A WAVE-OPTICS BSDF FOR CORRELATED SCATTERERS

Ruomai Yang

Juhyeon Kim

Adithya Pediredla

Wojciech Jarosz

Image: Second state
Image: Second state

Imag

Corona Effect

US

Previous work **Diffraction on surfaces**

- Surface roughness generated by Gaussian random process
- Scratches on metal
- Regular pattern (compact discs, biological nanostructures)

Stam 1999

Werner 2017

(a) Renderings

Dhillon et al. 2014

Previous work **Diffraction on surfaces**

- Surface roughness generated by Gaussian random process
- Scratches on metal
- Regular pattern (compact discs, biological nanostructures)
- **Corona effects**
- Bulk scattering
- Quetelet ring

A wave-optics BSDF for correlated scatterers

Guo et al. 2021

Xia et al 2023

Materials that cause Corona Effect

A wave-optics BSDF for correlated scatterers

Random, but Non-overlapping : correlated

Condensation

Fabric

Fabric

Proposed Method

Preliminary: Fraunhofer Diffraction

▼ € . A wave-optics BSDF for correlated scatterers

 \mathcal{F} : Fourier Transform

Intensity in $\omega_0 = |\mathcal{F}(A_c)|^2 [(\omega_0)_{\chi\gamma}]$

▼ € |. A wave-optics BSDF for correlated scatterers

Diffraction as BSDF

▼ € |. A wave-optics BSDF for correlated scatterers

Diffraction as BSDF

▼ € |. A wave-optics BSDF for correlated scatterers

Arbitrary $|\mathcal{F}(A_c)|^2$ Aperture A_c

 \mathcal{F} : Fourier Transform

 $f_r(\omega_i, \omega_0) = |\mathcal{F}(A_c)|^2 [(\omega_0 - \omega_i)_{\chi\gamma}]$

Diffraction from Arbitrary Aperture

A wave-optics BSDF for correlated scatterers V C |-

→ Need full recalculation of the diffraction pattern

Material Modeling

Real Material

Our Model

Diffraction Pattern

A wave-optics BSDF for correlated scatterers

Single Aperture A

Center Positions s

*

X

 $|\mathcal{F}(A)|^2$

 $|\mathcal{F}(s)|^2$

Aperture Center Distribution

Center Positions

Spatial Domain

A wave-optics BSDF for correlated scatterers

Stochastic point process

Random

Aperture Center Distribution

Center Positions

Regular

Spatial Domain

V C |-A wave-optics BSDF for correlated scatterers

Stochastic point process

2D harddisc system

Ensemble Averaging

diffraction

 $|\mathcal{F}(A * s)|^2$

Natural light source

Laser

$\langle |\mathcal{F}(A * s)|^2 \rangle$

A wave-optics BSDF for correlated scatterers

 $|\mathcal{F}(A)|^2$

 $|\mathcal{F}(s)|^2$

Structure Factor

▼ C |. A wave-optics BSDF for correlated scatterers

BSDF evaluation

A wave-optics BSDF for correlated scatterers

$\mathbf{d} = (\omega_{\rm o} - \omega_{\rm i})_{xy}$ $T_{a}(\mathbf{d}) = |A|^{-1} |\mathcal{F}\{A\} (2\pi/\lambda_{0}\mathbf{d})|^{2}\lambda_{0}^{-2}$

λ_0 : reference wavelength (350 nm)

BSDF evaluation

Design Flexibility!

▼ C |. A wave-optics BSDF for correlated scatterers

$F_a = 0.3, \lambda = 400 \text{ nm}$

 $F_a = 0.5, \lambda = 600 \text{ nm}$

BSDF Sampling with MIS

d_{*x*} ∈ (−2,2)

A wave-optics BSDF for correlated scatterers

 $d \in (0,2)$

Other Terms in BSDF

▼/ <u>€</u> |• A wave-optics BSDF for correlated scatterers

Results

Single Aperture Diffraction Table

Structure Factor Table

Radius = 2.00um

Fa = 0.70

90.00degree

Radius = 2.00um

Circle

Radius = 2.00um

Fa = 0.70

Square

Aperture Radius

90.00degree

90.00degree

Area Fraction

Incident Angle

Particle vs. Aperture

Babinet's principle

VC -A wave-optics BSDF for correlated scatterers

Diffraction patterns are equal, except overall brightness

Particle vs. Aperture

Babinet's principle

A wave-optics BSDF for correlated scatterers

Particle vs. Aperture

particle

Particle: $f = 0.3, r = 0.5um, 90^{\circ}$

aperture

Aperture: $f = 0.3, r = 0.5um, 90^{\circ}$

A wave-optics BSDF for correlated scatterers

Particle:
$$f = 0.3, r = 0.5um, 60^{\circ}$$

Aperture: $f = 0.3, r = 0.5um, 60^{\circ}$

Particle: $f = 0.3, r = 0.5um, 30^{\circ}$

Aperture: $f = 0.3, r = 0.5um, 30^{\circ}$

Lycopodium powder

 $10 \times$

 $40 \times$

A wave-optics BSDF for correlated scatterers

Photographs

Rendering Results

Lycopodium powder

 $10 \times$

A wave-optics BSDF for correlated scatterers

Photographs

Rendering Results

Mixed aperture types

A wave-optics BSDF for correlated scatterers

Mixed aperture types

A wave-optics BSDF for correlated scatterers

MIS(Cosine, Light)

$MIS(T_a \times T_s, Light)$

Conclusion & Future Work

- A wave-optics-based BSDF for simulating the corona effect
- Decoupling the spatial distribution and diffraction of individual scatterers provides design flexibility.
 - Soft bound Random orientation Mixed aperture size

Future works :

