
BackSwipe: Back-of-device Word-Gesture Interaction on
Smartphones

Wenzhe Cui
Stony Brook University

wecui@cs.stonybrook.edu

Suwen Zhu
Grammarly, Inc.

suwzhu@cs.stonybrook.edu

Zhi Li
Stony Brook University
zhili3@cs.stonybrook.edu

Zheer Xu
Dartmouth College

zheer.xu.gr@dartmouth.edu

Xing-Dong Yang
Dartmouth College

xing-dong.yang@dartmouth.edu

IV Ramakrishnan
Stony Brook University
ram@cs.stonybrook.edu

Xiaojun Bi
Stony Brook University

xiaojun@cs.stonybrook.edu

Figure 1: Demonstration of BackSwipe. The user is holding the smartphone with one hand, and uses the index finger to input
the word-gesture of the command “copy” on the back of the device. The command is triggered on the composing text.

ABSTRACT
Back-of-device interaction is a promising approach to interacting
on smartphones. In this paper, we create a back-of-device command
and text input technique called BackSwipe, which allows a user to
hold a smartphone with one hand, and use the index finger of the
same hand to draw a word-gesture anywhere at the back of the
smartphone to enter commands and text. To support BackSwipe, we
propose a back-of-device word-gesture decoding algorithm which
infers the keyboard location from back-of-device gestures, and
adjusts the keyboard size to suit the gesture scales; the inferred

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445081

keyboard is then fed back into the system for decoding. Our user
study shows BackSwipe is feasible and a promising input method,
especially for command input in the one-hand holding posture:
users can enter commands at an average accuracy of 92% with a
speed of 5.32 seconds/command. The text entry performance varies
across users. The average speed is 9.58 WPM with some users at
18.83 WPM; the average word error rate is 11.04% with some users
at 2.85%. Overall, BackSwipe complements the extant smartphone
interaction by leveraging the back of the device as a gestural input
surface.

CCS CONCEPTS
•Human-centered computing→ Gestural input; Text input;
Usability testing.

KEYWORDS
Text entry; command input; word-gesture shortcuts; touchscreen;
smartphones.

https://doi.org/10.1145/3411764.3445081

CHI ’21, May 8–13, 2021, Yokohama, Japan Cui, et al.

ACM Reference Format:
Wenzhe Cui, Suwen Zhu, Zhi Li, Zheer Xu, Xing-Dong Yang, IV Ramakr-
ishnan, and Xiaojun Bi. 2021. BackSwipe: Back-of-device Word-Gesture
Interaction on Smartphones. In CHI Conference on Human Factors in Com-
puting Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3411764.3445081

1 INTRODUCTION
One-handed Interaction with a smartphone via the surface on its
back (Back-of-device input) has been demonstrated as a promis-
ing approach to address some of the well-known problems that
are associated with touch input using the thumb, such as "fat fin-
ger" or reachability [23, 24]. With the recent development of new
smartphone technologies, especially the ones offering a rear display
(e.g., Samsung foldable phones), sensing back-of-device input is
becoming increasingly practical. However, the bottleneck lies in the
software as the existing back-of-device input is largely limited to
simple directional strokes or tapping [11, 49, 55]. The full potential
of this input modality on a smartphone is yet to be explored.

In this paper, we investigate how word-gesture input (a.k.a
ShapeWriting, Swyping, or gesture typing input) [26, 60] can be
carried out on an imaginary keyboard to trigger commands or per-
form text input via the back of a smartphone (Figure 1). Performing
word-gesture input on the back of the device has several unique
benefits. First, the technique is well suited for one-handed input
scenarios as it allows a user to interact with the smartphone with
the index finger that is free from gripping the device with one hand
(Figure 1). Second, the user can input words or shortcut commands
via continuous finger gestures. This is more expressive than simple
directional strokes, such as swiping left or right. Third, since user
input is carried out on the back of the device, it does not conflict
with the system-level gestures performed on the front of the device
(e.g., scrolling and swiping).

Despite all these benefits, word-gesture input via the back of
the device is challenging because the motion of the index finger is
largely restricted by the hand holding the device, causing difficulty
for the user to remain accurate in positioning the fingertip on the
keyboard. Additionally, the input finger is obscured by the device,
which could make the position control more difficult. These factors
could result in gestures that are inaccurate and hard to be recog-
nized. A decoder (e.g., SHARK2 decoder [26, 60]) can potentially
solve the problem but it requires the knowledge of the location and
size of the imaginary keyboard, which is unknown as they differ
among people with different hand sizes and holding postures.

To address these challenges, we designed and implemented Back-
Swipe, a one-handed input technique designed for back-of-device
input on a smartphone. BackSwipe infers the location of the imagi-
nary keyboard based on a user’s input gestures to create a decoder
for back-of-device word-gesture decoding. We have applied this
decoder to support both command input and text entry on smart-
phones.

BackSwipe has the following advantages over extant front-screen
one-handed interaction techniques. As a command input method,
BackSwipe avoids conflict with existing front-screen gestures. It
provides an additional channel for inputting commands and short
text which can co-exist with extant front-screen gestures with-
out consuming the affordance of the front screen. As a text entry

method, BackSwipe avoids visual interferences with the content
displayed on the front screen because there is no need to constantly
show a keyboard. It also frees the entire front-screen for interaction
with the displayed digital content: Users can freely interact with the
digital content on the front in the middle of the text entry. It mini-
mizes the visual and interaction interference on the front screen by
providing a dedicated input space on the back for command and
text input.

Our user research shows BackSwipe is feasible and promising,
especially when a user needs to enter commands or short text in the
one-hand holding posture. Our user study shows users can enter
commands at an average accuracy of 92% with the speed of 5.32
seconds/command. The text entry performance varies across users.
The average speed is 9.58 WPM with some users at 18.83 WPM.
The average word error rate is 11.04% with some users at 2.85%.

2 RELATEDWORK
Our work is related to the research in word-gesture input systems
and back-of-device input.

2.1 Word-Gesture Input for Text and
Command Input

Word-gesture typing allows users to enter text using a continuous
gesture stroke to traverse the letters on the keyboard. It was first
introduced by Zhai and Kristensson [26, 59–61] and has beenwidely
adopted by various commercial keyboards.

Researchers have explored word-gesture typing on a variety of
input devices. For example, the bimanual gesture keyboard [6] en-
abled users to use both hands and multiple strokes to enter one
word. i’sFree [67] supported word-gesture input in an eyes-free
manner with a touchpad. Chen et al. [8] explored text entry in
VR with pressure-sensitive touchscreen devices. These techniques
rely on a touchscreen or a touch surface for input, but did not ex-
plore other input spaces. Other than using the finger or a stylus,
researchers have also extended word-gesture input using head or
hand movement. For example, Vulture [40] investigated mid-air
word-gesture input by tracking users’ hand movement projections
on a display. Yu et al. [58] used head rotation for gesture typing
in HMDs. Yeo et al. proposed SWiM [56], a tilt-based system to
allow single-handed word-gesture input on a smartphone. Roto-
Swype [19] proposed a ring-based text entry technique that uses
the orientation of the ring to support typing. Our work is particu-
larly related to eyes-free gesture typing [67] which also inferred
keyboard location for gesture typing. The main difference is that
in [67] the keyboard size and x position are known, while for back-
of-device input keyboard size, both x and y locations are unknown,
which added more complexity for decoding.

