Part 3: Formal Treatment of MSE, Bias and Variance

Frequency

Variance

Increasing Samples

Variance

Increasing Samples

Variance

Increasing Samples

Variance

Increasing Samples

Increasing Samples

Variance

Variance

Variance

Spatial Domain Spatia Domain Spatial Domain Spatial Domain Spatial Domain Spatial

Samples and function in Fourier Domain Spatial Domain Fourier Domain

▼ € ⊡

▼ € ⊡

Render the Possibilities

 $f(x) \mathbf{S}(x)$

 $f(x) \mathbf{S}(x)$

 $f(x) \mathbf{S}(x)$

 $f(x) \mathbf{S}(x)$

 $\hat{f}(\omega) \otimes \hat{\mathbf{S}}(\omega)$

 $f(x) \mathbf{S}(x)$

 $f(x) \mathbf{S}(x)$

 $f(x) \mathbf{S}(x)$

 $f(x) \mathbf{S}(x)$

 $f(x) \mathbf{S}(x)$

 $\hat{f}(\omega) \otimes \hat{\mathbf{S}}(\omega)$

 $f(x) \mathbf{S}(x)$

 $\hat{f}(\omega) \otimes \hat{\mathbf{S}}(\omega)$

Aliasing in Reconstruction

-

Aliasing in Reconstruction

-

Aliasing in Reconstruction

Aliasing (Reconstruction) vs. Error (Integration)

Aliasing (Reconstruction) vs. Error (Integration)

Fredo Durand [2011] Belcour et al. [2013]

Aliasing (Reconstruction) vs. Error (Integration)

Fredo Durand [2011] Belcour et al. [2013]

Integration in the Fourier Domain

Integration is the DC term in the Fourier Domain

Spatial Domain:

 $I = \int_D f(x) dx$

Integration is the DC term in the Fourier Domain

Spatial Domain:

Fourier Domain:

 $I = \int_D f(x) dx$

Integration is the DC term in the Fourier Domain

Spatial Domain:

Fourier Domain:

 $I = \int_D f(x) dx$

 $\hat{f}(0)$

 $\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$

$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$$

$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$$

$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$$

▼ € ⊑

$$ilde{\mu}_N = \int_D f(x) \mathbf{S}(x) \mathbf{S}(x) \mathbf{S}(x) \mathbf{S}(x) \mathbf{S}(x)$$

▼ € ⊑

$$\tilde{\mu}_{N} = \int_{D} f(x) \mathbf{S}(x) dx = \int_{\Omega} \hat{f}^{*}(\omega) \hat{\mathbf{S}}(\omega) d\omega$$
$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_{k})$$

Monte Carlo Estimator in Fourier Domain

 $ilde{\mu}_N = \int_D f(x) \mathbf{S}(x)$

 $\mathbf{S}(x) = \frac{1}{N}$

$$f_{N}(x) dx = \int_{\Omega} \hat{f}^{*}(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$\int_{N} \sum_{k=1}^{N} \delta(x - x_{k})$$

Monte Carlo Estimator in Fourier Domain

 $ilde{\mu}_N = \int_D f(x) \mathbf{S}(x)$

 $\mathbf{S}(x) = \frac{1}{N}$

$$\mathbf{x})dx = \int_{\Omega} \hat{f}^{*}(\omega)\hat{\mathbf{S}}(\omega)d\omega$$

$$\frac{1}{N}\sum_{k=1}^{N}\delta(x-x_{k})$$

Monte Carlo Estimator in Fourier Domain

$$\tilde{\mu}_{N} = \int_{D} f(x) \mathbf{S}(x) dx = \boxed{\int_{\Omega} \hat{f}^{*}(\omega) \hat{\mathbf{S}}(\omega) d\omega}$$
$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_{k})$$
$$\hat{\mathbf{S}}(\omega) = \frac{1}{N} \sum_{k=1}^{N} e^{-i2\pi\omega x_{k}}$$

How to Formulate Error in Fourier Domain ? $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

How to Formulate Error in Fourier Domain ? $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$

True Integral

 $I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$

True Integral

 $I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$

Monte Carlo Estimator

 $I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$

 $I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$

 $I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Fredo Durand [2011]

