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Motivation	for	analysis

• assess,	compare	existing	methods	for	Monte	Carlo	rendering

• provide	insight,	inspire	improvement



[Subr	et	al	2014]
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Course	structure

Preliminaries Sampling
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OpenGL
[Stachowiak 2010]	

Raytracing
[Whitted 1980]	

Rendering	=	geometry	+	radiometry

camera	obscura

geometry/projection
for pin-hole model known since 400BC

radiometrically accurate simulation
is important for photorealism

[photo	credit:	videomaker.com	June	2015]
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Radiometric	fidelity	improves	photorealism

Pedro	Campos

manually	paintedphotograph

Colourbox.com

computer	generated



Simulating	the	physics	of	light	is	challenging

lenses
defocus

materials

light,	media

exposure	time



Light	transport
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Image	?

virtual	
light	emitter

virtual	
camera

virtual	scene:	geometry	+	materials

exitant radiance

estimate	incident	
radiance	at	all	pixels
on	the	virtual	sensor

W	
m2 Sr



Each	reflection	is	modeled	by	an	integration
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Recursive	integrals
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Recursive	integrals
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Light	transport:	recursive	integral	equation
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radiance

integral	operatoremitted	radiance

Light	Transport	Operators	[Arvo 94]
The	Rendering	equation	[Kajiya 86]



L is	a	sum	of	high-dimensional	integrals
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One	bounce Three	bounces

radiance

integral	operator
emitted	radiance



Reconstruction	and	integration	in	rendering



Reconstruction:	estimate	image	samples

X

Y
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Y
ground	truth	(high-res)	image reconstruct	on	(low-res)	pixel	grid



Naïve	method:	sample	image	at	grid	locations
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sampling copy



Naïve	method:	when	sampling	is	increased

X

Y
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Y
ground	truth	(high-res)	image reconstruct	on	(low-res)	pixel	grid

aliasing



Antialiasing:	assuming	`square’	pixels
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multi-sampling average



Antialiasing	is	costly	due	to	multi-sampling
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Y

X
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Antialiasing	using	general	reconstruction	filter
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multi-sampling weighted
average



Rendering:	Reconstructing	integrals

multi-sampling
for	reconstruction

deterministic



Rendering:	Reconstructing	integrals

multi-sampling
for	reconstruction

multi-path	sampling
for	integration
estimate	per	sampled	pixel

path	1

path	2

path	3

estimate
(probabilistic	for	Monte	Carlo)



Function-space	view:	Sampling	in	path	space
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n-dimensional	path	space

light

camera

light	paths

each	sample	represents	a	path
and	has	an	associated	radiance	value



Sample	locations	shown	in	path-pixel	space
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Rendering	=	integration	+	reconstruction



Frequency	analysis	of	lightfields in	rendering
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local	variation/
anisotropy? use	in	regression/reconstruction

local	variation	of	integrand reconstruction	filter

[Ramamoorthi et	al.	04]
[Durand	et	al.	05]
[Soler et	al.	2009]
[Overbeck et	al.	2009]
[Egan	et	al.	2009,	2011]
[Ramamoorthi et	al.	2012]	



Freq.	analysis	of	MC	sampling:	This	course!
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local	variation/
anisotropy?

pixels	on	sensor[Durand	2011]
[Ramamoorthi et	al.	12]
[Subr	and	Kautz 2013]
[Pilleboue et	al.	2015]

Assessing	MSE,	bias,	variance	and	convergence	
of	Monte	Carlo	estimators	as	a	function	of	the	
Fourier	spectrum	of	the	sampling	function.
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Rendering	=	integration	+	reconstruction

Shiny	ball,	out	of	focusShiny	ball		in	motion

…
image	
location multi-dim	integral

Domain:	shutter	time	x aperture	area	x 1st bounce	x 2nd bounce
Integrand:	radiance	(W	m-2 Sr-1)