In addition to text input, gestures have also been used to trig-
ger commands. Many of the early work in this space, such as
marking menus [28–30] and its adaptations, such as hierarchical
marking menus [63], wave menus [2], flower menus [3], wavelet
menus [16], MarkPad [17], imaginary gestures [20, 21], and M3
gesture menu [64], requires the user to memorize the mapping
between a command and its corresponding gesture, thus making
it hard for novice users to adopt. Some of the recent research ad-
dresses this issue by assigning semantic meanings to the gestures or

https://doi.org/10.1145/3411764.3445081

BackSwipe: Back-of-device Word-Gesture Interaction on Smartphones CHI ’21, May 8–13, 2021, Yokohama, Japan

using user-defined gesture shortcuts [32, 34–36, 43, 50]. In contrast,
word-gesture commands have the benefit that the shape of the
gestures directly reflects the name of the corresponding command,
thus are easier to memorize and use [1, 12, 27, 65].

Built on the existing word-gesture input techniques and their
variants, we explored a new venue of research to investigate how to
support word-gesture input on the back of a smartphone (i.e., Back-
Swipe). Different from the existing word-gesture input methods
which require a keyboard to be shown to the user on the front (e.g.,
SWiM [56]) or touch input to be carried out on the front screen (e.g.,
one-handed front-screen gesture typing [26, 60]), BackSwipe mini-
mizes the visual and interaction interference on the front screen by
providing a dedicated input space on the back for command and
text input.

2.2 Back-of-device Interaction on Smartphones
Back-of-device interaction was initially proposed to solve the “fat
finger” problem, i.e., direct input on the front of the device may
have finger occluding the targets, especially when they are smaller
than the finger width [23, 24]. To address this problem, researchers
proposed to use additional hardware, such as attaching physical
buttons [25, 31, 47] or tactile landmarks [10] on the backside of the
device for text entry or triggering applications (e.g., personal cal-
endars). Others explored back-of-device interaction on two-sided
touch surfaces [7, 11, 14, 22, 49, 53, 54, 62]. For example, Hybrid-
Touch [49] allows the user to interact with a handheld device by
simultaneously touching the front display using a stylus and the
trackpad on the back using the index finger holding the device.
LensGesture [55] detects finger gestures on the back of a smart-
phone using the device’s back-facing camera. XSide [14] allows the
user to enter stroke-based passwords via the front or back of the
device to protect against shoulder surfing. BackXPress [11] uses
pressure sensors on the back of the device to allow the user to
switch between different input modes.

Despite all the benefits of back-of-device input (e.g., eliminating
the “fat finger” problem, extended input space), a significant trade-
off is the occlusion of finger movement. LucidTouch [52] mitigates
this problem by using a pseudo-transparency display showing the
finger movement on the device’s back. NanoTouch [4] is similar
except that the device simulates the see-through effect using an
image of the finger touching the backside of an ultra-small wearable
device.

Existing back-of-device interaction techniques are mostly per-
formed through simple directional strokes (such as swiping up,
down, left, or right), or tapping (on physical buttons or different
regions of the device). Shimon et al. [48] performed an elicitation
study to understand how users map these gestures to smartphone
commands. In this work, we extended the gesture space by explor-
ing how to apply word-gesture command input to back-of-device
interaction.

3 EXPERIMENT 1: UNDERSTANDING
BACK-OF-DEVICE WORD-GESTURE INPUT

We first carried out a study to understand how users performed
word-gesture input on the back of a smartphone. Such an under-
standing would guide us in hldesigning a decoder to support back-
of-device word-gesture input.

3.1 Design and Tasks
We conducted aWizard-of-Oz experiment to collect the participants’
gestures on the back of a smartphone. Participants were instructed
to hold the phone naturally, imaging an invisible keyboard on the
back of the phone which could correctly decode their input. We
used a ZTE AXONM as the test device. The device has two 5.2-inch
screens, acting as one front and one back screen. In the experiment,
the front screen was designed to show prompts, and the back screen
was used to collect the gesture input data.

The study adopted a text transcription task. A short phrase was
displayed on the front screen and the participant was instructed to
draw a word-gesture on the back of the device to enter the phrase.
A short line was displayed under the current target word in the
phrase and would advance to the next word after the word-gesture
for the current word was drawn. The participants were instructed
to perform word-gesture input to transcribe text with the index
finger on the back screen while holding the phone with the same
hand. The gesture traces was displayed on the phone’s front screen
to provide feedback, as shown in Figure 2. By default, the keyboard
layout was not shown on the screen. We adopted such a design
because there is evidence showing that many users are able to
input text on an imaginary keyboard on the phone [66], remote
control [67], or hand-held touchpad [37], given the dominance and
users’ familiarity with Qwerty layout. In case a user could not
recall the location of a particular key, keeping the index finger
still for 300ms at the back screen would bring up a Qwerty layout
on the front screen. The keyboard would disappear once the user
took the index finger off the screen upon the completion of the
current word. We instructed the participant to assume that there
existed an imaginary keyboard at the back of the screen that would
successfully decode the word-gesture she entered.

The testing phrases were selected from a subset of theMacKenzie
and Soukoreff phrase set [39, 57]. The same test set was used for all
participants. The participants were required to complete 4 blocks
in the experiment and could take a short break after completing
each block. Each block contains 10 phrases whose orders were
randomized. Before the formal study, we instructed the users to
complete a 5 minutes warm-up to get familiar with word-gesture
input on the back of the device.

3.2 Participants and Apparatus
Ten participants (3 females, all right-handed) participated in the
study. The ages of the users were from 25 to 30 (M = 28). Their
median familiarity with the Qwerty layout was 4.5 (1: very unfamil-
iar; 5: very familiar). Their median familiarity with gesture typing
was 3. All of the participants were instructed to use their preferred
posture to hold the phone during the experiment.

A ZTE AXON M dual-screen foldable mobile phone (Qualcomm
MSM8996 Snapdragon processor, Quad-core CPU with a 2×2.15

CHI ’21, May 8–13, 2021, Yokohama, Japan Cui, et al.

Figure 2: (a) A participant is entering a word with the index
finger on the back of the phone. (b) a screenshot of the front
screen. The displayed gesture on the front screen shows the
finger trace as if the user is looking through the phone.

GHz Kryo and a 2×1.6 GHz Kryo, Adreno 530 GPU, 4GB RAM,
64GB internal storage, dual 5.2-inch 1080×1920 screen) was used in
the study. In the experiment, the front screen was used to display
the trial information and other visual guidance. The back screen
was used to collect the gesture traces.

In total, the study included: 10 participants × 4 blocks × 10
phrases = 400 trials.

3.3 Results
To understand the positions of the imaginary keys and keyboards,
we first inferred the key distribution from the collected gesture
traces.

3.3.1 Inferring key positions. Similar to the previous research [67],
we used the dynamic time warping (DTW) algorithm [46] to infer
the imagined key positions of a word w from its corresponding
gesture input д. We first generated a gesture template t for wordw .
The template was created by connecting the centers of correspond-
ing letters inw on a standard Qwerty layout. The Qwerty layout
parameters were obtained fromAOSP keyboard for a 1920×1080 res-
olution Android device. Then we sampled д and t into N (N = 300)
equidistant points and applied an optimal match between д and t .
In this way, for every letter c inw , we obtained its key center in the
sampled template pattern t as tc , and its corresponding point дc in
the sampled gesture д as the inferred key position. While applying
the DTW algorithm to match д with t , we sampled the gesture
based on the gesture trace coordinates instead of the timestamps,
so the results were unlikely to be affected by the gesturing time
between letters.

3.3.2 Distribution of the imaginary keys. Figure 3a shows the dis-
tribution of the imaginary key positions inferred from the ges-
tures. The y-direction variance is greater than the variance in the
x-direction. The mean standard deviation of the key positions was
4.1mm and 8.8mm in x and y-directions. The imaginary keyboard
center was mainly located in the upper right part on the back
of the phone. We also show the imaginary key distributions of 7

randomly-picked participants in Figure 3b-h. The imaginary key-
board positions differ across users. We also calculated the input
speed in the study. The average input speed was 21.9 (SD=6.9)
words per minute (WPM).

