
Path-space Motion Estimation and Decomposition
for Robust Animation Filtering

Henning Zimmer Fabrice Rousselle Wenzel Jakob Oliver Wang David Adler

Wojciech Jarosz Olga Sorkine-Hornung Alexander Sorkine-Hornung

Monday, June 29, 15

Motivation

2

Feature Animation Visual Effects

Monday, June 29, 15

This is a really exciting time for rendering with Monte Carlo techniques now seeing a wide adoption in the animation and VFX
communities. But this trend has created tremendous problems: <click>

people want 4K renderings at high frame rate, and in stereo. The sheer amount of pixels that need to be rendered has become a
significant computational burden, since these Monte Carlo techniques are just not fast enough.

But there is so much coherence in space and time that we can in practice often render the data sparsely and recover the final
image using image-based post-processing techniques.

Motivation

2

Stereo High resolution High frame rate

Feature Animation Visual Effects

Monday, June 29, 15

This is a really exciting time for rendering with Monte Carlo techniques now seeing a wide adoption in the animation and VFX
communities. But this trend has created tremendous problems: <click>

people want 4K renderings at high frame rate, and in stereo. The sheer amount of pixels that need to be rendered has become a
significant computational burden, since these Monte Carlo techniques are just not fast enough.

But there is so much coherence in space and time that we can in practice often render the data sparsely and recover the final
image using image-based post-processing techniques.

3
Monday, June 29, 15

Here is an example output produced by our pipeline: given a noisy low-resolution and low-frame rate input, we create a
smooth animation which has been spatio-temporally denoised and upsampled.

In order to produce this result using image-based post-processing, we must resolve a number of challenges.

Challenge: Ambiguity

Reflections Shadows Noise

4

Problem:
pixels are a composite of various components,
each with potentially distinct motion, spatial structure and noise level

Monday, June 29, 15

The core issue is that image-based techniques rely on pixel data which is inherently ambiguous, since each pixel is a composite of various components with potentially distinct
motion, spatial structure and noise level.

For instance, interpolation must take into account that reflections and shadows can have motion that is different from the underlying surfaces.

<click>
We solve the problem by decomposing the rendering into a set of disjoint components, each of which removes some ambiguity.

This turns out to make set of inherently ill-posed image processing problems surprisingly simple so that standard techniques, when applied on top of our decomposition, produce
considerably better results.

Challenge: Ambiguity

Reflections Shadows Noise

4

Problem:
pixels are a composite of various components,
each with potentially distinct motion, spatial structure and noise level

Solution:
decomposition into disjoint components

Monday, June 29, 15

The core issue is that image-based techniques rely on pixel data which is inherently ambiguous, since each pixel is a composite of various components with potentially distinct
motion, spatial structure and noise level.

For instance, interpolation must take into account that reflections and shadows can have motion that is different from the underlying surfaces.

<click>
We solve the problem by decomposing the rendering into a set of disjoint components, each of which removes some ambiguity.

This turns out to make set of inherently ill-posed image processing problems surprisingly simple so that standard techniques, when applied on top of our decomposition, produce
considerably better results.

5

Related Work

[Mehta et al. 2014]

Irradiance
factorization

Monday, June 29, 15

Before describing our own method, I will briefly review some closely related works.

Separation of direct and indirect illumination, combined with irradiance factorization has been used in many works dating back to the seminal work on irradiance caching of Ward
and colleagues to the recent denoising method of Mehta and colleagues.
<click>
Other works have focused on separate handling of specular interactions, such as this work by Lochman and colleagues which focused on novel view generation.
<click>
There is also a body of works that leverage output buffers encoding the scene information, such as depth and normals, to guide image-space filters. These are notably used for
spatial upsampling and in denoising methods such as this one by Li and colleagues.

5

Related Work

[Mehta et al. 2014]

Irradiance
factorization

[Lochmann et al. 2014]

Novel view synthesis for
specular interactions

Monday, June 29, 15

Before describing our own method, I will briefly review some closely related works.

Separation of direct and indirect illumination, combined with irradiance factorization has been used in many works dating back to the seminal work on irradiance caching of Ward
and colleagues to the recent denoising method of Mehta and colleagues.
<click>
Other works have focused on separate handling of specular interactions, such as this work by Lochman and colleagues which focused on novel view generation.
<click>
There is also a body of works that leverage output buffers encoding the scene information, such as depth and normals, to guide image-space filters. These are notably used for
spatial upsampling and in denoising methods such as this one by Li and colleagues.

5

Related Work

[Mehta et al. 2014]

Irradiance
factorization

[Lochmann et al. 2014]

Novel view synthesis for
specular interactions

Joint filtering using
feature buffers

[Li et al. 2012]

Monday, June 29, 15

Before describing our own method, I will briefly review some closely related works.

Separation of direct and indirect illumination, combined with irradiance factorization has been used in many works dating back to the seminal work on irradiance caching of Ward
and colleagues to the recent denoising method of Mehta and colleagues.
<click>
Other works have focused on separate handling of specular interactions, such as this work by Lochman and colleagues which focused on novel view generation.
<click>
There is also a body of works that leverage output buffers encoding the scene information, such as depth and normals, to guide image-space filters. These are notably used for
spatial upsampling and in denoising methods such as this one by Li and colleagues.

6

Related Work

[Mehta et al. 2014]

Irradiance
factorization

[Lochmann et al. 2014]

Novel view synthesis for
specular interactions

Joint filtering using
feature buffers

[Li et al. 2012]

Monday, June 29, 15

Our own work consolidates these previous decompositions in a cohesive framework, with some key modifications.
<click>
In particular we introduce a novel effective irradiance factorization that can handle non-Lambertian materials as well as depth-of-field and motion blur,
<click>
we also propose a method to accurately compute motion vectors for reflections and refractions,
<click>
and lastly we use a richer set of feature buffers specific to each component of our decomposition.