…

…
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The	problem	in	1D

0
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the	sampling	function

integrand
sampling	function

sampled	integrand

multiply
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sampling	function	decides	integration	
quality

integrand
sampled	function

multiply
sampling	function
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strategies	to	improve	estimators
1.	modify	weights 2.	modify	locations

eg.	quadrature	rules,	importance	sampling,	jittered	sampling,	etc.
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insight	into	impact:	Fourier	domain
1.	modify	weights 2.	modify	locations

analyse sampling	function	in	Fourier	domain

43



Fourier	analysis:	origin	and	intuition

• Eigenfunction of	the	differential	operator

• Turns	differential	equations	into	algebraic	equations

scaling



Fourier	analysis:	origin	and	intuition

• Eigenfunction of	the	differential	operator

• Turns	differential	equations	into	algebraic	equations

• if

scaling

projection



The	Fourier	domain

Image	credit:	Wikipedia



The	continuous	Fourier	transform

primal
(space,	time,	etc.)

domain

Fourier
domain



The	Fourier	transform:	`frequency’	domain

projection	onto	sin	and	cos

frequencyfrequency
domain



A	single	sample:	

frequency

amplitude	=	1
phase



Fourier	series:	replace	integral	with	sum

approximating	a	square	wave	using	4	sinusoids



frequency

amplitude	(sampling	spectrum)

phase		(sampling	spectrum)
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Fourier	spectrum	of	the	sampling	function

sampling	function



sampling	function	=	sum	of	Dirac	deltas

+

+

+



In	the	Fourier	domain	…

primal Fourier

Dirac	delta
Fourier	transform

Frequency

Real

Imaginary

Complex	plane

amplitude
phase



Review:	in	the	Fourier	domain	…

primal Fourier

Dirac	delta
Fourier	transform
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amplitude	spectrum	is	not	flat
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sample	contributions	at	a	given	frequency
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the	sampling	spectrum	at	a	given	frequency
sampling	spectrum

Complex	plane
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the	sampling	spectrum	at	a	given	frequency
sampling	spectrum	realizations

expected	centroid centroid variancegiven	frequency



expected	sampling	spectrum	and	variance

expected	amplitude	of	sampling	spectrum variance	of	sampling	spectrum

frequency

DC



1.	modify	weights

a.	Distribution	eg.	importance	sampling)

2.	modify	locations

eg.	quadrature rules

sampling	function	in	the	Fourier	domain

frequency

amplitude	(sampling	spectrum)

phase		(sampling	spectrum)
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Abstracting	sampling	strategy	using	spectra



stochastic	sampling	&	instances	of	spectra

Sampler	
(Strategy	1)

Fourier
transform

draw

realizations	of	sampling	functions realizations	of	sampling	spectra
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assessing	estimators	using	sampling	spectra

Sampler	
(Strategy	1)

Sampler
(Strategy	2)

Instances	of	sampling	functions Instances	of	sampling	spectra

Which	strategy	is	better?	Metric?
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accuracy	(bias)	and	precision	(variance)

estimated	value	(bins)
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reference

Estimator		2

Estimator		1

Estimator	2	is	unbiased	but	has	higher	variance
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Variance	and	bias

High	variance High	bias

predict	as	a	function	of	
sampling	strategy	and	

integrand
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Monte	Carlo	integration:	summary	and	error

• Error
• MSE,	bias,	variance
• convergence	rate:	error	as	N	is	increased



Bird’s-eye	view	of	analysis

• Rewrite	MC	estimator	in	terms	of	sampling	function

where	
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Bird’s-eye	view	of	analysis

• Rewrite	MC	estimator	in	terms	of	sampling	function

• Fourier	transform	preserves	inner	products,	so

• Analyse	MSE	error,	bias	and	convergence	in	terms	of	

where	
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light	transport	&	integration	 high-dimensional	sampling sampling	function	&	spectrum
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Next

light	transport	&	integration	 high-dimensional	sampling sampling	function	&	spectrum

f
S average

error	prediction

GurpritWojciech



Local	variation	is	useful	for	adaptive	sampling
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