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Supplementary material A: Derivations of results
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In this document, we present detailed derivations
for the results presented in the paper (boxed equations
here).

1. Analysis of importance sampling

1.1. Exact variance of importance sampling

The primary importance sampling estimator is µ̃is,1 =
f(X)/g(X), X ∼ g(x) and the corresponding sec-
ondary estimator is µ̃is,N = 1

N

∑
f(Xi)/g(Xi), Xi ∼

g(x). These estimators are unbiased and the extent
of variance reduction depends critically on judicious
choice of the importance function. Writing α(x) =
1/g(x), the definition of variance of the primary im-
portance sampling estimator is

V (µ̃is,1) =

∫
D

f2(x)α(x) dx − I2 (1)

The Fourier transform preserves inner products, and
since the Fourier transform of the rhs of eq. 1 could
be written in two ways:

V (µ̃is,1) =

∫ (
f̂Π ⊗ f̂Π

)
(ω) α̂(ω) dω −

(
f̂Π(0)

)2

(2)

V (µ̃is,1) =

∫ (
f̂Π ⊗ α̂

)
(ω) f̂Π(ω) dω −

(
f̂Π(0)

)2

(3)

respectively. In either case, choosing α̂(ω) = δ(ω) re-
sults in a variance proportional to that of the inte-
grand. These equations provide different insight into
the choice of importance function for variance reduc-
tion. Eq. 2 suggests that ideally, g(x) = 1/α(x) should
be chosen so that α̂(ω) contains all its energy at fre-
quencies where the square of the integrand has no en-
ergy. Eq. 3, on the other hand implies that the ideal
situation is when (f̂Π ⊗ α̂)(ω) = δ(ω), or that the
weighting function warps the integrand into a con-
stant.

Discussion: The main shortcoming of this analysis is
its dependence on the phase of the integrand for exact
prediction of variance. This is not surprising, since the

variance due to IS is not shift-invariant. In fact, the
benefit of IS hinges on deliberate correlation between
the importance function and integrand (which trans-
lates to phase in the Fourier analysis). Although this
equation is not of practical value unless some informa-
tion is available about the phase of the integrand, we
derive an upper bound that is easy to evaluate.

1.2. Multiple importance sampling

A common strategy in rendering, when the integrand
is a product of two or more terms, is multiple impor-
tance sampling (MIS). Rather than sampling the prod-
uct, MIS samples from the average of the distributions.
We show that, while this is mathematically equiva-
lent to sampling from the average, the two strategies
are statistically different. estimator to that of an im-
portance sampling estimator which uses the averaged
importance functions. First we will compare the vari-
ance of the MIS estimator with that of the average
distribution IS estimator, using just two importance
functions. Later, we provide the general result.

The integral I could be expressed mathematically
as either∫
D

f(x) dx =

∫
D

f(x)

ḡ(x)
ḡ(x) dx or as (4)

∫
D

f(x) dx =

∫
D

f(x)

2ḡ(x)
g1(x) dx+

∫
D

f(x)

2ḡ(x)
g2(x) dx.

where ḡ(x) = (g1(x) + g2(x))/2. While both expres-
sions are mathematically equal, they lead to unbiased
estimators that have different statistical behaviour
(variances). The first, µ̃avg,is, simply importance sam-
ples the averaged pdf ḡ(x). The second, µ̃mis, sam-
ples independently from g1(x) and g2(x) and combines
them, as though they were drawn from the average
distribution.

Estimating each of the two integrals on the rhs using
N/2 samples yields the N -sample MIS estimator (with

c© 2014 The Author(s)

This is the author’s version of the work. It is posted here by permission of

The Eurographics Association for your personal use. Not for redistribution.

The definitive version is available at http://diglib.eg.org/.

http://diglib.eg.org/


K.Subr & D.Nowrouzezahrai & W.Jarosz & K.Mitchell & J.Kautz / Supplemental A

balance heuristic)

µ̃mis,N =
2

N

N/2∑
i=1

f(X1i)

2ḡ(X1i)
+

N/2∑
i=1

f(X2i)

2ḡ(X2i)

 , (5)

where X1i ∼ g1(x) and X2i ∼ g2(x). The main dis-
tinction of this estimator from the two-sample impor-
tance sampling estimator (from the average distribu-
tion ḡ(x)) is that in the latter X1 and X2 are both
drawn according to ḡ(x). The variance of the MIS es-
timator, from first principles, is

V (µ̃mis,N) =
1

2N

(
2

〈
f2(x)

ḡ(x)2

〉
ḡ

− 4I2 + 2Iḡ1Iḡ2

)

= V (µ̃avg,isN) + 2
Iḡ1Iḡ2 − I2

2N
(6)

where Iḡi =
〈
f(x)
ḡ(x)

〉
gi

. Assume that Iḡ1Iḡ2 − I2 > 0.