Figure 3: Imaginary keyboard positions and the inferred key
distributions (95% confidence ellipses) for back-of-device
word-gesture input. The borders illustrate the boundaries of
the back screen of the smartphone. (a): the average distribu-
tion of all participants. (b) to (h): key distributions obtained
from 7 participants randomly picked from all participants.

3.3.3 Discussion. Our investigations led to the following findings,
providing a guideline on how to design a decoder for back-of-device
word-gesture input.

Users were capable of inputting gestures on the back of
the device. Figure 3a shows that the key centers’ relative posi-
tions on the imaginary keyboard are similar to those on a standard
Qwerty layout. Participants were able to recall the Qwerty layout
quite accurately, even when they were gesturing on the device’s
back without the visual of fingers. The average input speed was
around 22 WPM, which can be considered the upper limit for back-
of-device word-gesture input: the participants were not interrupted
by error corrections or candidate selections.

The gesture input behavior on the back of the device was
different from regular gesture input. There were significant
differences between a back-of-device keyboard layout and the stan-
dard Qwerty layout. For instance, different users have varying
preferences on where the imaginary keyboard position should be,
as shown in Figure 3(b)-(h). The positions of imaginary keyboards
differed across users. It is probably because the imaginary keyboard
position is easily influenced by the users’ postures, which is further
affected by their hand size and the coordination of finger move-
ments. We also noticed that users tend to adjust their hand posture
when they feel tired or uncomfortable during the study. This in-
dicates that the imaginary keyboard should not be assigned to a
fixed position as a regular smartphone keyboard. At the same time,
the imaginary keyboard position only undergoes a small change

BackSwipe: Back-of-device Word-Gesture Interaction on Smartphones CHI ’21, May 8–13, 2021, Yokohama, Japan

within the same phrase. Assuming the participants entered every
word correctly, we estimated the keyboard position of each gesture.
The average keyboard location change in a phrase was 6.5 (SD=2.3)
mm.

Another interesting finding is that across all the users, the shape
of the imaginary keyboard is close to a “square” other than a rec-
tangle: the width to height ratio of a standard Qwerty layout in an
AOSP keyboard is 12 : 5 = 2.4, where the imaginary keyboard is
12 : 9 = 1.3

4 BACK-OF-DEVICE WORD-GESTURE
DECODING

Based on the findings drawn from the Wizard-of-Oz study, we
investigated how to design a decoder for back-of-screen word-
gestures. The basic principle of word-gesture decoding [26, 60] is
to combine the probability of an intended word estimated from the
input gesture (a.k.a spatial probability c(w)) with the probability
of estimated from the language context (a.k.a language probability
l(w)) to obtain the overall probability of awordw being the intended
input given an input gesture:

s(w) =
l(w)c(w)∑
i ∈W l(i)c(i)

, (1)

whereW is a lexicon or command set containing i words. We follow
the same principle (Equation 1) for decoding back-of-device word-
gestures, described as below.

4.1 Spatial Probability
We obtain the spatial probability of a wordw by refining the classic
SHARK2 decoding algorithm [26, 60], which was originally de-
signed to decode word-gestures drawn on a visible soft keyboard.
The core challenge of applying SHARK2 of decoding back-of-device
word-gestures is that, in the back-of-device interaction, the size and
location of the keyboard are unknown: the imaginary keyboard
could be anywhere on the back of the device with any size, depend-
ing the holding position. Based on the finding that the keyboard
position only undergoes a small change in the same sentence, we
created the following method to infer the keyboard location from
the input gesture.

We estimate the keyboard size (width and height) based on the
data collected in Experiment 1. The study data showed although the
keyboard center varies across users, both width and height of the
keyboard underwent only small changes across users. The mean
width (SD) was 23.9 (4.5)mm, and the mean height (SD) was 18.6
(5.5)mm. We therefore set the keyboard size to 23.9 ×18.6mm.

Keyboard Position Estimator. We have designed an iterative-
updating algorithm to update the center of the imaginary soft key-
board after entering each word. Assuming that the keyboard center
for entering the wordwt−1 is ct−1, the keyboard size is 23.9×18.6
mm, and keys are arranged according to a Qwerty layout, we can
estimate the center of each key, referred to as at−1,bt−1, ..., zt−1.
After a user enters thewt , we estimate the center of each letter in
the wordwt using the DTW algorithm, as described in Section 3.3.1
of Experiment 1. We then calculate the position shift of the corre-
sponding letter, compared it with its previous position forwt−1. The
shift of the keyboard center will be the average of all the letter shifts.

For example, assuming a user draws a gesture to enter and. The
iterative-updating algorithm first estimates the new letter centers
at , nt , and dt using the previously described DTW algorithm, and
calculates the letter positions shifts ∆a = at −at−1, ∆n = nt −nt−1,
and ∆d = dt − dt−1. The keyboard position shift is calculated as
∆̄ = ∆a+∆n+∆d

3 .
When entering the first word in a sentence, or a single command,

we use only the keyboard size information for decoding since there
is no prior knowledge on the keyboard center c . It means that we
use only the shape channel of the SHARK2 decoder for decoding,
because this channel does not require the information about the
keyboard center for calculating the shape similarity between input
gestures and word templates. After entering the first word, we then
estimate the keyboard center position based on the input gesture,
and treat it as c1. We then apply the iterative-updating algorithm
to update the keyboard location after each word, and feed it back
into a SHARK2 decoder [26] to decode subsequent gestures.

4.2 Language Probability
For text entry, we used the GPT [44] language model, pretrained by
OpenAI. The vocabulary size of the model is 40478. For the first two
words in a sentence which have little language context to leverage,
we used a 2-gram language model (size: 7 million bigrams) which
was trained over the Corpus of Contemporary American English
(COCA) [13](2012 to 2017). The Corpus contains over 5 million
sentence.

4.3 Decoder Architecture
The workflow of the algorithm is shown in Figure 4. The new
component added on top of a regular gesture typing decoder is the
keyboard position estimator, as described in the previous section.
We view the BackSwipe decoding algorithm as an extension of the
eyes-free decoder [67]: extending the algorithm from estimating the
y position of the imaginary keyboard only (the keyboard vertical
location learner in [67]) to estimating keyboard size, and both x
and y position.

Figure 4: The architecture of BackSwipe’s decoder.

4.4 BackSwipe for Text Entry and Command
Input

We have applied the decoding algorithm to support both text entry
and command input. During text entry, the system will display 4
suggestions, arranged in a 2×2 grid after each gesture input. A user
then swipes at the back of the screen in one of the 4 directions to
select the corresponding suggestion. In case the user cannot recall
the key position on a Qwerty layout, she may hold the finger still on

CHI ’21, May 8–13, 2021, Yokohama, Japan Cui, et al.

the back of the device for 0.3 seconds to invoke a Qwerty keyboard
displayed on the front screen.

We have also applied BackSwipe to support command input, by
replacing the lexicon with a set of commands. A user triggers a
command by back-swiping (i.e., drawing a word-gesture at the back
of the device) the corresponding command label. By default, the
recognized command will be executed upon the input finger lifts off
the back surface. If the recognition scores of the top two candidates
are close enough (i.e., the score difference is less than 5% of the
average score), the system will display 4 command candidates, and
the user swipes on the back screen in the corresponding direction
to trigger the command. Similar to text entry, holding the input
finger still on the back for 0.3 seconds will trigger the display of
a Qwerty layout on the front screen to help the user recall key
positions.

We have implemented a BackSwipe decoder as described in this
section on a ZTE AXON M dual-screen foldable phone which ran
Android 7.1.2. The source code can be found at Bitbucket.1 Next, we
carried out two experiments to evaluate BackSwipe, for command
input and text entry separately.