Error in Fourier Domain

$Error = Bias^2 + Variance$

• Bias

• Variance

• Bias: Expected value of the Error

• Variance

- Bias: Expected value of the Error $\langle I - \tilde{\mu}_N angle$

• Variance

• Bias: Expected value of the Error $\langle I - ilde{\mu}_N angle$

• Variance: Var(I -

$$\mu_N)$$

Subr and Kautz [2013]

Bias in the Monte Carlo Estimator

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Bias:

 $\langle I - ilde{\mu}_N
angle$

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Bias:

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(\mathbf{0}) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$ $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle d\omega$

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle d\omega$

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle \, d\omega$

To obtain an unbiased estimator:

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle \, d\omega$

$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) -$

To obtain an unbiased estimator:

$$-\int_{\Omega} \hat{f}^*(\omega) \left\langle \hat{\mathbf{S}}(\omega) \right\rangle d\omega$$

Subr and Kautz [2013]

$\langle \hat{\mathbf{S}}(\omega) \rangle = 0$ for frequencies other than zero

How to obtain $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$?

Complex form in Amplitude and Phase

$\langle \hat{\mathbf{S}}(\omega) \rangle = |\langle \hat{\mathbf{S}}(\omega) \rangle| e^{-\Phi(\langle \hat{\mathbf{S}}(\omega) \rangle)}$

Complex form in Amplitude and Phase

Amplitude $\langle \hat{\mathbf{S}}(\omega) \rangle = \left| \langle \hat{\mathbf{S}}(\omega) \rangle \right| e^{-\Phi(\langle \hat{\mathbf{S}}(\omega) \rangle)}$

Complex form in Amplitude and Phase

Pauly et al. [2000] Ramamoorthi et al. [2012]

Multiple realizations

 ∇

 ∇

$Error = Bias^2 + Variance$

in terms of variance

Homogenization allows representation of error only

- Homogenization allows representation of error only in terms of variance
- We can take any sampling pattern and homogenize it to make the Monte Carlo estimator unbiased.

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $\operatorname{Var}(I - \tilde{\mu}_N)$

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$ $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(\mathbf{0}) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(\mathbf{0}) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

$\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

where,

 $P_f(\omega) = |\hat{f}^*(\omega)|^2$ Power Spectrum

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$

 $\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega}$$

▼/ <u>€</u> |•

 $P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$

Subr and Kautz [2013]

Render the Possibilities
SIGGRAPH2016

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

This is a general form, both for homogenised as well as non-homogenised sampling patterns

Subr and Kautz [2013]

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega}$$

 $P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

For purely random samples:

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

For purely random samples:

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$$

where,

 $P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$

Fredo Durand [2011]

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

For purely random samples: $\langle \hat{\mathbf{S}}(\omega) \rangle =$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

where,

 $P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$

 $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ Ω

Fredo Durand [2011]

Homogenizing any sampling pattern makes $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$

Homogenizing any sampling pattern makes $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Sigma}$$

where,

 $P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$

 $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ Ω

Pilleboue et al. [2015]

Render the Possibilities **SIGGRAPH**2016

 $\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

 \mathbf{P} $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ Ω

Variance in terms of n-dimensional Power Spectra

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

1 $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ \sum

Render the Possibilities **SIGGRAPH**2016

Variance in terms of n-dimensional Power Spectra

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega}$$

1 $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ \sum

Render the Possibilities **SIGGRAPH**2016

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega}$$

 \mathbf{P} $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ Ω

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

In polar coordinates:

 \mathbf{P} $P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$ Ω

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

In polar coordinates:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^0$$

 $\int_{\Omega} P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$ Ω

 $\int_{S^{d-1}} P_f(\rho \mathbf{n}) \left\langle P_S(\rho \mathbf{n}) \right\rangle d\mathbf{n} \, d\rho$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

In polar coordinates:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^0$$

 $\int_{\Omega} P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$ Ω

 $\int_{S^{d-1}} P_f(\rho \mathbf{n}) \left\langle P_S(\rho \mathbf{n}) \right\rangle d\mathbf{n} \, d\rho$

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathbb{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$

For isotropic power spectra:

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}}^\infty P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$

For isotropic power spectra:

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$

For isotropic power spectra:

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathbf{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathbf{S}^{d-1}} \frac{P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}{|\mathbf{S}^{d-1}|}$

For isotropic power spectra:

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_{\mathbf{S}}(\rho) \rangle d\rho$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^{\infty}$$

For isotropic power spectra:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^d)$$

 $\int_{\Omega}^{\infty} \int_{\mathfrak{S}^{d-1}} P_f(\rho \mathbf{n}) \left\langle P_{\mathbf{S}}(\rho \mathbf{n}) \right\rangle d\mathbf{n} \, d\rho$

 $^{d-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^{\infty}$$

For isotropic power spectra:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

 $\int_{0}^{\infty} \int_{\mathbf{S}^{d-1}}^{\infty} \frac{P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}{P_{\mathbf{S}}(\rho \mathbf{n})}$

 $^{d-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{S}(\rho)\rangle\,d\rho$

Variance in terms of 1-dimensional Power Spectra

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

▼ € ⊑

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

Render the Possibilities **SIGGRAPH**2016

Variance in terms of 1-dimensional Power Spectra

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

▼ € ⊑

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\left\langle \tilde{P}_{\mathbf{S}}(\rho)\right\rangle d
ho$

Render the Possibilities **SIGGRAPH**2016

Variance: Integral over Product of Power Spectra

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d
ho$

Variance: Integral over Product of Power Spectra

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

 $(l-1) \int_{0}^{0} \tilde{P}_{f}(\rho) \langle \tilde{P}_{\mathbf{S}}(\rho) \rangle d\rho$

Sampling Radial Power Spectrum

For given number of Samples

Render the Possibilities **SIGGRAPH**

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

 $(l-1) \int_{0}^{0} \tilde{P}_{f}(\rho) \langle \tilde{P}_{\mathbf{S}}(\rho) \rangle d\rho$

Sampling Radial Power Spectrum

For given number of Samples

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

For given number of Samples

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

For given number of Samples

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1})$$

Integrand Radial Power Spectrum

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

For given number of Samples

Jisk

SSON

C

Samplers	Worst Case	Best Case
Random		
Jitter		
Poisson Disk		
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	
Jitter		
Poisson Disk		
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter		
Poisson Disk		
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	
Poisson Disk		
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk		
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-3})$

▼ € □

Vorst Case	Best Case
$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-3})$

▼/ <u>€</u> <u>|</u>

Disk Doisson

Jitter

Power

Power

Low Frequency Region

Render the Possibilities SIGGRAPH20

64

▼/ <u>€</u> <u>|</u>

Disk Poisson

Jitter

Power

Power

Low Frequency Region

Low Frequency Region

▼ € ⊑

Variance for Low Sample Count

▼ € ⊑

Variance for Low Sample Count

▼ € ⊑

Experimental Verification

Increasing Samples

Convergence rate

Increasing Samples

Variance

▼ € !

Convergence rate

Increasing Samples

Variance

- [Schlömer et al. 2011]
- [DeGoes et al. 2012]
- [Heck et al. 2013]

- [Schlömer et al. 2011]
- [DeGoes et al. 2012]
- [Heck et al. 2013]

▼ € ⊑

▼/ € !-

Gaussian as Best Case

▼/ € !-

Gaussian as Best Case

Ambient Occlusion Examples

Random vs Jittered 96 Secondary Rays

MSE: 4.74 x 10e-3

▼/ € □

MSE: 8.56 x 10e-4

MSE: 4.24 x 10e-4

CCVT vs. Poisson Disk

96 Secondary Rays

MSE: 6.95 x 10e-4

Convergence rates

▼ € ∟

Convergence rates

▼ € ∟

Jittered vs Poisson Disk

Render the Possibilities **SIGGRAPH**20

What are the benefits of this analysis?

What are the benefits of this analysis ?

 For offline rendering, an would converge faster.

• For offline rendering, analysis tells which samplers

What are the benefits of this analysis?

- would converge faster.
- number of samples

• For offline rendering, analysis tells which samplers

• For real time rendering, blue noise samples are more effective in reducing variance for a given