But before going in more detail on our contributions, I will briefly describe the decomposition used in our pipeline.

6

Related Work

[Mehta et al. 2014]

Irradiance
factorization

[Lochmann et al. 2014]

Novel view synthesis for
specular interactions

Joint filtering using
feature buffers

[Li et al. 2012]

Our contributions:

Monday, June 29, 15

Our own work consolidates these previous decompositions in a cohesive framework, with some key modifications.
<click>
In particular we introduce a novel effective irradiance factorization that can handle non-Lambertian materials as well as depth-of-field and motion blur,
<click>
we also propose a method to accurately compute motion vectors for reflections and refractions,
<click>
and lastly we use a richer set of feature buffers specific to each component of our decomposition.

But before going in more detail on our contributions, I will briefly describe the decomposition used in our pipeline.

6

Related Work

[Mehta et al. 2014]

Irradiance
factorization

[Lochmann et al. 2014]

Novel view synthesis for
specular interactions

Joint filtering using
feature buffers

[Li et al. 2012]

Our contributions:

•Effective irradiance factorization

Monday, June 29, 15

Our own work consolidates these previous decompositions in a cohesive framework, with some key modifications.
<click>
In particular we introduce a novel effective irradiance factorization that can handle non-Lambertian materials as well as depth-of-field and motion blur,
<click>
we also propose a method to accurately compute motion vectors for reflections and refractions,
<click>
and lastly we use a richer set of feature buffers specific to each component of our decomposition.

But before going in more detail on our contributions, I will briefly describe the decomposition used in our pipeline.

6

Related Work

[Mehta et al. 2014]

Irradiance
factorization

[Lochmann et al. 2014]

Novel view synthesis for
specular interactions

Joint filtering using
feature buffers

[Li et al. 2012]

Our contributions:

•Effective irradiance factorization

•Accurate motion vectors through specular
interactions

Monday, June 29, 15

Our own work consolidates these previous decompositions in a cohesive framework, with some key modifications.
<click>
In particular we introduce a novel effective irradiance factorization that can handle non-Lambertian materials as well as depth-of-field and motion blur,
<click>
we also propose a method to accurately compute motion vectors for reflections and refractions,
<click>
and lastly we use a richer set of feature buffers specific to each component of our decomposition.

But before going in more detail on our contributions, I will briefly describe the decomposition used in our pipeline.

6

Related Work

[Mehta et al. 2014]

Irradiance
factorization

[Lochmann et al. 2014]

Novel view synthesis for
specular interactions

Joint filtering using
feature buffers

[Li et al. 2012]

Our contributions:

•Effective irradiance factorization

•Accurate motion vectors through specular
interactions

•Rich decomposition with per-component features

Monday, June 29, 15

Our own work consolidates these previous decompositions in a cohesive framework, with some key modifications.
<click>
In particular we introduce a novel effective irradiance factorization that can handle non-Lambertian materials as well as depth-of-field and motion blur,
<click>
we also propose a method to accurately compute motion vectors for reflections and refractions,
<click>
and lastly we use a richer set of feature buffers specific to each component of our decomposition.

But before going in more detail on our contributions, I will briefly describe the decomposition used in our pipeline.

Path-Space Decomposition

7
Monday, June 29, 15

Our system supports arbitrary decompositions, and here I’ll just show you a specific one, using our robot scene as an example.

Path specification using regular expressions

8

Color

=

Monday, June 29, 15

Our goal is to split the output of a path-tracer in a set of disjoint components and we use regular expressions to define to which
component a specific path contributes.

Path specification using regular expressions
Diffuse direct: ED (Eye – Diffuse)

9

Color

=

Diffuse Direct – ED

+

Monday, June 29, 15

We start by separating out the direct diffuse component, that is, diffuse surfaces that are directly visible from the eye or camera.
Using Heckbert notation, those are called ED paths.

Path specification using regular expressions
Diffuse direct: ED (Eye – Diffuse)
Diffuse indirect: ED.+ (Eye – Diffuse, plus at least one event)

10

Color

= +

Diffuse Direct – ED Diffuse Indirect – ED.+

Monday, June 29, 15

We can similarly define the diffuse indirect component…

11

Color

= +

+ +

Diffuse Direct – ED Diffuse Indirect – ED.+

Specular Reflections – ERD.∗ Specular Refractions – ETTD.∗

Monday, June 29, 15

As well as the specular reflection and specular refraction components

Color

= +

+ +

+

Diffuse Direct – ED Diffuse Indirect – ED.+

Specular Reflections – ERD.∗ Specular Refractions – ETTD.∗

Residual

12
Monday, June 29, 15

And any type of path not captured by one of the previous components is simply redirected to the residual component.

In practice, all these components will be extracted in a single rendering pass, using a path tracing integrator with a Final State
Machine (FSM) to track what component should be updated.

Depending on the scene, we may want to extract additional components as we will see later.

Per-component Features

Monday, June 29, 15

We will also enrich our decomposition with a set of feature buffers specific to each component.

These are the features we capture for the diffuse direct component.

<click>
First, we extract information from the visible geometry, including the normal, shape index and surface reflectance.

<click>
We then compute what we call the effective irradiance, which I will explain in just a moment.

<click>
Finally, we have two motion vector buffers, one that encodes the motion of the geometry in the scene, and one that encodes the motion of the irradiance alone.

Per-component Features
Color

Diffuse Direct

Monday, June 29, 15

We will also enrich our decomposition with a set of feature buffers specific to each component.

These are the features we capture for the diffuse direct component.

<click>
First, we extract information from the visible geometry, including the normal, shape index and surface reflectance.

<click>
We then compute what we call the effective irradiance, which I will explain in just a moment.

<click>
Finally, we have two motion vector buffers, one that encodes the motion of the geometry in the scene, and one that encodes the motion of the irradiance alone.

Per-component Features
Normal Shape Index ReflectanceColor

Diffuse Direct

Monday, June 29, 15

We will also enrich our decomposition with a set of feature buffers specific to each component.

These are the features we capture for the diffuse direct component.

<click>
First, we extract information from the visible geometry, including the normal, shape index and surface reflectance.

<click>
We then compute what we call the effective irradiance, which I will explain in just a moment.

<click>
Finally, we have two motion vector buffers, one that encodes the motion of the geometry in the scene, and one that encodes the motion of the irradiance alone.

Per-component Features
Normal Shape Index ReflectanceColor

Diffuse Direct

Eff. Irradiance

Monday, June 29, 15

We will also enrich our decomposition with a set of feature buffers specific to each component.

These are the features we capture for the diffuse direct component.

<click>
First, we extract information from the visible geometry, including the normal, shape index and surface reflectance.

<click>
We then compute what we call the effective irradiance, which I will explain in just a moment.

<click>
Finally, we have two motion vector buffers, one that encodes the motion of the geometry in the scene, and one that encodes the motion of the irradiance alone.

Per-component Features
Normal Shape Index ReflectanceColor

Diffuse Direct

Eff. Irradiance

Geom. Motion Irradiance Motion

Monday, June 29, 15

We will also enrich our decomposition with a set of feature buffers specific to each component.

These are the features we capture for the diffuse direct component.

<click>
First, we extract information from the visible geometry, including the normal, shape index and surface reflectance.

<click>
We then compute what we call the effective irradiance, which I will explain in just a moment.

<click>
Finally, we have two motion vector buffers, one that encodes the motion of the geometry in the scene, and one that encodes the motion of the irradiance alone.

Per-component Features
Normal Shape Index ReflectanceColor

Diffuse Direct

Eff. Irradiance

14

Geom. Motion Irradiance Motion

Spec. MotionSpecular Reflection

Monday, June 29, 15

This is done for every component of the decomposition.
Here I show the specular reflections, and it works the same way for the other ones.

Novel Features

15

Effective Irradiance Irradiance MotionSpecular Motion

Monday, June 29, 15

The contributions in our work concern the computation of the three features shown here, which we will now describe in more
detail…

Novel Features

16

Effective Irradiance Irradiance MotionSpecular Motion

Monday, June 29, 15

…starting with our effective irradiance factorization.

Effective Irradiance Factorization

Standard irradiance factorization
 Only Lambertian surfaces
 No motion blur, depth-of-field

17

color

di
ff

us
e

in
di

re
ct

sp
ec

ul
ar

re
fl

ec
ti

on

Monday, June 29, 15

The standard irradiance factorization used in previous work is only valid for Lambertian surfaces with no motion blur or depth-of-
field.

<click>
However, in this scene, the robot is made of a rough plastic material and the sphere of solid glass, both of which invalidate the
standard irradiance factorization assumptions.

Effective Irradiance Factorization

Standard irradiance factorization
 Only Lambertian surfaces
 No motion blur, depth-of-field

17

Robot: rough plastic material
diffuse + rough dielectric coating

Sphere: solid glass
smooth dielectric

color

di
ff

us
e

in
di

re
ct

sp
ec

ul
ar

re
fl

ec
ti

on

Monday, June 29, 15

The standard irradiance factorization used in previous work is only valid for Lambertian surfaces with no motion blur or depth-of-
field.

<click>
However, in this scene, the robot is made of a rough plastic material and the sphere of solid glass, both of which invalidate the
standard irradiance factorization assumptions.

Effective Irradiance Factorization

color reflectance

eff. irradiance

di
ff

us
e

in
di

re
ct

sp
ec

ul
ar

re
fl

ec
ti

on

18
Monday, June 29, 15

In our system, every material, whether Lambertian or not, provides a reflectance value at a given surface point that we store in a
buffer.
We then divide the final component pixel color by this reflectance.

We call the result of this the effective irradiance, which is actually identical to the irradiance whenever the surface is Lambertian.

R
es

id
ua

l
Sp

ec
ul

ar
R

ef
ra

ct
.

= ×

Sp
ec

ul
ar

R
efl

ec
t.

D
iff

us
e

In
di

re
ct

D
iff

us
e

D
ire

ct

Color Reflectance Eff. Irradiance

19
Monday, June 29, 15

We then apply our effective irradiance factorization to all components of our decomposition, allowing us to separately process the
reflectance and irradiance and then multiply the results to get the final pixel color.

Novel Features

20

Effective Irradiance Irradiance MotionSpecular Motion

Monday, June 29, 15

We now turn to the specular motion estimation

WENZEL

Diffuse Component

Diffuse component: use geometry motion vectors

Specular components: ???

Motion Estimation

Specular reflection component

21
Monday, June 29, 15

We compute a complete set of motion vectors for every component in our decomposition. This is simple for
the diffuse component, because the renderer exactly knows where a point on an object will be in the next
frame. But when specular interactions are involved, things get more tricky -- the observed motion in screen
space generally doesn’t match the motion of the reflecting object. When we look at a scene through a moving
curved glass object, the rendering gets warped in intricate non-linear ways, and in this part of the talk I’ll
introduce the tools to deal with that.

Diffuse Component

Diffuse component: use geometry motion vectors

Specular components: ???

Motion Estimation

Specular reflection component

21
Monday, June 29, 15

We compute a complete set of motion vectors for every component in our decomposition. This is simple for
the diffuse component, because the renderer exactly knows where a point on an object will be in the next
frame. But when specular interactions are involved, things get more tricky -- the observed motion in screen
space generally doesn’t match the motion of the reflecting object. When we look at a scene through a moving
curved glass object, the rendering gets warped in intricate non-linear ways, and in this part of the talk I’ll
introduce the tools to deal with that.

Motion vectors for specular paths

22
Monday, June 29, 15

.. so how does that work? Let’s consider this example light path, where an object is seen through a glass sphere, with vertices x1 to
x5. We are only interested in the motion of the first non-specular object seen from the camera, so we can ignore later vertices.
Our formulation forces the endpoints x_1 and x_4 to stick to the same point on the camera and the teapot, while allowing the
intermediate vertices to move freely. We then want to evolve the light path over time to find its configuration at the next frame.
One thing to keep in mind is that this problem doesn’t always have a solution -- there can be reflections or refractions that
disappear and simply don’t exist anymore in another frame, so we need to be prepared to deal with that. It turns out that this
is quite related to the manifold exploration technique, and we can solve it by adapting its tools.

Motion vectors for specular paths

22
Monday, June 29, 15

.. so how does that work? Let’s consider this example light path, where an object is seen through a glass sphere, with vertices x1 to
x5. We are only interested in the motion of the first non-specular object seen from the camera, so we can ignore later vertices.
Our formulation forces the endpoints x_1 and x_4 to stick to the same point on the camera and the teapot, while allowing the
intermediate vertices to move freely. We then want to evolve the light path over time to find its configuration at the next frame.
One thing to keep in mind is that this problem doesn’t always have a solution -- there can be reflections or refractions that
disappear and simply don’t exist anymore in another frame, so we need to be prepared to deal with that. It turns out that this
is quite related to the manifold exploration technique, and we can solve it by adapting its tools.

Motion vectors for specular paths

22
Monday, June 29, 15

.. so how does that work? Let’s consider this example light path, where an object is seen through a glass sphere, with vertices x1 to
x5. We are only interested in the motion of the first non-specular object seen from the camera, so we can ignore later vertices.
Our formulation forces the endpoints x_1 and x_4 to stick to the same point on the camera and the teapot, while allowing the
intermediate vertices to move freely. We then want to evolve the light path over time to find its configuration at the next frame.
One thing to keep in mind is that this problem doesn’t always have a solution -- there can be reflections or refractions that
disappear and simply don’t exist anymore in another frame, so we need to be prepared to deal with that. It turns out that this
is quite related to the manifold exploration technique, and we can solve it by adapting its tools.

Motion vectors for specular paths

? ?! !

constrained unconstrained constrained

22
Monday, June 29, 15

.. so how does that work? Let’s consider this example light path, where an object is seen through a glass sphere, with vertices x1 to
x5. We are only interested in the motion of the first non-specular object seen from the camera, so we can ignore later vertices.
Our formulation forces the endpoints x_1 and x_4 to stick to the same point on the camera and the teapot, while allowing the
intermediate vertices to move freely. We then want to evolve the light path over time to find its configuration at the next frame.
One thing to keep in mind is that this problem doesn’t always have a solution -- there can be reflections or refractions that
disappear and simply don’t exist anymore in another frame, so we need to be prepared to deal with that. It turns out that this
is quite related to the manifold exploration technique, and we can solve it by adapting its tools.

Motion vectors for specular paths

? ?! !

constrained unconstrained constrained

[Jakob and Marschner 12]

This problem can be solved using specular manifolds!

22
Monday, June 29, 15

.. so how does that work? Let’s consider this example light path, where an object is seen through a glass sphere, with vertices x1 to
x5. We are only interested in the motion of the first non-specular object seen from the camera, so we can ignore later vertices.
Our formulation forces the endpoints x_1 and x_4 to stick to the same point on the camera and the teapot, while allowing the
intermediate vertices to move freely. We then want to evolve the light path over time to find its configuration at the next frame.
One thing to keep in mind is that this problem doesn’t always have a solution -- there can be reflections or refractions that
disappear and simply don’t exist anymore in another frame, so we need to be prepared to deal with that. It turns out that this
is quite related to the manifold exploration technique, and we can solve it by adapting its tools.

23

Manifold walk
[Jakob and Marschner 12]

Temporal manifold walk
This paper

Monday, June 29, 15

Here is a graphical illustration of the differences.
 In the original manifold exploration paper, the scene was assumed to be static, and we were solving for a valid light
path through a chain of specular reflections or refractions. You can see that on the left, where the red vertex is being
moved around, while the manifold walk continually searches for an updated configuration.
 Now, the scene itself is dynamic, and we want to track a single light path over time. That’s shown on the right, where
the sphere is moving and we solve for a path with the same endpoints. Of course, everything including the endpoints is
allowed to move at the same time, we’re not restricted to just one object.

Manifold Walk
Basic idea:

while not there yet:

1. EXTRAPOLATE

2. PROJECT

start

target

extrapolate

project

extrapolate

project

24
Monday, June 29, 15

The original manifold walk provides a local parameterization of a high-dimensional implicitly defined manifold of valid light paths
using a combination of linear extrapolation and projection steps. Repetition of those two steps led to to an algorithm reminiscent
of Newton’s method with quadratic convergence close to the solution.

Manifold Walks with time

Time

Constrained
vertices

Unconstrained
vertices

start

Two nested manifold walks

• outer: time steps
• inner: spatial steps

25
Monday, June 29, 15

In this paper, we extend specular manifolds with an additional temporal dimension. As mentioned before, we constrain some of the
vertices and then the goal is to map the path forward in time -- this corresponds to walking along a iso-parameter line of the
manifold, which we do using two nested manifold walks. One takes steps along the time dimension, and another one which
maintains the spatial constraints.

Details and Limitations

Needs only local information:

• Positions
• Time derivative of positions
• Normals
• Curvature
• Rel. index of refraction

26
Monday, June 29, 15

Altogether, we require remarkably little information to be able to do this. The algorithm just needs local information at the
vertices which is generally already available in state of the art rendering systems. When the iteration fails, we tag pixels to force
them to be re-rendered later on in a sparse rendering pass.
The implementation is fast, with computation time around a few seconds per frame, and it produces highly accurate motion
vectors on the order of the machine precision.
 We provide a short self-contained plugin in the Mitsuba repository which computes motion vectors through arbitrary
specular chains.

Details and Limitations

Needs only local information:

• Positions
• Time derivative of positions
• Normals
• Curvature
• Rel. index of refraction

Can fail:

• Path ceases to exist
• Path cannot be tracked

26
Monday, June 29, 15

Altogether, we require remarkably little information to be able to do this. The algorithm just needs local information at the
vertices which is generally already available in state of the art rendering systems. When the iteration fails, we tag pixels to force
them to be re-rendered later on in a sparse rendering pass.
The implementation is fast, with computation time around a few seconds per frame, and it produces highly accurate motion
vectors on the order of the machine precision.
 We provide a short self-contained plugin in the Mitsuba repository which computes motion vectors through arbitrary
specular chains.

Details and Limitations

Needs only local information:

• Positions
• Time derivative of positions
• Normals
• Curvature
• Rel. index of refraction

Can fail:

• Path ceases to exist
• Path cannot be tracked

Fast, simple implementation

• Seconds/frame
• ~500 LOC plugin in Mitsuba

(motion)

26
Monday, June 29, 15

Altogether, we require remarkably little information to be able to do this. The algorithm just needs local information at the
vertices which is generally already available in state of the art rendering systems. When the iteration fails, we tag pixels to force
them to be re-rendered later on in a sparse rendering pass.
The implementation is fast, with computation time around a few seconds per frame, and it produces highly accurate motion
vectors on the order of the machine precision.
 We provide a short self-contained plugin in the Mitsuba repository which computes motion vectors through arbitrary
specular chains.

Novel Features

27

Effective Irradiance Irradiance MotionSpecular Motion

Monday, June 29, 15

HENNING

Frame 1 Frame 2

Irradiance Motion Estimation

Direct irradiance component

28
Monday, June 29, 15

In addition to the specular components, we also estimate motion vectors for the diffuse irradiance components,
which allows us to handle moving shadows.

For the irradiance motion estimation we rely on classic optical flow.

<click>
But we bootstrap the flow computation with the geometry motion vectors to better handle large displacements.

Bootstrap optical flow
with geometry motion vectors

Frame 1 Frame 2

Irradiance Motion Estimation

Direct irradiance component

28
Monday, June 29, 15

In addition to the specular components, we also estimate motion vectors for the diffuse irradiance components,
which allows us to handle moving shadows.

For the irradiance motion estimation we rely on classic optical flow.

<click>
But we bootstrap the flow computation with the geometry motion vectors to better handle large displacements.

Irradiance Motion Estimation

1) Warp second frame by geometry flow

Frame 1 Frame 2

29

Geometry motion vectors

Monday, June 29, 15

This bootstrapping comes down to first warping the second frame using the geometry motion vectors ...

Irradiance Motion Estimation

1) Warp second frame by geometry flow

Frame 1 Frame 2

30

Geometry motion vectors

Monday, June 29, 15

... which aligns all scene objects, and the only remaining apparent motion is due to the moving shadows.

2) Compute residual motion vectors using optical flow

Irradiance Motion Estimation
Frame 1 Frame 2

31

Residual motion vectors

Monday, June 29, 15

Then we can use optical flow to estimate this apparent, residual motion ...

3) Add residual to geometry motion vectors

Irradiance Motion Estimation

+

Frame 1 Frame 2

32

Residual motion vectorsGeometry motion vectors

Monday, June 29, 15

... and add it to the geometry motion vectors to get the final motion estimate for the irradiance component.

Results

Temporal interpolation Denoising Spatial upsampling

33
Monday, June 29, 15

We now demonstrate the benefits of our decomposition for three different post-processing applications.

<click>
And we start with temporal interpolation

Results

Temporal interpolation Denoising Spatial upsampling

33
Monday, June 29, 15

We now demonstrate the benefits of our decomposition for three different post-processing applications.

<click>
And we start with temporal interpolation

Keyframe 1 Keyframe 2

Temporal Interpolation

34
Monday, June 29, 15

Here, the idea is to only render a few keyframes, for instance every 4th frame ...

Keyframe 2Keyframe 1

Temporal Interpolation

35
Monday, June 29, 15

... and then reconstruct the entire sequence from these keyframes.

This is typically done by splatting pixels from the keyframes to the in-between frames according to computed motion
vectors.

Keyframe 2Keyframe 1

Temporal Interpolation

35
Monday, June 29, 15

... and then reconstruct the entire sequence from these keyframes.

This is typically done by splatting pixels from the keyframes to the in-between frames according to computed motion
vectors.

Specular Interpolation

Our result
 (decomposition + per-component

motion vectors)

Naive interpolation
(final color + geometry motion

vectors)

36
Monday, June 29, 15

Here on the left we see the result of a naive interpolation approach that splats final pixels colors using the geometry motion vectors.

As the latter do not capture the motion of the specular reflections, disturbing ghosting artifacts appear.

Our result on the right correctly handles specular reflections, as we interpolate each component separately using the corresponding motion
vectors.

Consequently, this result verifies the accuracy of the specular motion vectors, computed using temporal manifold exploration.

Specular Interpolation

Our result
 (decomposition + per-component

motion vectors)

Naive interpolation
(final color + geometry motion

vectors)

36
Monday, June 29, 15

Here on the left we see the result of a naive interpolation approach that splats final pixels colors using the geometry motion vectors.

As the latter do not capture the motion of the specular reflections, disturbing ghosting artifacts appear.

Our result on the right correctly handles specular reflections, as we interpolate each component separately using the corresponding motion
vectors.

Consequently, this result verifies the accuracy of the specular motion vectors, computed using temporal manifold exploration.

Complicated Specular Interpolation

37

Naive interpolation Our result (adding ETTTD.* component)

Monday, June 29, 15

This example features intricate specular transport.
A naive interpolation shown on the left exhibits very strong artifacts, especially for the textured background seen through the vase.

We can handle this challenging case by leveraging the flexibility of our decomposition and adding another component to our decomposition to capture
fourfold specular transmission paths.

We again estimate motion vectors for this component using temporal manifold exploration, which allows us to obtain favorable interpolation
results

Complicated Specular Interpolation

38

Our result (adding ETTTD.* component) Ground truth

Monday, June 29, 15

... that also closely resemble the ground truth shown on the right.

Shadow Interpolation Results

Naive interpolation Our result

39
Monday, June 29, 15

This last example illustrates the handling of moving shadows.

On the left we show that a naive interpolation yields ghosting at the moving shadows.

Our result on the right remedies these artifacts as we separately interpolate the irradiance components using the
motion vectors estimated using optical flow.

Results

Temporal interpolation Denoising Spatial upsampling

40
Monday, June 29, 15

We now move to denoising results

Denoising Results

Input (512 spp)
7.7 · 10-3

[Rousselle et al. 2013]
1.2 · 10-3

Ground truth (16k spp)

41

rMSE

Monday, June 29, 15

Let us first look at the results of a state-of-the-art denoising method shown in the middle.
It filters the final pixels colors using the feature buffers of the scene geometry, for example surface normals,
as a guide.

While this successfully removes noise from the input on the left,
most details of the reflections are lost, which becomes apparent when comparing to the reference render on the right.

Denoising Results

Our result
0.8 · 10-3

Ground truth (16k spp)

42

Input (512 spp)
7.7 · 10-3rMSE

Monday, June 29, 15

Our result preserves details in the reflections as we denoise each component separately
and we can leverage per-component feature buffers to guide the denoising.

This is reflected in a 30% decrease in relative MSE,
but should also be easily visible when comparing the results
<switch back and forth>

Results

Temporal interpolation Denoising Spatial upsampling

43
Monday, June 29, 15

Our last application is spatial upsampling

Low-res input Final color
upsampling

Spatial Upsampling

Ground truth

44
Monday, June 29, 15

Similar to the denoising results, a standard upsampling of the final pixel colors guided by high-resolution geometry
features successfully improves the resolution, as shown in the middle.

However, it misses almost all details of the objects seen through the glass sphere when compared to the ground truth
on the right

Low-res input

Spatial Upsampling

Ground truth

45

Per-component
upsampling

Monday, June 29, 15

Our per-component upsampling using per-component high-resolution features as a guide, preserves these details.
<switch back and forth>

<click>
Compared to the ground truth, we only miss the weak shadow marked by the arrow.
And this is because shadows are not captured by our per-component features.

Low-res input

Spatial Upsampling

Ground truth

45

Per-component
upsampling

Monday, June 29, 15

Our per-component upsampling using per-component high-resolution features as a guide, preserves these details.
<switch back and forth>

<click>
Compared to the ground truth, we only miss the weak shadow marked by the arrow.
And this is because shadows are not captured by our per-component features.

relative cost =
overhead w.r.t. baseline

resolution gain

Performance

46

Noisy baseline at 512spp

Monday, June 29, 15

To measure performance, we compare computation times against a noisy baseline render with 512 spp.

We then compute the relative cost,
that is the computational overhead w.r.t. the baseline divided by the possible resolution gain due to upsampling and/
or frame interpolation.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

D. + U. + I.

D. + Upsample

D. + Interpolate

Denoise

Baseline (512spp)

Relative cost

Rendering

Postprocessing

Performance

47
Monday, June 29, 15

Here we plot the relative costs, and distinguish between the costs for rendering the input data in blue and potential
post-processing steps in red.
<click>
As one can see, already combining denoising and interpolation reduces the relative cost to about 0.5
<click>
and when combining all three steps, the relative cost goes down to about 0.3.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

D. + U. + I.

D. + Upsample

D. + Interpolate

Denoise

Baseline (512spp)

Relative cost

Rendering

Postprocessing

Performance

47
Monday, June 29, 15

Here we plot the relative costs, and distinguish between the costs for rendering the input data in blue and potential
post-processing steps in red.
<click>
As one can see, already combining denoising and interpolation reduces the relative cost to about 0.5
<click>
and when combining all three steps, the relative cost goes down to about 0.3.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

D. + U. + I.

D. + Upsample

D. + Interpolate

Denoise

Baseline (512spp)

Relative cost

Rendering

Postprocessing

Performance

47
Monday, June 29, 15

Here we plot the relative costs, and distinguish between the costs for rendering the input data in blue and potential
post-processing steps in red.
<click>
As one can see, already combining denoising and interpolation reduces the relative cost to about 0.5
<click>
and when combining all three steps, the relative cost goes down to about 0.3.

Limitations

Sliver re-rendering for interpolation

48
Monday, June 29, 15

Our method also has some limitations.

One problem is that some pixels cannot be handled for frame interpolation and need to be rendered in a second,
sparse re-rendering pass.

<click>
For the robot scene, the average re-rendering rate was 20%

Limitations

Sliver re-rendering for interpolation

Re-rendering rate:
20% on average

48
Monday, June 29, 15

Our method also has some limitations.

One problem is that some pixels cannot be handled for frame interpolation and need to be rendered in a second,
sparse re-rendering pass.

<click>
For the robot scene, the average re-rendering rate was 20%

Limitations

Sliver re-rendering for interpolation

49

Re-rendering rate:
20% on average

Monday, June 29, 15

There are several reasons why pixels need to be rerendered.

As mentioned before, one reason are
<click>
invalid specular paths where no specular motion vectors could be found.
Other reasons are
<click> occlusions
<click> as well as silhouette pixels,
as detailed in our paper.

Limitations

Sliver re-rendering for interpolation

invalid specular
paths

49

Re-rendering rate:
20% on average

Monday, June 29, 15

There are several reasons why pixels need to be rerendered.

As mentioned before, one reason are
<click>
invalid specular paths where no specular motion vectors could be found.
Other reasons are
<click> occlusions
<click> as well as silhouette pixels,
as detailed in our paper.

Limitations

Sliver re-rendering for interpolation

occlusions

invalid specular
paths

49

Re-rendering rate:
20% on average

Monday, June 29, 15

There are several reasons why pixels need to be rerendered.

As mentioned before, one reason are
<click>
invalid specular paths where no specular motion vectors could be found.
Other reasons are
<click> occlusions
<click> as well as silhouette pixels,
as detailed in our paper.

Limitations

Sliver re-rendering for interpolation

 silhouettes

occlusions

invalid specular
paths

49

Re-rendering rate:
20% on average

Monday, June 29, 15

There are several reasons why pixels need to be rerendered.

As mentioned before, one reason are
<click>
invalid specular paths where no specular motion vectors could be found.
Other reasons are
<click> occlusions
<click> as well as silhouette pixels,
as detailed in our paper.

Limitations

Sliver re-rendering for interpolation

Interpolation with Depth-of-Field and Motion Blur
Problem: motion vectors are ill-defined
Solution: simulate in post-process

50
Monday, June 29, 15

Lastly, renderings with Depth-of-field or motion blur cannot be handled for frame interpolation
as in these cases, a single motion vector cannot describe the motion of blurred pixels capturing different scene objects
with potentially different motions.

As a remedy, we can render images without these effects and simulate them as a post-process.

Post-Process Motion Blur

51
Monday, June 29, 15

which we exemplify here by simulating motion blur.
<click>
To simulate motion blur, we simply integrate the pixel colors of each component along its motion vectors.

Post-Process Motion Blur

51
Monday, June 29, 15

which we exemplify here by simulating motion blur.
<click>
To simulate motion blur, we simply integrate the pixel colors of each component along its motion vectors.

Decomposition: disambiguate input in image-space

Conclusion

52
Monday, June 29, 15

In conclusion, we have presented a general decomposition framework that allows us to disambiguate secondary lighting effects, such as reflections and
moving shadows, in image space.

We showed that image-space post-processing methods such as frame interpolation, denoising, and spatial upsampling can largely benefit from such a
decomposition, especially when leveraging per-component features and motion vectors.

One big advantage of our approach is that it does not require to change the underlying post-processing algorithms, we just need to apply them for each
component separately.

Decomposition: disambiguate input in image-space

Temporal manifold exploration for specular motion

Conclusion

53
Monday, June 29, 15

To compute highly accurate motion vectors for arbitrary specular transport,
we extended manifold exploration to the time dimension.

Decomposition: disambiguate input in image-space

Temporal manifold exploration for specular motion

Effective irradiance factorization & motion estimation

Conclusion

54
Monday, June 29, 15

Finally, we presented an effective irradiance factorization to separate texture from lighting in the presence of non-
diffuse surfaces

and showed how optical flow can be used to estimate corresponding irradiance motion vectors.

Future Work

Reduce re-rendering for interpolation

55
Monday, June 29, 15

In future work, we aim to investigate ways to reduce the amount of re-rendering needed for frame interpolation

<click>
as well as developing an automatic method for determining the optimal granularity of our decomposition.

Future Work

Reduce re-rendering for interpolation

55

Automatic decomposition granularity

Monday, June 29, 15

In future work, we aim to investigate ways to reduce the amount of re-rendering needed for frame interpolation

<click>
as well as developing an automatic method for determining the optimal granularity of our decomposition.

Path-space Motion Estimation and Decomposition
for Robust Animation Filtering

Henning Zimmer Fabrice Rousselle Wenzel Jakob Oliver Wang David Adler

Wojciech Jarosz Olga Sorkine-Hornung Alexander Sorkine-Hornung

Monday, June 29, 15

Monday, June 29, 15

rel. MSE: 5.6·10-3 9.9·10-3

Input (512 spp) Std. irradiance Ground truth

Irradiance Factorization and Depth-of-Field

58
Monday, June 29, 15
To illustrate the robustness of our effective irradiance factorization, we added depth-of-field to our robot scene and then ran our denoising filter. The result shown here is a crop of the bonsai.

Even though both the bonsai and the sofa in the background are Lambertian surfaces, the depth-of-field effect invalidates the assumption of a linear shading model that standard irradiance factorization relies upon.

While the standard irradiance factorization correctly handles uniform regions, regions with mixed reflectances, such as the one pointed by the arrow, suffer from significant bias. This bias is clearly visible in the bottom row, where we directly visualize the relative squared error, and explains why the filtered output has a higher MSE than the noisy
input.

In contrast, our effective irradiance factorization robustly handles regions with mixed reflectances and yields a much better reconstruction overall.

rel. MSE: 5.6·10-3 9.9·10-3

Input (512 spp) Std. irradiance Ground truth

Irradiance Factorization and Depth-of-Field

58
Monday, June 29, 15
To illustrate the robustness of our effective irradiance factorization, we added depth-of-field to our robot scene and then ran our denoising filter. The result shown here is a crop of the bonsai.

Even though both the bonsai and the sofa in the background are Lambertian surfaces, the depth-of-field effect invalidates the assumption of a linear shading model that standard irradiance factorization relies upon.

While the standard irradiance factorization correctly handles uniform regions, regions with mixed reflectances, such as the one pointed by the arrow, suffer from significant bias. This bias is clearly visible in the bottom row, where we directly visualize the relative squared error, and explains why the filtered output has a higher MSE than the noisy
input.

In contrast, our effective irradiance factorization robustly handles regions with mixed reflectances and yields a much better reconstruction overall.

rel. MSE: 5.6·10-3 9.9·10-3

Input (512 spp) Std. irradiance Ground truth

Irradiance Factorization and Depth-of-Field

58

rel. sqr.
error

Monday, June 29, 15
To illustrate the robustness of our effective irradiance factorization, we added depth-of-field to our robot scene and then ran our denoising filter. The result shown here is a crop of the bonsai.

Even though both the bonsai and the sofa in the background are Lambertian surfaces, the depth-of-field effect invalidates the assumption of a linear shading model that standard irradiance factorization relies upon.

While the standard irradiance factorization correctly handles uniform regions, regions with mixed reflectances, such as the one pointed by the arrow, suffer from significant bias. This bias is clearly visible in the bottom row, where we directly visualize the relative squared error, and explains why the filtered output has a higher MSE than the noisy
input.

In contrast, our effective irradiance factorization robustly handles regions with mixed reflectances and yields a much better reconstruction overall.

rel. MSE: 5.6·10-3 9.9·10-3

Input (512 spp) Std. irradiance Ground truth

Irradiance Factorization and Depth-of-Field

0.90·10-3

Eff. irradiance

58

rel. sqr.
error

Monday, June 29, 15
To illustrate the robustness of our effective irradiance factorization, we added depth-of-field to our robot scene and then ran our denoising filter. The result shown here is a crop of the bonsai.

Even though both the bonsai and the sofa in the background are Lambertian surfaces, the depth-of-field effect invalidates the assumption of a linear shading model that standard irradiance factorization relies upon.

While the standard irradiance factorization correctly handles uniform regions, regions with mixed reflectances, such as the one pointed by the arrow, suffer from significant bias. This bias is clearly visible in the bottom row, where we directly visualize the relative squared error, and explains why the filtered output has a higher MSE than the noisy
input.

In contrast, our effective irradiance factorization robustly handles regions with mixed reflectances and yields a much better reconstruction overall.

Denoising Results

Input (512 spp) NL-Means Ground truth (16k spp)

59
Monday, June 29, 15

Denoising Results

Input (512 spp) NL-Means
+ decomposition

Ground truth (16k spp)

60
Monday, June 29, 15

Denoising Results

Input (512 spp) NL-Means
+ decomposition
+ features
(ours)

Ground truth (16k spp)

61
Monday, June 29, 15

Denoising Results
sp

ec
.

re
fl

ec
t.

per-component features

di
ff

us
e

reflectance normaleffective irradiance

62
Monday, June 29, 15

With irradiance factorization, rMSE: 0.77·10-3
63

Monday, June 29, 15

Without irradiance factorization, rMSE: 0.98·10-3
64

Monday, June 29, 15

Performance Details

65

Memory overhead

proportional to decomposition granularity
store as compressed multi-channel EXRs

 Example (Robot)

full decomposition: 29.0 MB

final pixel color: 3.7 MB

Overhead Resolution Relative cost

Baseline (512 spp) 1 1x 1

Reference (16k spp) 32 1x 32

Denoising 1.2 1x 1.2

D + Interpolation 2.2 4x 0.55

D + Upsampling 1.72 4x 0.43

All (D + U + I) 4.64 16x 0.29

relative cost = overhead wrt. baseline / resolution gain

Monday, June 29, 15
EXRs: leveraging that some components have many zero pixels

66

More Specular Interpolation

Monday, June 29, 15

not treating these light paths specially can lead to significant errors in the interpolation, as you can see in this example where a light
source is specularly reflected on a 3d-scanned statue. To achieve a better interpolation, we needed a way of computing the image-
space motion of objects seen through specular scattering events.

Glossy Interpolation

67

Naive Interpolation

Monday, June 29, 15

Glossy Interpolation

68

Our result

Monday, June 29, 15

Glossy Interpolation

69

Ground truth

Monday, June 29, 15

Limitations

Sliver re-rendering for interpolation
Silhouettes

Interpolating silhouette
pixels

Re-rendering silhouette
pixels

70
Monday, June 29, 15

Let us look at the specific problems for silhouettes and occlusions in more detail

Silhouette pixels capture both fore- and background colors, but they have only a single motion vector assigned to them,
that is defined in the center of the pixel.
Consequently, interpolating such silhouette pixels can lead to spurious artifacts as shown on the left.

<SCRATCH???>

Limitations

Sliver re-rendering for interpolation
Silhouettes
Occlusions

Without re-rendering Re-rendering occlusions

71
Monday, June 29, 15

For interpolation one typically averages contributions from the two neighboring keyframes.
But at occlusions, only a single keyframe contributes and if the illumination changed strongly between the
keyframes, a seam at the interface between occluded and un-occluded regions will appear.
<click>

<SCRATCH???>

Limitations

Sliver re-rendering for interpolation
Silhouettes
Occlusions

Without re-rendering Re-rendering occlusions

71
Monday, June 29, 15

For interpolation one typically averages contributions from the two neighboring keyframes.
But at occlusions, only a single keyframe contributes and if the illumination changed strongly between the
keyframes, a seam at the interface between occluded and un-occluded regions will appear.
<click>

<SCRATCH???>

