FOURIER ANALYSIS OF NUMERICAL INTEGRATION IN MONTE CARLO RENDERING

Kartic Subr Heriot Watt University, Edinburgh

Gurprit Singh Dartmouth College Wojciech Jarosz Dartmouth College

DARTMOUTH VISUAL COMPUTING LAB

Motivation for analysis

- assess, compare existing methods for Monte Carlo rendering
- provide insight, inspire improvement

[Subr et al 2014]

Error vs cost plots of rendering methods

Error vs cost plots of rendering methods

Error vs cost plots of rendering methods

Course structure

Rendering = geometry + radiometry

geometry/projection

for pin-hole model known since 400BC

radiometrically accurate simulation is important for photorealism

[photo credit: videomaker.com June 2015]

Rendering = geometry + radiometry

geometry/projection

for pin-hole model known since 400BC

radiometrically accurate simulation is important for photorealism

[photo credit: videomaker.com June 2015]

Radiometric fidelity improves photorealism

computer generated

manually painted

Pedro Campos

photograph

Colourbox.com

Simulating the physics of light is challenging

defocus

exposure time

materials

virtual camera

estimate incident radiance at all pixels on the virtual sensor

Each reflection is modeled by an integration

radiance:
$$L_o = \int_{\mathcal{H}^2} L_i \rho(x, \omega_i, \omega_o) d\mu(\omega_i)$$

Each reflection is modeled by an integration

radiance:
$$L_o = \int_{\mathcal{H}^2} L_i \ \rho(x, \omega_i, \omega_o) \ \mathrm{d}\mu(\omega_i)$$

Each reflection is modeled by an integration

Recursive integrals

Recursive integrals

Light transport: recursive integral equation

$$\begin{array}{c} & \swarrow \\ & \swarrow \\ L = E + KL \\ & | & | \\ & \\ mitted \ radiance & integral \ operator \end{array}$$

The Rendering equation [Kajiya 86] Light Transport Operators [Arvo 94]

L is a sum of high-dimensional integrals

Reconstruction and integration in rendering

Reconstruction: estimate image samples

Naïve method: sample image at grid locations

Naïve method: when sampling is increased

Antialiasing: assuming `square' pixels

Antialiasing is costly due to multi-sampling

Antialiasing using general reconstruction filter

Rendering: Reconstructing integrals

Rendering: Reconstructing integrals

Function-space view: Sampling in path space

each sample represents a path and has an associated radiance value

n-dimensional path space

Sample locations shown in path-pixel space

Rendering = integration + reconstruction

Frequency analysis of lightfields in rendering

[Ramamoorthi et al. 04] [Durand et al. 05] [Soler et al. 2009] [Overbeck et al. 2009] [Egan et al. 2009, 2011] [Ramamoorthi et al. 2012]

Assessing MSE, bias, variance and convergence of Monte Carlo estimators as a function of the Fourier spectrum of the sampling function.

pixels on sensor

Assessing MSE, bias, variance and convergence of Monte Carlo estimators as a function of the Fourier spectrum of the sampling function.

Assessing MSE, bias, variance and convergence of Monte Carlo estimators as a function of the Fourier spectrum of the sampling function.

Assessing MSE, bias, variance and convergence of Monte Carlo estimators as a function of the Fourier spectrum of the sampling function.

Freq. analysis of MC sampling: This course!

Assessing MSE, bias, variance and convergence of Monte Carlo estimators as a function of the Fourier spectrum of the sampling function.

[Durand 2011] [Ramamoorthi et al. 12] [Subr and Kautz 2013] [Pilleboue et al. 2015]

Rendering = integration + reconstruction

Integrand: radiance (W m⁻² Sr⁻¹)

Domain: shutter time x aperture area x 1st bounce x 2nd bounce ...