5 EXPERIMENT 2: EVALUATING BACKSWIPE
FOR COMMAND INPUT

We carried out Experiment 2 to evaluate BackSwipe for command
input.

5.1 Design
This experiment is a command activation task. The participants
were required to complete multiple command activation trials using
BackSwipe, among a set of 30 commands. The size of the command
set was close or bigger than the size of commonly used command
sets in a mobile application (e.g., a Chrome web browser supports
13 commands in its first-layer menu).

Before the experiment, the participants were shown 30 target
commands and their corresponding stimulus icons on a sheet. The
users were required to memorize at least 90% of the commands.
Each command could be triggered by one of the two words. For
example, to trigger the “clock” icon, the users could enter either
“clock” or “timer”. The words were created from [15] by judging
whether they reflected the meaning of the icon. The commands and
corresponding words for triggering them are shown in Appendix
(Table 2). Since this experiment was not a text composition or
transcription task, we replaced the lexicon in the decoder with a
set of 60 words (2 words per command).

5.2 Procedure
At the start of each trial, a stimulus icon was displayed at the upper
part of the front screen. The participants were required to input
the command by BackSwipe. After each gesture input, the decoder
would analyze the input confidence and decide whether to provide
command candidates following the policy described in Section 4.4,
as shown in Figure 5. If candidates were provided, participants
needed to select the intended command by swiping to the corre-
sponding direction on the device’s back. If not, the first candidate

1https://bitbucket.org/wenzhecui/backswipe

command from the decoder was used as the default command out-
put. A trial was completed if the input command was correct, or
the participants made three consecutive failed attempts. Before the
formal test, the participants were instructed to get familiar with the
test procedure and BackSwipe in a warm-up session of 5 minutes.
The commands in the warm-up session would not appear in the
formal test.

Figure 5: (a) A user is inputting the command “copy” with
BackSwipe. (b) The stimulus icon is displayed on the front
screen. (c) The decoder shows the command “spin”with four
more candidate commands. Since “spin” is not the intended
command, the participant swipes her finger to the direction
of the intended word “copy” as if the finger is located at
the center of the suggestion grid (i.e., top-right direction).
In other words, drawing a gesture towards top-right corner
would select the “copy” command

We randomly selected 12 out of 30 commands from the command
set. Based on previous research, the command input patterns of
launching applications [41] or selecting menu items [9, 33] usually
follow certain distributions (e.g. Zipfian distribution). We generated
the command occurrence frequency according to Zipfian distribu-
tion. The occurrences for the 12 commands was (7, 5, 4, 4, 2, 2, 1, 1,
1, 1, 1, 1). We counterbalanced the test commands to frequencies
across all participants, ensuring that each command maps to each
frequency the same number of times. The same set of commands
was used across all participants. The order of the commands was
randomized for each participant. The experiment was divided into
5 blocks, each consisting of 6 trials.

5.3 Participants and Apparatus
12 participants (3 females, all right-handed) from 25 to 29 years old
took part in the study. The self-reported median familiarity (1: very
not familiar; 5 very familiar) with word-gesture input and Qwerty
layout were 3 and 4, respectively. We instructed the participants to
complete the experiment with their preferred hand postures. The
same ZTE AXON M device was used.

In total, the study included: 12 participants× 5 blocks× 6 phrases
= 360 trials.

5.4 Results
Command Input Time. This metric indicates how fast a user could
trigger a command on the back of the device. It is measured as the
elapsed time from the moment a participant starts drawing a ges-
ture to the end of the trial. The average command input time was

BackSwipe: Back-of-device Word-Gesture Interaction on Smartphones CHI ’21, May 8–13, 2021, Yokohama, Japan

5.32 (SD=1.28) seconds. To understand the performance of the par-
ticipants as they progressed in the experiment, we show the mean
(95% CI) command input time across the five blocks in Figure 6a. A
repeated-measures ANOVA did not show a significant main effect
of blocks on the command input time (F4,44 = 0.86,p = 0.49).

Command Input Error Rate. The command input error rate was
the ratio of failed trials over the total number of trials. The aver-
age command input error rate among all participants was 7.50%
(SD=6.05%). The mean (95% CI) command input error rate across
the five blocks is shown in Figure 6b. A repeated-measures ANOVA
did not show a significant main effect of blocks on error rate
(F4,44 = 0.23,p = 0.92).

1 2 3 4 5
blocks

3

4

5

6

7

Co
m

m
an

d
In

pu
t T

im
e

(s
ec

on
d)

5.42 5.49

4.72

5.71
5.25

(a) Command input time

1 2 3 4 5
blocks

−5

0

5

10

15

20

Co
m

m
an

d
Er

ro
r R

at
e

(%
)

9.72 8.33 6.94 6.94 5.56

(b) Command input error rate

Figure 6: Average (95% CI) of command input time (in sec-
onds) and command error rate (%) by test blocks.

Suggestion Usage. This metric indicates how useful the command
suggestions were in the experiment. It was calculated as the ratio
of successful commands triggered using suggestions over the total
number of successful trials. The average suggestion usage was 29.8%
(SD=11.0%), indicating that for over 70% of successful command
trials users did not need suggestions.

Reference Keyboard Usage This metric measures how often the
reference keyboard was invoked on the front screen during the
experiment to guide the user input. It was calculated as the number
of times the keyboard showed up on the screen over the total
number of input gestures. The average reference keyboard usage
was 0.43 (SD=0.05) times, indicating that 43% of times the reference
keyboard was invoked.

Subjective Feedback. At the end of the experiment, participants
were required to provide a continuous numerical rating (1: least
demanding, 10: most demanding) on the experiment’s mental and
physical demands. Mental demand described how much mental
effort was required to complete the study. Physical demand de-
scribed how much physical effort was required. The average mental
demand was 4.9 (SD=2.3). The average physical demand was 5.7
(SD=2.3). The participants were also asked to rate the BackSwipe
according to their impression on a scale of 1 to 5 (1: dislike, 5: like).
The average rating was 3.8 (SD=0.9).

5.5 Discussion
Our experiment led to the following findings.

First, BackSwipe is a promising method to input gesture com-
mand. The results showed that users could successfully enter com-
mands at an average error rate of 7.5%, at the speed of 5.32 seconds
per command. Four users (1/3 of the participants) entered com-
mands at a speed faster than 4 seconds/command. It shows that

BackSwipe can help users to conveniently enter command shortcuts
in a one hand holding posture.

Second, suggestions are necessary for triggering commands with
similar shapes, such as “cut” and “copy”. Entering these commands
requires high input accuracy, which might lead to more errors.
Participants also tend to make more errors in complicated gestures.
For example, to input the command “delete”, users need to trace
their fingers back and force around the letter “e”, and thus would
make more mistakes. With the help of command suggestions, users
could finish the task more easily are relaxed.

6 EXPERIMENT 3: EVALUATING BACKSWIPE
FOR TEXT ENTRY

After evaluating BackSwipe for command input, we carried out
Experiment 3 to evaluate it for text entry.

6.1 Design and Tasks
This study was a text transcription task. Similar to the design in
Experiment 1, the participants were instructed to transcribe the
phrases shown on the front screen with back-of-device gesture
input by BackSwipe. We did not include other back-of-device input
methods or the front-screen one-handed text entry method as base-
lines, because (1) the existing back-of-device input technologies
are mostly simple-gesture or tap-based, which do not support text
entry, and (2) the existing one-handed text entry methods require
constantly displaying a soft keyboard (e.g., [56]), or touch input on
the front screen (e.g., [67]). BackSwipe was created to avoid visual
and interaction interference with the front screen content, which
worked work under different constraints than other front-screen
one-handed text entry methods.

