Error Analysis of Common Sampling Stratgies

•

Gurprit Singh

gsingh@mpi-inf.mpg.de

Jitter

Jitter

Poisson Disk

Variance Convergence Rate of Samplers

Number of Samples

Number of Samples

Variance Convergence Rate of Samplers Random 4D Jittered Poisson Disk

Fredo Durand [2011] Subr & Kautz [2013] Pilleboue et al. [2015]

Number of Samples

Stratification strategies

Blue noise sampling and beyond

•

•

•

...

• • •

•

....

•

• •

•

• •

. . . .

• •

• •

•

Importance sampling

with correlated samples

Regular grid samples

Regular grid

Pauly et al. [2000]

Regular

Uniformly jittered regular grid

Uniform jitter

Pauly et al. [2000]

Regular

Random jitter

Pauly et al. [2000]

Regular

Uniform jitter

Random jitter

Pauly et al. [2000]

Regular

Uniform jitter

Random jitter

Pauly et al. [2000]

Regular

Uniform jitter

Random jitter

Uniform jitter

Uniform jitter (RMS 13.4%)

Random jitter (RMS 10.4%)

Ramamoorthi et al. [2012]

Random jitter

Canoncial square domain

Occluded

Visible

Uniform jitter (RMS 6.59%)

Random jitter (RMS 8,32%)

Uniform jitter

Uniform jitter (RMS 13.4%)

Random jitter (RMS 10.4%)

19

[2012]

Polar mapping performs better for some samplers compared to concentric mapping

observed by Andrew Kensler [2013]

Canoncial square domain

Visible

Per Christensen [2018]

Disk area light source

Polar mapping

Per Christensen [2018]

Occluded

Visible

Disk area light source

Concentric mapping Shirley and Chiu [1997]

Polar mapping

Per Christensen [2018]

Disk area light source

Reference

Cengiz Oztireli [2016]

Disk area light source

Reference

Random jitter

RMS 11.21%

RMS 10.92%

Uniform jitter

RMS 10.79%

RMS 11.77%

Cengiz Oztireli [2016]

Disk area light source

Reference

Random jitter

RMS 11.21%

RMS 10.92%

Uniform jitter

Isotropic jitter

RMS 10.79%

RMS 8.00%

RMS 11.77%

RMS 8,77%

engiz Oztireli [2016]

U

Isotropic jitter = uniform jitter + random rotation

Rotated uniform jitter better for not too complex shadows

Blue noise sampling and beyond

• •

• • •

Fourier analysis of sample correlations

Expected power spectrum for random samples

Expected power spectrum for jittered samples

Samples

Variance in terms of power spectra

Fredo Durand [2011] Pillebuoe et al. [2015]

Variance in terms of power spectra

Samples' expected power spectrum

 $\operatorname{Var}(I_N) \propto$

 \times

Integrand power spectrum

Fredo Durand [2011] Pillebuoe et al. [2015]

Variance in terms of power spectra

Samples' expected power spectrum

 $\operatorname{Var}(I_N) \propto$

Integrand power spectrum

Fredo Durand [2011] Pillebuoe et al. [2015]

Variance in terms of power spectra

Samples' expected power spectrum

 $\operatorname{Var}(I_N) \propto$

Integrand power spectrum

Fredo Durand [2011] Pillebuoe et al. [2015]

Variance in terms of power spectra

Samples' expected Integrand power spectrum power spectrum

Pillebuoe et al. [2015]

Variance in terms of power spectra

Samples' expectedIntegrandpower spectrumpower spectrum

Convergence rate depends on the low frequency region

Samples' expected Integrand power spectrum power spectrum

Samplers	Wors
Random	$\mathcal{O}($
Poisson Disk	$\mathcal{O}($
Jitter	$\mathcal{O}($
CCVT	$\mathcal{O}($

Jittered samples converges faster than Poisson Disk

Convergence rate depends on the low frequency region

Samples' expected Integrand power spectrum power spectrum

Samplers	Wor
Random	$\mathcal{O}($
Poisson Disk	$\mathcal{O}($
Jitter	$\mathcal{O}($
CCVT	$\mathcal{O}($

Isotropic Spectrum Poisson Disk

Initialize

Shuffle rows

Shuffle columns

N-rooks / Latin Hypercube

N-rooks Spectrum

N-rooks / Latin Hypercube

Spectrum

N-rooks / Latin Hypercube

N-rooks Spectrum

N-rooks / Latin Hypercube

N-rooks Spectrum

Jitter

Jitter Spectrum

N-rooks / Latin Hypercube

N-rooks Spectrum

Multi-Jitter

Multi-Jitter Spectrum

Chiu et al. [1993]

N-rooks / Latin Hypercube

N-rooks Spectrum

Multi-jitter

Multi-Jitter Spectrum

Chiu et al. [1993]

N-rooks / Latin Hypercube

N-rooks Spectrum

Multi-jitter

Multi-Jitter Spectrum

Chiu et al. [1993]

Sampling in Higher Dimensions

4D Sampling 2D 2D (u_1, v_1) (x_1, y_1) (u_2, v_2) (x_2, y_2) (u_3, v_3) (x_3, y_3) (u_4, v_4) (x_4, y_4) 4D (x_1, y_1, u_3, v_3) (x_2, y_2, u_1, v_1) (x_3, y_3, u_4, v_4) (x_4, y_4, u_2, v_2) 58

4D Sampling 2D 2D (u_1, v_1) (x_1, y_1) (u_2, v_2) (x_2, y_2) (u_3, v_3) (x_3, y_3) (u_4, v_4) (x_4, y_4) 4D (x_1, y_1, u_3, v_3) (x_2, y_2, u_1, v_1) (x_3, y_3, u_4, v_4) (x_4, y_4, u_2, v_2)

4D Sampling 2D 2D (u_1, v_1) (x_1, y_1) (u_2, v_2) $[x_2, y_2]$ (u_3, v_3) (x_3, y_3) (u_4, v_4) (x_4, y_4) 4D (x_1, y_1, u_3, v_3) (x_2, y_2, u_1, v_1) (x_3, y_3, u_4, v_4) (x_4, y_4, u_2, v_2) 60

4D Sampling Spectra along Projections

4D Sampling Spectra along Projections

62

4D Sampling Spectra along Projections

Power Spectrum

Power

Power

Power Spectrum

Power

Power

N-rooks spectrum

Pixel B

Non-Axis Aligned Integrand Spectra

 $\mathcal{P}_f(
u)$

Integrand Spectrum

Non-Axis Aligned Integrand Spectra

Multi-jittered Samples

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

 $\mathcal{P}_f(\nu)$

Sampling Spectrum

Integrand Spectrum

Shearing Multi-Jittered Samples

Sheared Samples

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

Sheared Spectrum

Integrand Spectrum

Singh and Jarosz [SIGGRAPH 2017]

Variance HeatmapWith Original SamplesMultiple images

Uncorrelated Multi-jittered

Variance Heatmap With Original Samples With Sheared Samples

Uncorrelated Multi-jittered

Blue noise samplers can have better convergence compared to stratified samples

Denser stratification can lead to anisotropic spectra which improves convergence

So far...

What properties we desire in a sampler?

Progressivity (Ahmed et al. [2017], Christensen et al. [2018])

High speed (millions of samples per second)

Extension to dimensions beyond 2D (Spoke dart throwing, Mitchell [2018])

non-progressive progressive

Low-Discrepancy Sampling

distributed (have low discrepancy).

Entire field of study called Quasi-Monte Carlo (QMC)

Deterministic sets of points specially crafted to be evenly

The Van der Corput Sequence

Radical Inverse Φ_b in base 2 Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
6	110	.011 = 3/8
7	111	.111 = 7/8

2	
)	
2	
2	
2	
/	

Halton and Hammersley Points

- Halton: Radical inverse with different base for each dimension:
 - $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.
- Incremental/progressive generation of samples
- **Hammersley**: Same as Halton, but first dimension is k/N:
- $\vec{x}_k = (k/N, \Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$ - Not incremental, need to know sample count, *N*, in advance

Why do we need to scramble?

Halton Projection (29, 31)

Scrambled Halton Projection (29, 31)

Scrambled Low-Discrepancy Sampling

Monte Carlo (16 jittered samples)

Can we combine blue noise properties with low discrepancy?

Low-Discrepancy Blue Noise

DBN Step

step spectru

-DBN BNOT

BNOT spectrum

90

Low-Discrepancy Blue Noise

Ahmed et al. [2016]

Low-Discrepancy Blue Noise

Log Number of samples

Ahmed et al. [2016]

Low-Discrepancy Blue Noise 2D-Projections

Sobol

Perrier et al. [2018]

Low-Discrepancy Blue Noise 2D-Projections

Sobol

Special scrambling

Perrier et al. [2018]

Low-Discrepancy Blue Noise 2D-Projections

Sobol

Special scrambling

Blue noise characteristics

Perrier et al. [2018]

Low-Discrepancy Blue Noise 2D Sobol Projections

Sobol sequence

Perrier et al. [2018]

Fourier

Blue noise sampling and beyond • • • • • • • ...

•

•

• •

•

• •

. . . .

• •

• •

•

Importance sampling

with correlated samples

Light Importance Sampling

Light IS vs BSDF IS

BSDF Importance Sampling

Singh et al. [2019]

Scene illuminated by area direct lighting

Underlying pixel functions

Singh et al. [2019]

Unoccluded pixels' convergence benefit from Light IS

Underlying pixel functions

Pixel P

Singh et al. [2019]

100

Occluded pixels (no improvement in convergence)

Singh et al. [2019]

Futuristic sampling target spectrum

Multi-jittered

Future design

Singh and Jarosz [2017]

Future research directions

Progressive samplers in higher dimensions

Adapting sample correlations w.r.t. the underlying integrand in high dimensions

Direct link between spatial and Fourier statistics needs further investigation

Acknowledgments

Some slides borrowed from Wojciech Jarosz and Kartic Subr

All the anonymous reviewers who helped shape this survey paper into its final form

