

Fourier Analysis of Correlated Monte Carlo Importance Sampling

Gurprit Singh Kartic Subr

Victor Ostromoukhov David Coeurjolly

Wojciech Jarosz

Monte Carlo Integration

Monte Carlo Integration

$$I = \int_0^1 f(\vec{x}) d\vec{x}$$

Monte Carlo Estimator

Monte Carlo Estimator

Random

$$S(\vec{x}) = \frac{1}{N} \sum_{k=1}^{N} \frac{\delta(\vec{x} - \vec{x}_k)}{p(\vec{x}_k)}$$

Random

$$\frac{1}{N} \sum_{k=1}^{N} \frac{\delta(\vec{x} - \vec{x}_k)}{p(\vec{x}_k)}$$

Random

Jitter

$$\frac{1}{N} \sum_{k=1}^{N} \frac{\delta(\vec{x} - \vec{x}_k)}{p(\vec{x}_k)}$$

$$\frac{1}{N} \sum_{k=1}^{N} \frac{\delta(\vec{x} - \vec{x}_k)}{p(\vec{x}_k)}$$

Random

Jitter

Poisson Disk

$$\frac{1}{N} \sum_{k=1}^{N} \frac{\delta(\vec{x} - \vec{x}_k)}{p(\vec{x}_k)}$$

Fourier Statistics: Power Spectrum

Random

Poisson Disk

Point Samples' Expected Power Spectra

Random

Jitter

Poisson Disk

Point Samples' Expected Power Spectra

Random

Jitter

Poisson Disk

Monte Carlo Estimation Variance for Stationary Samples

X

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

Random

 $\mathcal{P}_f(\nu)$

 $d\nu$

Fredo Durand [2011]

Subr & Kautz [2013]

)11] 13]

Monte Carlo Estimation Variance for Stationary Samples

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

Only valid for constant PDFs (uniformly distributed samples)

 $\mathcal{P}_f(\nu)$

 $d\nu$

Fredo Durand [2011]

Subr & Kautz [2013]

Real vs. Integer Frequencies

...,-0.2, 0.0, 0.2,,...

Integer freq.

Jittered

Expected power spectra

Random:

$$\langle \mathbf{S}_m^* \mathbf{S}_m \rangle = \begin{cases} 1 & m \\ \frac{1}{N} + \frac{N-1}{N} \operatorname{Sinc}(\pi m)^2 & m \end{cases}$$

Jittered: $\langle \mathbf{S}_n^*$ Fourier Analysis of Correlated Monte Carlo Importance Sampling:

Gurprit Singh^{1,4}

Kartic Subr²

$${}_{m}^{*}\mathbf{S}_{m}\rangle = \frac{1}{N}\left(1 - \operatorname{Sinc}\left(\frac{\pi m}{N}\right)^{2}\right) + \operatorname{Sin}\left(\frac{\pi m}{N}\right)^{2}\right)$$

Wojciech Jarosz⁴ brücken. ²University of Edinburgh, UK, ³Université de Lyon / CNRS, France, ⁴Dartmouth College, USA

Monte Carlo Estimation Variance for Random Samples

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

Only valid for constant PDFs (uniformly distributed samples)

Finite sampling domain is not properly handled

 $\mathcal{P}_f(\nu)$

 $d\nu$

Fredo Durand [2011]

Subr & Kautz [2013]

Pilleboue et al. [2015]

Fourier series based Variance Formulation

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

Only valid for constant PDFs (uniformly distributed samples)

Finite sampling domain is not properly handled

 $\mathcal{P}_f(\nu)$

Fourier series based Variance Formulation

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

Stationarity can imposed using homogenization or Cranley-Patterson rotation for all samplers Pilleboue et al. [2015]

Only valid for constant PDFs (uniformly distributed samples)

Finite sampling domain is not properly handled

 $\mathcal{P}_f(\nu)$

Homogenization or Cranley-Patterson rotation

Homogenization or Cranley-Patterson rotation

Homogenization or Cranley-Patterson rotation

Homogenization affect Convergence

No Homogenization: Strata alignment helps

Log Variance

Strata-alignment affects Convergence

Homogenization Destroys Good Correlations

Fourier series based Variance Formulation

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

Only valid for constant PDFs (uniformly distribute samples)

Finite sampling domain is not properly handled

Homogenization could destroy good correlations

 $\mathcal{P}_f(\nu)$

Generalized Variance Formulation based on Fourier Series

Generalized Variance Formulation

 $\operatorname{Var}(I_N) = I^2 \operatorname{Var}(\mathbf{S}_0) + \sum \mathbf{f}_m^* \mathbf{f}_m \langle \mathbf{S}_m^* \mathbf{S}_m \rangle + \sum \sum \mathbf{f}_m^* \mathbf{f}_l \langle \mathbf{S}_m^* \mathbf{S}_l \rangle$ $m{\in}{f Z} \hspace{0.1cm} \substack{l{\in}{\mathbb Z} \ l{
eq}m}$ $\substack{m\in\mathbb{Z}\medskip}{m
eq 0}$ DC component Real coeffs coeffs ag

Third term

Variance Formulation: For Homogenized Samples

 $\operatorname{Var}(I_N) = \sum \mathbf{f}_m^* \mathbf{f}_m \langle \mathbf{S}_m^* \mathbf{S}_m \rangle$ $\substack{m\in\mathbb{Z}\\m
eq 0}$

Generalized Variance Formulation

$m \in \mathbb{Z} \ m eq 0$

Third term

 $\operatorname{Var}(I_N) = I^2 \operatorname{Var}(\mathbf{S}_0) + \sum \mathbf{f}_m^* \mathbf{f}_m \langle \mathbf{S}_m^* \mathbf{S}_m \rangle + \sum \sum \mathbf{f}_m^* \mathbf{f}_l \langle \mathbf{S}_m^* \mathbf{S}_l \rangle$ $m{\in}{f Z}$ $l{\in}{\Bbb Z}$ $l{
eq}m$, Real coeffs coeffs ag

Generalized Variance Formulation

$m \in \mathbb{Z} \ m eq 0$

Third term

 $\operatorname{Var}(I_N) = I^2 \operatorname{Var}(\mathbf{S}_0) + \sum \mathbf{f}_m^* \mathbf{f}_m \langle \mathbf{S}_m^* \mathbf{S}_m \rangle + \sum \sum \mathbf{f}_m^* \mathbf{f}_l \langle \mathbf{S}_m^* \mathbf{S}_l \rangle$ $m{\in}{f Z}$ $\substack{l\in{\mathbb Z}\l
eq m}$ Real coeffs coeffs ag

Covariance Matrix Form

 $I^2 \operatorname{Var}(\mathbf{S}_0)$

$\mathbf{f}_m^* \mathbf{f}_l \left< \mathbf{S}_m^* \mathbf{S}_l \right>$

$\mathbf{f}_m^*\mathbf{f}_l\left<\mathbf{S}_m^*\mathbf{S}_l ight>$

 $\mathbf{f}_m^*\mathbf{f}_m\langle \mathbf{S}_m^*\mathbf{S}_m
angle$

Generalized Variance Formulation

$m \in \mathbb{Z} \ m eq 0$

Third term

 $\operatorname{Var}(I_N) = I^2 \operatorname{Var}(\mathbf{S}_0) + \sum \mathbf{f}_m^* \mathbf{f}_m \langle \mathbf{S}_m^* \mathbf{S}_m \rangle + \sum \sum \mathbf{f}_m^* \mathbf{f}_l \langle \mathbf{S}_m^* \mathbf{S}_l \rangle$ $m{\in}{f Z}$ $\substack{l\in{\mathbb Z}\l
eq m}$ Real coeffs coeffs ag
Generalized Variance Formulation

 $\operatorname{Var}(I_N) = I^2 \operatorname{Var}(\mathbf{S}_0) + \sum \mathbf{f}_m^* \mathbf{f}_m \langle \mathbf{S}_m^* \mathbf{S}_m \rangle + \sum \sum \mathbf{f}_m^* \mathbf{f}_l \langle \mathbf{S}_m^* \mathbf{S}_l \rangle$ $m \in \mathbb{Z}$ $l \in \mathbb{Z}$ $m \in \mathbb{Z}$ $m \neq 0$ $l \neq m$