The testing phrases were also selected from a subset of the
MacKenzie and Soukoreff phrase set [39, 57]. All the phrases in this
study were different from those in Experiment 1. The participants
were required to transcribe the same set of 15 phrases, divided
into 5 blocks. Each block contained 3 phrases. The order of the 15
phrases was randomized. The participants were allowed to take a
break after completing each block. Same as regular soft keyboards,
for each back-of-device gesture input, BackSwipe generates the
top candidate word on the input area and 4 additional words as
suggestions. If the top candidate was not the intended word, the
participant could swipe towards a direction to select the corre-
sponding suggestion, as shown in Figure 7. If the top candidate was
correct, the user tapped the back of the screen to commit it. If all
the decoding results were incorrect, the participant could press the
“volume down” key on the edge of the device as backspace. Before
the formal test, subjects performed a warm-up session for around
5 minutes for them to get familiar with BackSwipe. The phrases in
the warm-up session were different from those in the formal test.

6.2 Participants and Apparatus
12 subjects (4 females, all right-handed) from 25 to 29 years old
were recruited in the study. The self-reported median familiarity
(1: very not familiar; 5 very familiar) with word-gesture input and
Qwerty layout was 3 and 4.5, respectively. We instructed the users
to completed the study using their preferred hand postures. The
same ZTE AXON M device was used.

CHI ’21, May 8–13, 2021, Yokohama, Japan Cui, et al.

Figure 7: (a) A user is gesturing the word “facts” with Back-
Swipe. (b) When the top candidate is not the intended word,
the user could swipe her finger to the direction of the word
“facts” from the center of the suggestion grid to select it.

In total, the study included: 12 participants× 5 blocks× 3 phrases
= 180 trials.

6.3 Results
Input Speed. We use word per minute (WPM) to measure the input
speed. This measure indicates how fast a user could input text with
BackSwipe. The calculation followed the method proposed in the
previous work [38]:

WPM =
|S − 1|
T

×
1
5
, (2)

where S is the length of the transcribed text in character, including
spaces, andT is the elapsed time inminutes from the start of the first
gesture stroke to finishing the last word in the phrase. The average
input speed across all participants was 9.58 (SD=4.10) WPM. To
understand how the participants performed over time, we plotted
the mean (95% CI) input speed across the five blocks in Figure 8a. A
repeated-measures ANOVA did not show a significant main effect
of block on input speed (F4,44 = 0.25,p = 0.91).

Word Error Rate. Gesture input on the back of the device was on
word level. We measured the error rate using word error rate [5, 66]:

r =
WD(E,T)

|T |
× 100%, (3)

whereWD(E,T) is the word edit distance between the entered (tran-
scribed) phrase E and the target phrase T , and |T | is the number
of words in T . The word edit distance is the minimum number of
basic word-level operations needed to transform the transcribed
phrase into the target phrase. The word-level operations are inser-
tion, replacement and deletion. The average word error rate among
all participants was 11.04% (SD=4.87%). Figure 8b shows the mean
(95% CI) word error rate across the five blocks. A repeated-measures
ANOVA did not show a significant effect of block on word error
rate (F4,44 = 1.70,p = 0.17).

Suggestion Usage.We analyzed the average number of suggestion
usage for each input gesture. For every gesture, if the participant
used the top candidate as the output word, no (0) suggestion was
used. If the participant picked one of the four suggestion words, 1

1 2 3 4 5
blocks

6

8

10

12

14

Sp
ee

d
(W

PM
)

9.47 9.11 9.52 9.95 9.82

(a) Input speed

1 2 3 4 5
blocks

0

5

10

15

20

25

W
or

d
Er

ro
r R

at
e

(%
)

5.37

13.7
11.34 10.14

14.12

(b) Word error rate

Figure 8: Average (95% CI) of text input speed (WPM) and
word error rate (%) by block.

suggestion is used. The average number of suggestion used among
all participants was 0.36 (SD=0.07).

Reference Keyboard Usage We also calculated the reference key-
board usage for the text transcription task. It was calculated as the
number of times the keyboard showed up on the screen over the
total number of input gestures. The reference keyboard showed up
an average of 0.60 (SD=0.12) times for each back-of-device gesture.

Subjective Feedback. At the end of the experiment, participants
were required to provide a numerical rating (1: least demanding, 10:
most demanding) on the experiment’s mental and physical demands.
The average mental demand and physical demand rating were 5.6
(SD=2.3) and 6.8 (SD=2.0), respectively. The participants also rated
BackSwipe for text input on a scale of 1 to 5 (1: dislike, 5: like). The
average score was 3.1 (SD=0.8).

6.4 Discussion
Our study reveals that it is feasible to input text with BackSwipe,
with the average speed of 9.58 WPM. However, due to the limited
flexibility, users cannot enter text as fast as on the front screen.
Some users also commented that using BackSwipe over a long
period of time caused fatigue. Based on the study results, it would
be more practical to use BackSwipe for short or quick text entry
such as replying to a short message. It is probably not appropriate
for extended text entry such as writing emails. Users’ ability of
using BackSwipe also differs. The input speeds ranged from 5.87 to
18.83 WPM among 12 participants. The performance varied across
users.

Table 1 shows the input speed and accuracy of BackSwipe in
comparison with other input methods. As shown, the performance
of BackSwipe for inputting short words (e.g., command names) is
comparable with other front-screen keyboard-visible input meth-
ods, while its performance decreases for inputting phrase level-text.
It further suggests that BackSwipe is more suitable for short text
input (e.g., command names).

The promising performance of BackSwipe (Table 1) and its
unique affordance of being a back-of-device, gestural input method
suggest that it has pros and cons compared with simple-gesture or
menu based back-of-device input methods. BackSwipe is likely to
be faster than other back-of-device input methods when triggering
commands among a large number of candidates, because BackSwipe
is essentially a recall-based command input method: a user can di-
rectly trigger a command by gesturing the command name. On the
contrary, simple gestures or menu-based command input methods

BackSwipe: Back-of-device Word-Gesture Interaction on Smartphones CHI ’21, May 8–13, 2021, Yokohama, Japan

Table 1: Input speed and accuracy of BackSwipe and other input methods from literature.

Affordance Input Method Input Speed (WPM) Character Error Rate (%)

Front screen
keyboard visible

Gesture Keyboards [45] 25 - 31 1.0% - 3.6%
SWiM [56] 15 0.9%
ZoomBoard [42] 8 - 9 0.7%
WatchWriter [18] 24 3.7%
VelociWatch [51] 17 3.0%

BackScreen
keyboard invisible

BackSwipe (command) 18 7.5%
BackSwipe (phrases) 10 10.0%

may involve extensive searching and navigation operations before
a command can be selected (e.g., in a hierarchical menu). On the
other hand, simple gesture or menu based methods might have an
advantage over BackSwipe if the number of available commands
is small (e.g., 2 or 3). BackSwipe increases the expressiveness of
back-of-device interaction by enabling short text and word-gesture
command input, while extant simple-gesture based back-of-device
input methods have little support for text input. Additionally, as
it is difficult to sustain long and intensive input at the back of the
device, BackSwipe is recommended for short text and word-gesture
command input, but not for intensive text input. Given its pros and
cons, we consider BackSwipe to be a complement to the existing
front-screen and back-of-device interaction methods. For example,
to quickly switch to the camera application, BackSwipe allows a
user to activate it by inputting the word-gesture “camera” on the
back of the device, without returning to the home screen and se-
lecting the camera icon. A user may BackSwipe a short message
while she is watching a video or attending an online meeting via
the smartphone. Using BackSwipe allows the user to input short
text without interrupting the ongoing front-screen interaction.