The problem in 1D

the sampling function

sampling function decides integration quality

strategies to improve estimators

eg. quadrature rules, importance sampling, jittered sampling, etc.

insight into impact: Fourier domain

Fourier analysis: origin and intuition

• Eigenfunction of the differential operator

$$\frac{\mathrm{d}}{\mathrm{d}x}e^{\lambda x} = \frac{\lambda e^{\lambda x}}{\mathrm{scaling}}$$

• Turns differential equations into algebraic equations

Fourier analysis: origin and intuition

• Eigenfunction of the differential operator

$$\frac{\mathrm{d}}{\mathrm{d}x}e^{\lambda x} = \frac{\lambda e^{\lambda x}}{\mathrm{scaling}}$$

• Turns differential equations into algebraic equations

• if
$$f(x) = \sum_{i=1}^{N} e^{\lambda_i x}$$
, $\frac{\mathrm{d}}{\mathrm{d}x} f(x) = \sum_{i=1}^{N} \lambda_i e^{\lambda_i x}$

projection

The Fourier domain

Image credit: Wikipedia

The continuous Fourier transform

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i \omega x} dx$$
Fourier $-\infty$ primal
domain (space, time, etc.)
domain

The Fourier transform: `frequency' domain

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i\omega x} dx$$

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)\cos(2\pi\omega x)dx + i\int_{-\infty}^{\infty} f(x)\sin(2\pi\omega x)dx$$
frequency
domain
$$\int_{-\infty}^{\infty} f(x)\cos(2\pi\omega x)dx + i\int_{-\infty}^{\infty} f(x)\sin(2\pi\omega x)dx$$

projection onto sin and cos

A single sample:
$$f(x) = \delta(x - x_k)$$

$$\hat{f}(\omega) = \underline{e^{-\frac{2\pi i x_k \omega}{\text{phase}}}}$$

amplitude = 1

$$\hat{f}(\omega) = \cos(2\pi i x_k \omega) + i \sin(2\pi i x_k \omega)$$

Fourier series: replace integral with sum

approximating a square wave using 4 sinusoids

Fourier spectrum of the sampling function

amplitude (sampling spectrum)

phase (sampling spectrum)

$$\hat{S}(\omega) = \sum_{k=1}^{N} e^{-2\pi i x_k \omega}$$

 $S(x) = \sum_{k=1}^{N} \delta(x - x_k)$

CV

sampling function = sum of Dirac deltas

In the Fourier domain ...

Review: in the Fourier domain ...

amplitude spectrum is not flat

sample contributions at a given frequency

the sampling spectrum at a given frequency

the sampling spectrum at a given frequency

expected sampling spectrum and variance

Abstracting sampling strategy using spectra

stochastic sampling & instances of spectra

assessing estimators using sampling spectra

Which strategy is better? Metric?

accuracy (bias) and precision (variance)

Variance and bias

High variance

predict as a function of sampling strategy and integrand

High bias

Monte Carlo integration: summary and error

$$S(x) = \sum_{k=1}^{N} \delta(x - x_k), \quad x_k \sim [0, 1]$$

- Error
 - MSE, bias, variance
 - convergence rate: error as N is increased

Bird's-eye view of analysis

• Rewrite MC estimator in terms of sampling function

$$\frac{1}{N}\sum_{k=1}^{N}f(x_{k}) = \int_{0}^{1}f(x)S(x) \, \mathrm{d}x \quad \text{where} \quad S(x) = \frac{1}{N}\sum_{k=1}^{N}\delta(x-x_{k})$$

Bird's-eye view of analysis

• Rewrite MC estimator in terms of sampling function

$$\frac{1}{N}\sum_{k=1}^{N} f(x_k) = \int_{0}^{1} f(x)S(x) \, \mathrm{d}x \quad \text{where} \quad S(x) = \frac{1}{N}\sum_{k=1}^{N} \delta(x - x_k)$$

• Fourier transform preserves inner products, so

$$\int_{0}^{1} f(x)S(x) \, \mathrm{d}x = \int_{-\infty}^{\infty} \hat{f}(\omega)\hat{S}(-\omega) \, \mathrm{d}\omega$$

Bird's-eye view of analysis

Rewrite MC estimator in terms of sampling function

$$\frac{1}{N}\sum_{k=1}^{N} f(x_k) = \int_{0}^{1} f(x)S(x) \, \mathrm{d}x \quad \text{where} \quad S(x) = \frac{1}{N}\sum_{k=1}^{N} \delta(x - x_k)$$

• Fourier transform preserves inner products, so $\int_{0}^{1} f(x)S(x) \, dx = \int_{-\infty}^{\infty} \hat{f}(\omega)\hat{S}(-\omega) \, d\omega$

• Analyse MSE error, bias and convergence in terms of $\hat{S}(\omega)$

Summary

Summary

Local variation is useful for adaptive sampling