Since 2I = Iḡ1 +Iḡ2 (by definition), we arrive at (Iḡ1−
Iḡ2)2 < 0, proving (by contradiction) that V (µ̃mis,2) ≤
V (µ̃avg,is2). The equality holds when g1(x) = g2(x).
In this case, of two sampling distributions, the MIS
estimator (with balance heuristic) has lower variance
than the averaged pdf estimator.

In the general case, with Ng different importance
functions (Ng = 2 for the above case), the variance of
the MIS estimator is

V (µ̃mis,N) = V (µ̃avg,isN) +
κ

NNg
(7)

where κ =
Ng∑
j=1

Ng∑
j=1

IḡiIḡj −Ng(Ng − 1)I2.

1.3. Summary of variance reduction and
convergence

Our derivations for variance were for the respective
primary estimators. eg. µ̃is,1. If the samples are inde-
pendent, the variance of the corresponding secondary
estimators is obtained as

V (µ̃is,N) =
1

N2

N∑
i=1

V (µ̃is,1) =
V (µ̃is,1)

N
. (8)

In summary, while importance sampling can provide
significant benefit, this reduction is a constant factor
and the convergence of the error of the estimator re-
mains O(N−0.5).

2. Combining with jittered sampling

We formally analyse the variance of jittered impor-
tance sampling. We discuss the benefit of jittered an-
tithetic importance sampling. Recall that, in jittered
sampling, the domain D is partititioned into N strata

so that D =
⋃
Di, 1 < i < N with Di∩Dj = ∅, ∀i 6= j

with proportional (equal) allocation.

2.1. Jittered importance sampling

Consider a single sample from each stratum, Xi ∼
g(x), x ∈ Di, where g(x) is a pdf defined on the entire
domain D. Since the integral of the importance func-
tion is potentially different over (unequal) strata, to
avoid bias,

µ̃jis,N =

N∑
i=1

βi
f(Xi)

g(Xi)
, where βi =

∫
Di

g(x) dx.

(9)
In image synthesis, it is common to pass multi-
dimensional jittered samples through the inverse cdfs
of the importance function [PH10, Jak10] then βi =
1/N . Then the variance of µ̃jis,N is

V (µ̃jis,N) =
1

N2

N∑
i=1

∫
Di

f2(x)

g(x)
dx− I2

i



=
V (µ̃is,N)

N
+

N∑
i=1

N∑
j 6=i

IiIj

N2
(10)

where Ii is the integral of f(x) within the domain Di.

2.2. Jittered multiple-importance sampling

First consider stratification of an N -sample MIS esti-
mator with two importance functions. The complica-
tion introduced by stratification of the MIS estimator
is that the strata are different for each importance
function. Let D1

i and D2
i denote the strata induced by

the importance functions g1(x) and g2(x) respectively.
The formulation that leads to the N -sample jittered
MIS estimator is the decomposition of the integral into
integrals over the strata:

I =

N/2∑
i=1

∫
D1

i

f(x)

2ḡ(x)
g1(x) dx+

∫
D2

i

f(x)

2ḡ(x)
g2(x) dx

 .

Note the different strata in the rhs. Also, since the im-
portance functions integrate to 2/N within each stra-
tum, there is a multiplication by this factor. The jit-
tered MIS estimator (with balance heuristic) is the
sum of the primary estimators in each of the strata

µ̃jmis,N = 2
N

(
N/2∑
i=1

f(X1i)
2ḡ(X1i)

+
N/2∑
i=1

f(X2i)
2ḡ(X2i)

)
, (11)

where Xki∼gk(x), x ∈ Dki , k = 1, 2. Its variance is

4

N2

N/2∑
i=1

V

(
f(X1i)

2ḡ(X1i)

)
g1

+

N/2∑
i=1

V

(
f(X2i)

2ḡ(X2i)

)
g2

. (12)
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The first variance term in this expression can be writ-
ten as

∫
D

f̆2(x)g1(x) dx−

∫
D

f̆(x)g1(x) dx

2

+ ψ1(13)

where f̆(x) = f(x)/(2ḡ(x)) and the remainder term is

ψk =

i<N/2∑
i=1

j<N/2∑
j 6=i

∫
Dk

i

f̆(x)gk(x) dx

∫
Dk

j

f̆(x)gk(x) dx.

Substituting this (similarly the second term), in eq. 12
yields

V (µ̃jmis,N) = 2
N

V (µ̃avg,isN) + 4
N2

(
η12 + ψ1 + ψ2 − I2

2

)
where ηij =

〈
f̆(X)

〉
gi

〈
f̆(X)

〉
gj

. Generalizing to Ng

distributions, the variance of the jittered MIS estima-
tor is

V (µ̃jmis,N) =
Ng
N

V (µ̃avg,isN) +
N2
g

N2
ψ (14)

where ψ =

i< N
Ng∑

i=1

j< N
Ng∑

j 6=i
ηij +

i<Ng∑
i=1

ψi − Ng−1

Ng
I2

 is

the error term. Note that ψi is now defined so its sum-
mations run up to N/Ng instead of N/2 as defined
earlier. As with importance sampling, we have proved
that jittered sampling improves the convergence of the
MIS estimator from O(N−1/2) to O(N−1), at the cost
of an additional error term.

3. A note on variance in the Fourier domain

The error of a single estimate, expressed in the Fourier
domain, is

∆ = f̂Π(0) −
∫

Ŝ(ω) f̂Π(−ω) dω. (15)

Note that this error is a random variable since it
is a function of S(x). Bias and variance were de-
rived [SK13] as the expectation and variance of this
error.

3.1. Upper bound for the variance

The equation for the variance is incorrect in previous
work [SK13]. We show that their result is an upper-
bound. Applying the variance operator to the error
in eq. 15), , substituting f̂Π(ω) = |f̂(ω)| e−ıΦf and

simplifying,

V (∆) = |f̂(ω)|2
∫

V
(
Ŝre(ω)

)
cos2 Φf dω

+ |f̂(ω)|2
∫

V
(
Ŝre(ω)

)
sin2 Φf dω

≤
∫
|f̂Π(−ω)|2 V

(
Ŝ(ω)

)
dω. (16)

where we use the shorthand notation Ŝre and Ŝim for
the real and imaginary components of Ŝ(ω) respec-
tively.

The sampling function for the primary importance
sampling estimator is S(x) = α(X)δ(x − X), X ∼
g(x), where g(x) is a pdf and α(x) = 1/g(x). There-
fore, the Fourier transformed sampling function is
Ŝ(ω) = α(Xi) e−ı2πωXi . Adding the variances of the
real and imaginary components of Ŝ(ω), simplifying
and substituting in eq. 16, we obtain the upper bound
for the primary importance sampling estimator as

V (µ̃is,1) ≤
∫
|f̂Π(−ω)|2 dω

∫
D

1

g(x)
dx (17)

3.2. Biased importance sampling

When samples for numerical integration are dis-
tributed non-uniformly in the domain, the estimates
need to be weighted by the reciprocal of the normal-
ized probability density to yield unbiased results. This
is often expensive and normalization is sometimes a
hurdle. Here, we analyze the estimator that results
from simply taking the mean of the unweighted pri-
mary estimates.

Consider a single sample S(X) = δ(x − X) where
X ∼ g(x). Then, Ŝ(ω) = e−2πıωX, and the expected
spectrum is〈

Ŝ(ω)
〉
g

=

∫
e−2πıωx g(x) dx = ĝ(ω).

This expectation remains the same for N iid samples.
So, the expected Fourier spectrum of a sampling func-
tion is the Fourier spectrum of the probability distri-
bution function of its samples.

A biased, but convenient, primary importance sam-
pling estimator µ̃bis is simply µ̃bis,1 = f(X), X ∼
g(x). The bias of this estimator is obtained by apply-
ing the expectation operator on either side of eq. 15

and substituting
〈
Ŝ(ω)

〉
= ĝ(ω):

〈∆(µ̃bis)〉 = f̂Π(0) −
∫
ĝ(ω) f̂Π(−ω) dω. (18)

That is, to keep bias low, the Fourier spectrum of the
pdf must be complementary to the integrand. An up-
per bound for the bias is simply the inner product of
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the amplitude spectrum of the sampling distribution
and the amplitude spectrum of the integrand.

The exact variance of this biased estimator is

V (µ̃bis,1)=

∫
D

f2(x)g(x) dx−

∫
D

f(x)g(x) dx

2

. (19)

An upper bound can be derived from eq. 16, for which

we need to know V
(
Ŝ(ω)

)
g
. But,

V
(

e−2πıωX
)
g

= V (cos(2πıωX))g + V (sin(2πıωX))g ≤ 1.

Substituting this in eq. 16, we obtain an upper bound
for the variance of this biased estimator as

V (µ̃bis,1) ≤
∫
|f̂Π(−ω)|2 dω . (20)

Comparing this to the standard importance sam-
pling estimator, we see that this upper bound is lower
if
∫
D

1
g(x)

dx > 1.
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