7 CONCLUSIONS
We have designed and implemented BackSwipe, a back-of-device
command and text input technique. It supports a user to hold a
smartphone with one hand and use the index finger of the same
hand to draw a word-gesture anywhere at the back of the device to
enter a command and text. The key for supporting BackSwipe is
the back-of-device word-gesture decoding algorithm, which infers
the keyboard location from back-screen gestures, and adjusts the
keyboard size to suit the gesture scales; the inferred keyboard is
then fed back into the system for decoding. Based on this decoding
algorithm, we have implemented BackSwipe to support command
and text input. Our evaluation shows that BackSwipe is promising
for supporting command input: users can enter commands at an
average accuracy of 92% with a speed of 5.32 seconds/command.
The text entry performance varies across users. The average speed is
9.58WPMwith some users at 18.8WPM; the averageword error rate
is 11.04%with some users at 2.85%. Overall, our research contributes
knowledge on decoding back-of-device gesture input and shows
that BackSwipe is a feasible and promising input method for one-
handed interaction on smartphones, and serves as a complement to
the existing front-screen and back-of-device interaction methods.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their insightful comments,
and our user study participants. This work was supported
by NSF awards 1815514, 1805076, 1936027, NIH R01EY030085,
R01HD097188 ALS Association grant 20-MALS-538 and NIDILRR
award: 90IFO117-01-00. This work was done as part of the Ph.D.
dissertation of Wenzhe Cui, a Stony Brook Ph.D. student supervised
by Dr. Xiaojun Bi.

REFERENCES
[1] Jessalyn Alvina, Carla F. Griggio, Xiaojun Bi, and Wendy E. Mackay. 2017. Com-

mandBoard: Creating a General-Purpose Command Gesture Input Space for Soft
Keyboard. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology (Québec City, QC, Canada) (UIST ’17). ACM, New
York, NY, USA, 17–28. https://doi.org/10.1145/3126594.3126639

[2] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2007. Wave Menus: Improving
the Novice Mode of Hierarchical Marking Menus. In Proceedings of the 11th IFIP
TC 13 International Conference on Human-computer Interaction (Rio de Janeiro,
Brazil) (INTERACT’07). Springer-Verlag, Berlin, Heidelberg, 475–488. http://dl.
acm.org/citation.cfm?id=1776994.1777053

[3] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2008. Flower Menus: A New
Type of Marking Menu with Large Menu Breadth, Within Groups and Efficient
Expert ModeMemorization. In Proceedings of theWorking Conference on Advanced
Visual Interfaces (Napoli, Italy) (AVI ’08). ACM, New York, NY, USA, 15–22. https:
//doi.org/10.1145/1385569.1385575

[4] Patrick Baudisch and Gerry Chu. 2009. Back-of-Device Interaction Allows
Creating Very Small Touch Devices. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09). Asso-
ciation for Computing Machinery, New York, NY, USA, 1923–1932. https:
//doi.org/10.1145/1518701.1518995

[5] Xiaojun Bi, Shiri Azenkot, Kurt Partridge, and Shumin Zhai. 2013. Octopus:
Evaluating Touchscreen Keyboard Correction and Recognition Algorithms via.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Paris, France) (CHI ’13). ACM, New York, NY, USA, 543–552. https://doi.org/10.
1145/2470654.2470732

[6] Xiaojun Bi, Ciprian Chelba, Tom Ouyang, Kurt Partridge, and Shumin Zhai. 2012.
Bimanual Gesture Keyboard. In Proceedings of the 25th Annual ACM Symposium
on User Interface Software and Technology (Cambridge, Massachusetts, USA) (UIST
’12). ACM, New York, NY, USA, 137–146. https://doi.org/10.1145/2380116.2380136

[7] Daniel Buschek, Oliver Schoenleben, and Antti Oulasvirta. 2014. Improving
Accuracy in Back-of-Device Multitouch Typing: A Clustering-Based Approach
to Keyboard Updating. In Proceedings of the 19th International Conference on
Intelligent User Interfaces (Haifa, Israel) (IUI ’14). Association for Computing
Machinery, New York, NY, USA, 57–66. https://doi.org/10.1145/2557500.2557501

[8] Sibo Chen, Junce Wang, Santiago Guerra, Neha Mittal, and Soravis Prakkamakul.
2019. Exploring Word-Gesture Text Entry Techniques in Virtual Reality. In
Extended Abstracts of the 2019 CHI Conference on Human Factors in Comput-
ing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Computing
Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3290607.3312762

[9] Andy Cockburn, Carl Gutwin, and Saul Greenberg. 2007. A Predictive Model of
Menu Performance. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (San Jose, California, USA) (CHI ’07). ACM, New York, NY,
USA, 627–636. https://doi.org/10.1145/1240624.1240723

[10] Christian Corsten, Christian Cherek, Thorsten Karrer, and Jan Borchers. 2015.
HaptiCase: Back-of-Device Tactile Landmarks for Eyes-Free Absolute Indirect
Touch. In Proceedings of the 33rd Annual ACM Conference on Human Factors in

https://doi.org/10.1145/3126594.3126639
http://dl.acm.org/citation.cfm?id=1776994.1777053
http://dl.acm.org/citation.cfm?id=1776994.1777053
https://doi.org/10.1145/1385569.1385575
https://doi.org/10.1145/1385569.1385575
https://doi.org/10.1145/1518701.1518995
https://doi.org/10.1145/1518701.1518995
https://doi.org/10.1145/2470654.2470732
https://doi.org/10.1145/2470654.2470732
https://doi.org/10.1145/2380116.2380136
https://doi.org/10.1145/2557500.2557501
https://doi.org/10.1145/3290607.3312762
https://doi.org/10.1145/1240624.1240723

CHI ’21, May 8–13, 2021, Yokohama, Japan Cui, et al.

Computing Systems (Seoul, Republic of Korea) (CHI ’15). Association for Comput-
ing Machinery, New York, NY, USA, 2171–2180. https://doi.org/10.1145/2702123.
2702277

[11] Christian Corsten, Bjoern Daehlmann, Simon Voelker, and Jan Borchers. 2017.
BackXPress: Using Back-of-Device Finger Pressure to Augment Touchscreen
Input on Smartphones. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for
Computing Machinery, New York, NY, USA, 4654–4666. https://doi.org/10.1145/
3025453.3025565

[12] Wenzhe Cui, Jingjie Zheng, Blaine Lewis, Daniel Vogel, and Xiaojun Bi. 2019.
HotStrokes: Word-Gesture Shortcuts on a Trackpad. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). ACM, New York, NY, USA, Article 165, 13 pages. https://doi.org/10.
1145/3290605.3300395

[13] Mark Davies. 2018. The corpus of contemporary American English: 1990-present.
[14] Alexander De Luca, Marian Harbach, Emanuel von Zezschwitz, Max-Emanuel

Maurer, Bernhard Ewald Slawik, Heinrich Hussmann, and Matthew Smith. 2014.
Now You See Me, Now You Don’t: Protecting Smartphone Authentication from
Shoulder Surfers. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). Association for
Computing Machinery, New York, NY, USA, 2937–2946. https://doi.org/10.1145/
2556288.2557097

[15] Dictionary.com. 2020. Thesaurus.com | Synonyms and Antonyms of Words.
https://www.thesaurus.com/. https://www.thesaurus.com/ [Online; accessed
13-August-2020].

[16] Jeremie Francone, Gilles Bailly, Laurence Nigay, and Eric Lecolinet. 2009. Wavelet
Menus: A Stacking Metaphor for Adapting Marking Menus to Mobile Devices. In
Proceedings of the 11th International Conference on Human-Computer Interaction
with Mobile Devices and Services (Bonn, Germany) (MobileHCI ’09). ACM, New
York, NY, USA, Article 49, 4 pages. https://doi.org/10.1145/1613858.1613919

[17] Bruno Fruchard, Eric Lecolinet, and Olivier Chapuis. 2017. MarkPad: Augmenting
Touchpads for Command Selection. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). ACM,
New York, NY, USA, 5630–5642. https://doi.org/10.1145/3025453.3025486

[18] Mitchell Gordon, Tom Ouyang, and Shumin Zhai. 2016. WatchWriter: Tap and
Gesture Typing on a Smartwatch Miniature Keyboard with Statistical Decoding.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New
York, NY, USA, 3817–3821. https://doi.org/10.1145/2858036.2858242

[19] Aakar Gupta, Cheng Ji, Hui-Shyong Yeo, Aaron Quigley, and Daniel Vogel. 2019.
RotoSwype: Word-Gesture Typing Using a Ring. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300244

[20] Sean Gustafson. 2012. Imaginary interfaces: touchscreen-like interaction without
the screen. In CHI’12 Extended Abstracts on Human Factors in Computing Systems.
927–930.

[21] Sean Gustafson, Christian Holz, and Patrick Baudisch. 2011. Imaginary phone:
learning imaginary interfaces by transferring spatial memory from a familiar
device. In Proceedings of the 24th annual ACM symposium onUser interface software
and technology. 283–292.

[22] Hiroyuki Hakoda, Yoshitomo Fukatsu, Buntarou Shizuki, and Jiro Tanaka. 2015.
Back-of-Device Interaction Based on the Range of Motion of the Index Finger.
In Proceedings of the Annual Meeting of the Australian Special Interest Group for
Computer Human Interaction (Parkville, VIC, Australia) (OzCHI ’15). Association
for Computing Machinery, New York, NY, USA, 202–206. https://doi.org/10.
1145/2838739.2838812

[23] Christian Holz and Patrick Baudisch. 2010. The Generalized Perceived Input
Point Model and How to Double Touch Accuracy by Extracting Fingerprints. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Atlanta, Georgia, USA) (CHI ’10). Association for Computing Machinery, New
York, NY, USA, 581–590. https://doi.org/10.1145/1753326.1753413

[24] Christian Holz and Patrick Baudisch. 2011. Understanding Touch. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver,
BC, Canada) (CHI ’11). Association for Computing Machinery, New York, NY,
USA, 2501–2510. https://doi.org/10.1145/1978942.1979308

[25] Hwan Kim, Yea-kyung Row, and Geehyuk Lee. 2012. Back Keyboard: A Physical
Keyboard on Backside of Mobile Phone Using Qwerty. In CHI ’12 Extended
Abstracts on Human Factors in Computing Systems (Austin, Texas, USA) (CHI
EA ’12). Association for Computing Machinery, New York, NY, USA, 1583–1588.
https://doi.org/10.1145/2212776.2223676

[26] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2: A Large Vocabulary
Shorthand Writing System for Pen-based Computers. In Proceedings of the 17th
Annual ACM Symposium on User Interface Software and Technology (Santa Fe,
NM, USA) (UIST ’04). ACM, New York, NY, USA, 43–52. https://doi.org/10.1145/
1029632.1029640

[27] Per Ola Kristensson and Shumin Zhai. 2007. Command Strokes with andWithout
Preview: Using Pen Gestures on Keyboard for Command Selection. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI ’07). ACM, New York, NY, USA, 1137–1146. https://doi.
org/10.1145/1240624.1240797

[28] Gordon Kurtenbach and William Buxton. 1994. User Learning and Performance
with Marking Menus. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Boston, Massachusetts, USA) (CHI ’94). ACM, New York,
NY, USA, 258–264. https://doi.org/10.1145/191666.191759

[29] Gordon Paul Kurtenbach. 1993. The Design and Evaluation of Marking Menus.
Ph.D. Dissertation. University of Toronto, Toronto, Ont., Canada, Canada. UMI
Order No. GAXNN-82896.

[30] Gordon P. Kurtenbach, Abigail J. Sellen, and William A. S. Buxton. 1993. An
Empirical Evaluation of Some Articulatory and Cognitive Aspects of Marking
Menus. Hum.-Comput. Interact. 8, 1 (March 1993), 1–23. https://doi.org/10.1207/
s15327051hci0801_1

[31] Kevin A. Li, Patrick Baudisch, and Ken Hinckley. 2008. Blindsight: Eyes-Free
Access to Mobile Phones. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (Florence, Italy) (CHI ’08). Association for Computing
Machinery, New York, NY, USA, 1389–1398. https://doi.org/10.1145/1357054.
1357273

[32] Yang Li. 2010. Gesture Search: A Tool for Fast Mobile Data Access. In Proceedings
of the 23Nd Annual ACM Symposium on User Interface Software and Technology
(New York, New York, USA) (UIST ’10). ACM, New York, NY, USA, 87–96. https:
//doi.org/10.1145/1866029.1866044

[33] Wanyu Liu, Gilles Bailly, and Andrew Howes. 2017. Effects of Frequency Distri-
bution on Linear Menu Performance. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). ACM,
New York, NY, USA, 1307–1312. https://doi.org/10.1145/3025453.3025707

[34] Hao Lü and Yang Li. 2011. Gesture Avatar: A Technique for Operating Mobile
User Interfaces Using Gestures. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Vancouver, BC, Canada) (CHI ’11). ACM, New
York, NY, USA, 207–216. https://doi.org/10.1145/1978942.1978972

[35] Hao Lü and Yang Li. 2013. Gesture Studio: Authoring Multi-touch Interactions
Through Demonstration and Declaration. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Paris, France) (CHI ’13). ACM, New
York, NY, USA, 257–266. https://doi.org/10.1145/2470654.2470690

[36] Hao Lü and Yang Li. 2015. Gesture On: Enabling Always-On Touch Gestures
for Fast Mobile Access from the Device Standby Mode. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul,
Republic of Korea) (CHI ’15). ACM, New York, NY, USA, 3355–3364. https:
//doi.org/10.1145/2702123.2702610

[37] Yiqin Lu, Chun Yu, Xin Yi, Yuanchun Shi, and Shengdong Zhao. 2017. BlindType:
Eyes-Free Text Entry on Handheld Touchpad by Leveraging Thumb’s Muscle
Memory. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 2, Article 18
(June 2017), 24 pages. https://doi.org/10.1145/3090083

[38] I. Scott MacKenzie. 2015. A Note on Calculating Text Entry Speed.
[39] I. Scott MacKenzie and R.William Soukoreff. 2003. Phrase Sets for Evaluating Text

Entry Techniques. In CHI ’03 Extended Abstracts on Human Factors in Computing
Systems (Ft. Lauderdale, Florida, USA) (CHI EA ’03). ACM, New York, NY, USA,
754–755. https://doi.org/10.1145/765891.765971

[40] Anders Markussen, Mikkel Rønne Jakobsen, and Kasper Hornbæk. 2014. Vulture:
AMid-airWord-gesture Keyboard. In Proceedings of the 32Nd Annual ACMConfer-
ence on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14).
ACM, New York, NY, USA, 1073–1082. https://doi.org/10.1145/2556288.2556964

[41] Alistair Morrison, Xiaoyu Xiong, Matthew Higgs, Marek Bell, and Matthew
Chalmers. 2018. A Large-Scale Study of iPhone App Launch Behaviour. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). ACM, New York, NY, USA, Article 344, 13 pages.
https://doi.org/10.1145/3173574.3173918

[42] Stephen Oney, Chris Harrison, Amy Ogan, and Jason Wiese. 2013. ZoomBoard:
A Diminutive Qwerty Soft Keyboard Using Iterative Zooming for Ultra-Small
Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Paris, France) (CHI ’13). Association for Computing Machinery, New
York, NY, USA, 2799–2802. https://doi.org/10.1145/2470654.2481387

[43] Benjamin Poppinga, Alireza Sahami Shirazi, Niels Henze, Wilko Heuten, and
Susanne Boll. 2014. Understanding Shortcut Gestures on Mobile Touch Devices.
In Proceedings of the 16th International Conference on Human-Computer Interaction
with Mobile Devices & Services (Toronto, ON, Canada) (MobileHCI ’14). Association
for Computing Machinery, New York, NY, USA, 173–182. https://doi.org/10.
1145/2628363.2628378

[44] A. Radford. 2018. Improving Language Understanding by Generative Pre-
Training.

[45] Shyam Reyal, Shumin Zhai, and Per Ola Kristensson. 2015. Performance
and User Experience of Touchscreen and Gesture Keyboards in a Lab Setting
and in the Wild. In Proceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). As-
sociation for Computing Machinery, New York, NY, USA, 679–688. https:
//doi.org/10.1145/2702123.2702597

https://doi.org/10.1145/2702123.2702277
https://doi.org/10.1145/2702123.2702277
https://doi.org/10.1145/3025453.3025565
https://doi.org/10.1145/3025453.3025565
https://doi.org/10.1145/3290605.3300395
https://doi.org/10.1145/3290605.3300395
https://doi.org/10.1145/2556288.2557097
https://doi.org/10.1145/2556288.2557097
https://www.thesaurus.com/
https://www.thesaurus.com/
https://doi.org/10.1145/1613858.1613919
https://doi.org/10.1145/3025453.3025486
https://doi.org/10.1145/2858036.2858242
https://doi.org/10.1145/3290605.3300244
https://doi.org/10.1145/2838739.2838812
https://doi.org/10.1145/2838739.2838812
https://doi.org/10.1145/1753326.1753413
https://doi.org/10.1145/1978942.1979308
https://doi.org/10.1145/2212776.2223676
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/1240624.1240797
https://doi.org/10.1145/1240624.1240797
https://doi.org/10.1145/191666.191759
https://doi.org/10.1207/s15327051hci0801_1
https://doi.org/10.1207/s15327051hci0801_1
https://doi.org/10.1145/1357054.1357273
https://doi.org/10.1145/1357054.1357273
https://doi.org/10.1145/1866029.1866044
https://doi.org/10.1145/1866029.1866044
https://doi.org/10.1145/3025453.3025707
https://doi.org/10.1145/1978942.1978972
https://doi.org/10.1145/2470654.2470690
https://doi.org/10.1145/2702123.2702610
https://doi.org/10.1145/2702123.2702610
https://doi.org/10.1145/3090083
https://doi.org/10.1145/765891.765971
https://doi.org/10.1145/2556288.2556964
https://doi.org/10.1145/3173574.3173918
https://doi.org/10.1145/2470654.2481387
https://doi.org/10.1145/2628363.2628378
https://doi.org/10.1145/2628363.2628378
https://doi.org/10.1145/2702123.2702597
https://doi.org/10.1145/2702123.2702597

BackSwipe: Back-of-device Word-Gesture Interaction on Smartphones CHI ’21, May 8–13, 2021, Yokohama, Japan

[46] Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic programming algorithm opti-
mization for spoken word recognition. IEEE transactions on acoustics, speech, and
signal processing 26, 1 (February 1978), 43–49. https://doi.org/10.1109/TASSP.
1978.1163055

[47] James Scott, Shahram Izadi, Leila Sadat Rezai, Dominika Ruszkowski, Xiaojun Bi,
and Ravin Balakrishnan. 2010. RearType: Text Entry Using Keys on the Back of
a Device. In Proceedings of the 12th International Conference on Human Computer
Interaction with Mobile Devices and Services (Lisbon, Portugal) (MobileHCI ’10).
Association for Computing Machinery, New York, NY, USA, 171–180. https:
//doi.org/10.1145/1851600.1851630

[48] Shaikh Shawon Arefin Shimon, SarahMorrison-Smith, Noah John, Ghazal Fahimi,
and Jaime Ruiz. 2015. Exploring User-Defined Back-Of-Device Gestures for
Mobile Devices. In Proceedings of the 17th International Conference on Human-
Computer Interaction with Mobile Devices and Services (Copenhagen, Denmark)
(MobileHCI ’15). Association for Computing Machinery, New York, NY, USA,
227–232. https://doi.org/10.1145/2785830.2785890

[49] Masanori Sugimoto and Keiichi Hiroki. 2006. HybridTouch: An Intuitive Manipu-
lation Technique for PDAs Using Their Front and Rear Surfaces. In Proceedings of
the 8th Conference on Human-Computer Interaction with Mobile Devices and Ser-
vices (Helsinki, Finland) (MobileHCI ’06). Association for Computing Machinery,
New York, NY, USA, 137–140. https://doi.org/10.1145/1152215.1152243

[50] Radu-Daniel Vatavu and Ovidiu-Ciprian Ungurean. 2019. Stroke-Gesture Input
for People with Motor Impairments: Empirical Results & Research Roadmap. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New
York, NY, USA, 1–14. https://doi.org/10.1145/3290605.3300445

[51] Keith Vertanen, Dylan Gaines, Crystal Fletcher, Alex M. Stanage, Robbie Watling,
and Per Ola Kristensson. 2019. VelociWatch: Designing and Evaluating a Vir-
tual Keyboard for the Input of Challenging Text. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3290605.3300821

[52] Daniel Wigdor, Clifton Forlines, Patrick Baudisch, John Barnwell, and Chia Shen.
2007. Lucid Touch: A See-through Mobile Device. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software and Technology (Newport,
Rhode Island, USA) (UIST ’07). Association for Computing Machinery, New York,
NY, USA, 269–278. https://doi.org/10.1145/1294211.1294259

[53] Daniel Wigdor, Darren Leigh, Clifton Forlines, Samuel Shipman, John Barnwell,
Ravin Balakrishnan, and Chia Shen. 2006. Under the Table Interaction. In Proceed-
ings of the 19th Annual ACM Symposium on User Interface Software and Technology
(Montreux, Switzerland) (UIST ’06). Association for Computing Machinery, New
York, NY, USA, 259–268. https://doi.org/10.1145/1166253.1166294

[54] Jacob O. Wobbrock, Brad A. Myers, and Htet Htet Aung. 2008. The Performance
of Hand Postures in Front- and Back-of-Device Interaction for Mobile Computing.
Int. J. Hum.-Comput. Stud. 66, 12 (Dec. 2008), 857–875. https://doi.org/10.1016/j.
ijhcs.2008.03.004

[55] Xiang Xiao, Teng Han, and JingtaoWang. 2013. LensGesture: Augmenting Mobile
Interactions with Back-of-Device Finger Gestures. In Proceedings of the 15th
ACM on International Conference on Multimodal Interaction (Sydney, Australia)
(ICMI ’13). Association for Computing Machinery, New York, NY, USA, 287–294.
https://doi.org/10.1145/2522848.2522850

[56] Hui-Shyong Yeo, Xiao-Shen Phang, Steven J. Castellucci, Per Ola Kristensson, and
Aaron Quigley. 2017. Investigating Tilt-based Gesture Keyboard Entry for Single-
Handed Text Entry on Large Devices. In Proceedings of the 2017 CHI Conference

on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). ACM,
New York, NY, USA, 4194–4202. https://doi.org/10.1145/3025453.3025520

[57] Xin Yi, Chun Yu,Weinan Shi, Xiaojun Bi, and Yuanchun Shi. 2017. Word Clarity As
aMetric in Sampling Keyboard Test Sets. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). ACM,
New York, NY, USA, 4216–4228. https://doi.org/10.1145/3025453.3025701

[58] Chun Yu, Yizheng Gu, