

Eurographics 2015

The 36th Annual Conference of the European Association for Computer Graphics

Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering Derivative Analysis

Wojciech Jarosz wjarosz@disneyresearch.com

Path tracing - diffuse scene

128 paths/pixel

Thursday, July 16, 15

Diffuse indirect illumination is smooth

Thursday, July 16, 15

Diffuse indirect illumination is smooth

Perfect candidate for sparse sampling and interpolation

Interpolated indirect illumination

Irradiance Caching [Ward et al. 1988]

1M pixels - 4K cache points

The 36th Annual Conference of the European Association for Computer Graphics

Thursday, July 16, 15

Thursday, July 16, 15

[Ward et al. 1988] 5

if at least one cached illumination value near **x** then

[Ward et al. 1988] 5

if at least one cached illumination value near **x** then Interpolate illumination from the cached value(s).

if at least one cached illumination value near x then
Interpolate illumination from the cached value(s).
else

Compute and cache a new illumination value at **x**.

if at least one cached illumination value near x then
Interpolate illumination from the cached value(s).
else

Compute and cache a new illumination value at **x**.

- Some questions that remain:
 - What do we cache?
 - What makes a cache point "nearby"?
 - How do we interpolate the nearby cached values?

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) (\vec{\mathbf{n}} \cdot \vec{\omega}_i) \, \mathrm{d}\vec{\omega}_i$$

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) (\vec{\mathbf{n}} \cdot \vec{\omega}_i) \, \mathrm{d}\vec{\omega}_i$$

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) (\vec{\mathbf{n}} \cdot \vec{\omega}_i) \, \mathrm{d}\vec{\omega}_i$$
$$= \frac{\rho}{\pi} \int_{H^2} L_i(\mathbf{x}, \vec{\omega}_i) (\vec{\mathbf{n}} \cdot \vec{\omega}_i) \, \mathrm{d}\vec{\omega}_i$$

$$L_{r}(\mathbf{x}, \vec{\omega}_{r}) = \int_{H^{2}} f_{r}(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}) L_{i}(\mathbf{x}, \vec{\omega}_{i}) (\vec{\mathbf{n}} \cdot \vec{\omega}_{i}) \, \mathrm{d}\vec{\omega}_{i}$$
$$= \frac{\rho}{\pi} \underbrace{\int_{H^{2}} L_{i}(\mathbf{x}, \vec{\omega}_{i}) (\vec{\mathbf{n}} \cdot \vec{\omega}_{i}) \, \mathrm{d}\vec{\omega}_{i}}_{E(\mathbf{x}, \vec{\mathbf{n}}) \rightarrow \mathrm{Irradiance}}$$

$$L_{r}(\mathbf{x}, \vec{\omega}_{r}) = \int_{H^{2}} f_{r}(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}) L_{i}(\mathbf{x}, \vec{\omega}_{i}) (\vec{\mathbf{n}} \cdot \vec{\omega}_{i}) \, \mathrm{d}\vec{\omega}_{i}$$
$$= \frac{\rho}{\pi} \underbrace{\int_{H^{2}} L_{i}(\mathbf{x}, \vec{\omega}_{i}) (\vec{\mathbf{n}} \cdot \vec{\omega}_{i}) \, \mathrm{d}\vec{\omega}_{i}}_{E(\mathbf{x}, \vec{\mathbf{n}}) \longrightarrow \text{Irradiance}}$$
$$E(\mathbf{x}, \vec{\mathbf{n}}) \approx \frac{\pi}{N} \sum_{j=1}^{N} L_{i}(\mathbf{x}, \vec{\omega}_{i,j})$$

- Irradiance computation costly, reuse whenever possible
- How far away can we reuse a cached value?

- Irradiance computation costly, reuse whenever possible
- How far away can we reuse a cached value?

- Irradiance computation costly, reuse whenever possible
- How far away can we reuse a cached value?

- Irradiance computation costly, reuse whenever possible
- How far away can we reuse a cached value?

7

- Irradiance computation costly, reuse whenever possible
- How far away can we reuse a cached value?

- Irradiance computation costly, reuse whenever possible
- How far away can we reuse a cached value?

• To compute valid region, need to estimate change in irradiance $\partial E_{\Delta = -1} \partial E_{\Delta = -1}$

$$\frac{\partial E}{\partial \mathbf{x}} \Delta \mathbf{x} + \frac{\partial E}{\partial \vec{\mathbf{n}}} \Delta \vec{\mathbf{n}}$$

- Consider hypothetical,
 - worst-case scene:
 - the "Split-Sphere"

• To compute valid region, need to estimate change in irradiance $\left|\frac{\partial E}{\partial \mathbf{x}} + \frac{\partial E}{\partial \mathbf{x}}\right|$

$$\varepsilon_i \lesssim \left| \frac{\partial L}{\partial \mathbf{x}} \Delta \mathbf{x} + \frac{\partial L}{\partial \vec{\mathbf{n}}} \Delta \vec{\mathbf{n}} \right|$$

• Consider hypothetical,

worst-case scene:

the "Split-Sphere"

• To compute valid region, need to estimate change in irradiance

- Consider hypothetical, worst-case scene:
 - the "Split-Sphere"

• To compute valid region, need to estimate change in irradiance

- Consider hypothetical, worst-case scene:
 - the "Split-Sphere"

• To compute valid region, need to estimate change in irradiance

- Consider hypothetical, worst-case scene:
 - the "Split-Sphere"

The 36th Annual Conference

[Ward et al. 1988] 9

• To compute valid region, need to estimate change in irradiance

- Consider hypothetical, worst-case scene:
 - the "Split-Sphere"

9

• To compute valid region, need to estimate change in irradiance ∂E , ∂E ,

- Consider hypothetical, worst-case scene:
 - the "Split-Sphere"

[Ward et al. 1988] 10

$$\varepsilon_i \lesssim \left| \frac{\partial E}{\partial \mathbf{x}} \Delta \mathbf{x} + \frac{\partial E}{\partial \vec{\mathbf{n}}} \Delta \vec{\mathbf{n}} \right|$$

$$\varepsilon_i \lesssim E_i \left(\frac{4}{\pi} \frac{\|\mathbf{x} - \mathbf{x}_i\|}{R_i} + \sqrt{1 - (\vec{\mathbf{n}} \cdot \vec{\mathbf{n}}_i)} \right)$$

• At each shading location, perform a weighted average of all cached values which have an error below some threshold.

• At each shading location, perform a weighted average of all cached values which have an error below some threshold.

$$E(\mathbf{x}, \vec{\mathbf{n}}) \approx \frac{\sum_{i \in S} w_i(\mathbf{x}, \vec{\mathbf{n}}) E_i}{\sum_{i \in S} w_i(\mathbf{x}, \vec{\mathbf{n}})}$$

here:
$$S = \{i : \epsilon_i(\mathbf{x}, \vec{\mathbf{n}}) < a\}$$

W

• At each shading location, perform a weighted average of all cached values which have an error below some threshold.

$$E(\mathbf{x}, \vec{\mathbf{n}}) \approx \frac{\sum_{i \in S} w_i(\mathbf{x}, \vec{\mathbf{n}}) E_i}{\sum_{i \in S} w_i(\mathbf{x}, \vec{\mathbf{n}})}$$

here:
$$S = \{i : \epsilon_i(\mathbf{x}, \vec{\mathbf{n}}) < a\}$$

[Ward et al. 1988] 15

Thursday, July 16, 15

W
Interpolating Irradiance

- At each shading location, perform a weighted average of all cached values which have an error below some threshold.
- Reciprocal of the error is used as the weight

Irradiance Caching

- Pros:
 - Independent of resolution.
 - Computation amortized across many pixels
 - Concentrates computation in visible regions were illumination changes rapidly

[Ward et al. 1988]

17

Irradiance Caching

- Cons:
 - Interpolation/extrapolation can introduce visible artifacts
 - Valid radius metric not always robust
 - Limited to Lambertian (matte) surfaces

Improvements/Extensions

- Many extensions:
 - Ward and Heckbert '92 better interpolation
 - Křivánek et al. '05a, '05b glossy surfaces
 - Jarosz et al. '08 participating media
 - Jarosz et al. '12 irradiance Hessians
 - Schwarzhaupt et al. '12 better error control

Irradiance gradients

- Improve interpolation/extrapolation quality using gradients
- Irradiance Gradients [Ward and Heckbert 1992]
 - Estimate an actual derivative to the irradiance
 - Apply this derivative to the weighted average

- Accounts for change in geometric relationship between x & y
- Ignores occlusion changes

Gradients (stratified formulation)

[Ward and Heckbert 1992] 25

Thursday, July 16, 15

Gradients (stratified formulation)

• Considers occlusion changes

[Ward and Heckbert 1992] 26

Gradients (stratified formulation)

[Ward and Heckbert 1992] 26

Stratified irradiance gradient

Stratified irradiance gradient

$$E(\mathbf{x}, \vec{\mathbf{n}}) \approx \frac{\sum_{i \in S} w_i(\mathbf{x}, \vec{\mathbf{n}}) E_i}{\sum_{i \in S} w_i(\mathbf{x}, \vec{\mathbf{n}})}$$

$$E(\mathbf{x}, \vec{\mathbf{n}}) \approx \frac{\sum_{i \in S} \mathbf{w}_i(\mathbf{x}, \vec{\mathbf{n}}) \left(E_i + (\vec{n}_i \times \vec{\mathbf{n}}) \cdot (\vec{\nabla}_r E_i) + (\mathbf{x} - \mathbf{x}_i) \cdot (\vec{\nabla}_t E_i) \right)}{\sum_{i \in S} \mathbf{w}_i(\mathbf{x}, \vec{\mathbf{n}})}$$

$$E(\mathbf{x}, \vec{\mathbf{n}}) \approx \frac{\sum_{i \in S} \mathbf{w}_i(\mathbf{x}, \vec{\mathbf{n}}) \left(E_i + (\vec{n}_i \times \vec{\mathbf{n}}) \cdot (\vec{\nabla}_r E_i) + (\mathbf{x} - \mathbf{x}_i) \cdot (\vec{\nabla}_t E_i) \right)}{\sum_{i \in S} \mathbf{w}_i(\mathbf{x}, \vec{\mathbf{n}})}$$

Find overlapping cache records

$$E(\mathbf{x}, \vec{\mathbf{n}}) \approx \frac{\sum_{i \in S} \mathbf{w}_i(\mathbf{x}, \vec{\mathbf{n}}) \left(E_i + (\vec{n}_i \times \vec{\mathbf{n}}) \cdot (\vec{\nabla}_r E_i) + (\mathbf{x} - \mathbf{x}_i) \cdot (\vec{\nabla}_t E_i) \right)}{\sum_{i \in S} \mathbf{w}_i(\mathbf{x}, \vec{\mathbf{n}})}$$

Extrapolate along gradients

$$E(\mathbf{x}, \vec{\mathbf{n}}) \approx \frac{\sum_{i \in S} w_i(\mathbf{x}, \vec{\mathbf{n}}) \left(E_i + (\vec{n}_i \times \vec{\mathbf{n}}) \cdot (\vec{\nabla}_r E_i) + (\mathbf{x} - \mathbf{x}_i) \cdot (\vec{\nabla}_t E_i) \right)}{\sum_{i \in S} w_i(\mathbf{x}, \vec{\mathbf{n}})}$$

Sum extrapolated values

Irradiance Gradients

• Generalization to glossy surfaces

- Generalization to glossy surfaces
- Radiance Caching [Křivánek et al. 2005a,2005b]

- Generalization to glossy surfaces
- Radiance Caching [Křivánek et al. 2005a,2005b]
 - Can no longer cache just the irradiance value

- Generalization to glossy surfaces
- Radiance Caching [Křivánek et al. 2005a,2005b]
 - Can no longer cache just the irradiance value
 - Cache full hemispherical *radiance* field at sparse locations

Radiance Storage

- Use spherical or hemispherical harmonics
- Approximates smooth functions with a few coefficients

Monte Carlo

[Křivánek et al. 2005a,2005b] 37

Thursday, July 16, 15

Radiance Caching

[Křivánek et al. 2005a,2005b] 38

Thursday, July 16, 15

Radiance Gradients

 Improve interpolation quality by storing gradient of incoming radiance field

[Krivanek et al. 2005a]

[Krivanek et al. 2005b]

occlusion-aware

Eurographics 2015 The 36th Annual Conference of the European Association for Computer Graphics

[Křivánek et al. 2005a,2005b] 40

Beyond surfaces

- Generalizations to participating media
- Volumetric Radiance Caching [Jarosz et al. 2008a, 2008b]
 - Cache radiance and gradients within volume

[Jarosz et al. 2008a, 2008b] 41

Valid Radius

[Jarosz et al. 2008a, 2008b] ⁴²

Gradients

no gradients

[Jarosz et al. 2008a] 43

Gradients

with gradients

[Jarosz et al. 2008a] 44

Results

[Jarosz et al. 2008a] 45

Results

[Jarosz et al. 2008a] 46

Participating media

no media

with media

[Jarosz et al. 2008b] 47

Surfaces in participating media

no media (indirect irradiance)

with media (indirect irradiance)

Eurographics 2015 The 36th Annual Conference of the European Association for Computer Graphics [Jarosz et al. 2008b] 48

Surfaces in participating media

Occlusion aware, but media unaware gradients [Ward and Heckbert 92]

[Jarosz et al. 2008b] 49

Surfaces in participating media

Occlusion and media aware gradients [Jarosz et al. 2008b]

The 36th Annual Conference of the European Association for Computer Graphics [Jarosz et al. 2008b] 49

Sun beam through window

Gradients by [Ward and Heckbert 92]

[Jarosz et al. 2008b] 50

Sun beam through window

Gradients by [Jarosz et al. 2008b]

[Jarosz et al. 2008b] 50

Higher-order derivatives

- Exploit higher-order derivatives for better error control
 - [Jarosz et al. 2012] Hessians (occlusion-unaware)
 - [Schwarzhaupt et al. 2012] occlusion-aware Hessians & practical details

Split-Sphere Heuristic

- Basis for most irradiance caching algorithms for 20+ years
- Fix-ups to original metric lead to many parameters
 - error threshold
 - min/max screen-space radii
 - min/max world-space radii
 - gradient clamping

- ...

• Hard to control!

total error ε^t = integrated difference between
extrapolated and correct irradiance

total error ε^t = integrated difference between
extrapolated and correct irradiance

$$\epsilon^t = \int_{-R_i}^{R_i} |E(\mathbf{x}_i + x) - E'(\mathbf{x}_i + x)| \, dx$$

• E' is 1st-order Taylor extrapolation

$$\epsilon^t = \int_{-R_i}^{R_i} |\mathbf{E}(\mathbf{x}_i + x) - \mathbf{E}'(\mathbf{x}_i + x)| \, dx$$

- E' is 1st-order Taylor extrapolation
- *E* is unknown!

$$\epsilon^t = \int_{-R_i}^{R_i} |E(\mathbf{x}_i + x) - E'(\mathbf{x}_i + x)| \, dx$$

- E' is 1st-order Taylor extrapolation
- *E* is unknown!

$$\epsilon^t = \int_{-R_i}^{R_i} |E(\mathbf{x}_i + x) - E'(\mathbf{x}_i + x)| \, dx$$

- E' is 1st-order Taylor extrapolation
- *E* is unknown!

2nd-order Taylor extrapolation

$$\epsilon^t = \int_{-R_i}^{R_i} |E(\mathbf{x}_i + x) - E'(\mathbf{x}_i + x)| dx$$

Hessian-based Error Control

- E' is 1st-order Taylor extrapolation
- 2nd-order Taylor extrapolation approximates *E*

$$\epsilon^{t} = \int_{-R_{i}}^{R_{i}} |E(\mathbf{x}_{i} + x) - E'(\mathbf{x}_{i} + x)| dx \quad \approx \quad \hat{\epsilon}^{t} = \frac{1}{2} \int_{-R_{i}}^{R_{i}} |x \mathbf{H}_{\mathbf{x}}(E_{i}) x| dx$$

[Jarosz et al. 2012] 57

Beyond the Split-Sphere

~1,700 Cache Points

Split-Sphere

Hessian-based

Eurographics 2015 The 36th Annual Conference of the European Association for Computer Graphics

[Schwarzhaupt et al. 2012] 58

Split-Sphere vs Hessian-based

Anisotropic Cache Records

Bounded Split-Sphere

Occlusion Hessian

Eurographics 2015 The 36th Annual Conference of the European Association for Computer Graphics

Summary

- Derivatives can estimate local function smoothness
- Amortize illumination computation across many pixels
- Accounting for occlusions is challenging but critical
- Specialized techniques for diffuse or moderately glossy