Valid for non-uniform PDFs (importance samples)

No Homogenization (CPr) performed

Finite sampling domain is properly handled

Third term

Fourier Analysis of Correlated Monte Carlo Importance Sampling:

Third Term is Crucial

Generalized Variance Formulation: Third Term Crucial

$$\operatorname{Var}(I_N) = I^2 \operatorname{Var}(\mathbf{S}_0) + \sum_{\substack{m \in \mathbb{Z} \\ m \neq 0}} \mathbf{f}_n$$

 $\mathbf{f}_m^* \mathbf{f}_m \langle \mathbf{S}_m^* \mathbf{S}_m
angle + \sum_{m \in \mathbf{Z}} \sum_{l \in \mathbb{Z}} \mathbf{f}_m^* \mathbf{f}_l \langle \mathbf{S}_m^* \mathbf{S}_l
angle$ $l \neq m$ coeffs Real coeffs - when samples and integrand have correlations - during importance sampling ag

First term cannot be ignored for IS variance prediction Third term allows correct prediction of variance:

Third term

Generalized Variance Formulation: Third Term Crucial

Second term is always positive

For constant PDF, first term is zero, therefore third term is negative and reduces variance

With IS, both the first and the third term reduces variance

Third term

Third term is difficult to analyze

Third Term: Encodes phase

$\langle {f S}_m^* {f S}_l angle$ shift=0.15

42

Third Term: Encodes phase

Ramamoorthi et al.[2012]

First stratum shift position

Strata shifting affects convergence

First stratum shift position

Third Term: Encodes phase

Ramamoorthi et al.[2012]

Third Term: Dimensionality grows fast

Third term

Correlated Importance Sampling affects convergence rate

Direct Illumination Integral

BSDF PDF Sampling

BSDF IS

Veach Scene: Multiple Importance Sampling

Reference image N = 1024 spp

Light importance sampling N = 4 spp

BSDF importance sampling

N = 4 spp

Reference image N = 1024 spp

Light importance sampling N = 4 spp

BSDF importance sampling

N = 4 spp

For multiple importance sampling (MIS), convergence is determined by the BSDF sampling strategy.

After Toroidal wrapping Homogenization (CPr)

Original

Mirrored

Integrand Mirroring

Homogenization (CPr) After Toroidal wrapping

Integrand Mirroring

Sampling Integrand Mirroring

Mirror-random

Original

59

Sampling Integrand Mirroring

Mirror-random

Original

Sampling Integrand Mirroring

Mirror-random

Original

Mirror-uniform

61

Convergence: Homogenized not good

Original

Mirror-random

Convergence: No homogenized good

Original

Mirror-random

Convergence: Mirroring variance convergence

Original

Mirror-random

Convergence: Mirroring variance convergence

Original

Mirror-random

Convergence: Take away

Original

Mirror-random

Mirror-uniform

Homogenization introduces boundary discontinuities

Integrand Mirroring helps avoid these discontinuities

But, Integrand mirroring quadruples the sampling domain in 2D

Third term is crucial and must not be missed

- consider correlations within samples w.r.t the integrand

The formulation handles Importance Sampling

Difficult to gain insights in 2D (and beyond) due to high-dimensional nature of the third term.

Practical side

In **MIS**, the worst of the two strategies would determine the overall convergence rate.

In environment map sampling, simply importance sampling w.r.t. the gray channel introduces discontinuities. IS all the channels.

How can we leverage more insights from this formulation?

How we can use other statistical tools to represent variance?

Can we do better than traditional Importance Sampling?

Integrand space

Random number space

Future Directions

- PCF is there but what else?

How can we leverage more insights from this formulation?

How we can use other statistical tools to represent variance?

Can we do better than traditional Importance Sampling?

Integrand space

Random number space

Future Directions

- PCF is there but what else?
- e.g., more for strata alignment

Thank you for your attention!

Questions ?

Power Spectrum of Importance Samples Power 2 3 2 3 Frequency Frequency vmmm. 0 L 0 0.8 3.2 1.6 2.4 2 3

72