�1)O(N�1)

O(N�1) O(N�1)

O(N�1.5) O(N�3)

O(N�1.5) O(N�2)

Pi
lle

bo
ue

 e
t a

l. 
[2

01
5]

Isotropic Spectrum 
Poisson Disk  

     



 43

Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz
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Initialize

Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz
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Shuffle rows

Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz
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Latin Hypercube Sampler (N-rooks)
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Shuffle columns

Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz
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Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz
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Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz
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Anisotropic Sampling Power Spectra
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N-rooks / 
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N-rooks / 
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Sampling in Higher Dimensions
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Rob Cook [1986]
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Rob Cook [1986]
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4D Sampling Spectra along Projections
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4D Sampling Spectra along Projections
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4D Sampling Spectra along Projections
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Non-Axis Aligned Integrand Spectra
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Multi-jittered Samples
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Shearing Multi-Jittered Samples
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Singh and Jarosz [SIGGRAPH 2017]
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Blue noise samplers can have better convergence compared to stratified samples 

Denser stratification can lead to anisotropic spectra which improves convergence  
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So far...



Progressivity 

High speed (millions of samples per second) 

Extension to dimensions beyond 2D  
(Spoke dart throwing, Mitchell [2018]) 
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What properties we desire in a sampler?

(Ahmed et al. [2017], Christensen et al. [2018])

progressivenon-progressive



Low-Discrepancy Sampling

Deterministic sets of points specially crafted to be evenly 
distributed (have low discrepancy). 

Entire field of study called Quasi-Monte Carlo (QMC)
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The Van der Corput Sequence

Radical Inverse Φb in base 2 
Subsequent points “fall into 
biggest holes”
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k Base 2 Φb
1 1 .1 = 1/2

2 10 .01 = 1/4

3 11 .11 = 3/4

4 100 .001 = 1/8

5 101 .101 = 5/8

6 110 .011 = 3/8

7 111 .111 = 7/8

...



Halton: Radical inverse with different base for each dimension: 

- The bases should all be relatively prime. 
- Incremental/progressive generation of samples 

Hammersley: Same as Halton, but first dimension is k/N: 

- Not incremental, need to know sample count, N, in advance

~xk = (�2(k),�3(k),�5(k), . . . ,�pn(k))

~xk = (k/N,�2(k),�3(k),�5(k), . . . ,�pn(k))

Halton and Hammersley Points
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The Hammersley Sequence
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1 sample in each “elementary interval”



The Hammersley Sequence
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1 sample in each “elementary interval”



The Hammersley Sequence
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1 sample in each “elementary interval”



The Hammersley Sequence

�82

1 sample in each “elementary interval”



The Hammersley Sequence
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1 sample in each “elementary interval”



The Hammersley Sequence
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1 sample in each “elementary interval”



Why do we need to scramble?
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Halton Projection (29, 31) Scrambled Halton Projection (29, 31)



Scrambled Low-Discrepancy Sampling
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Monte Carlo (16 jittered samples)
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Can we combine blue noise properties with low discrepancy? 
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Low-Discrepancy Blue Noise
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Low-Discrepancy Blue Noise
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Ahmed et al. [2016]
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Low-Discrepancy Blue Noise 2D-Projections
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Sobol Special scrambling Blue noise characteristics

Perrier et al. [2018]



Low-Discrepancy Blue Noise 2D-Projections
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Sobol Special scrambling Blue noise characteristics

Perrier et al. [2018]



Low-Discrepancy Blue Noise 2D-Projections
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Sobol Special scrambling Blue noise characteristics

Perrier et al. [2018]



Low-Discrepancy Blue Noise 2D Sobol Projections
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Blue noise sampling  
and beyond

Importance sampling

with correlated samples
Stochastic samplers

QMC samplers

Stratification strategies



Light IS vs BSDF IS
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Light Importance Sampling BSDF Importance Sampling

Singh et al. [2019]



Scene illuminated by area direct lighting
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Reference Underlying  
pixel functions

Singh et al. [2019]
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Reference Underlying  
pixel functions Pixel P

Unoccluded pixels' convergence benefit from Light IS 

Singh et al. [2019]
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Reference Underlying  
pixel functions Pixel P Pixel Q

Occluded pixels (no improvement in convergence)

Singh et al. [2019]



Futuristic sampling target spectrum
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Future design

Singh and Jarosz [2017]

Multi-jittered
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Direct link between spatial and Fourier statistics needs further investigation  

Progressive samplers in higher dimensions  

Adapting sample correlations w.r.t. the underlying integrand in high dimensions 

Future research directions
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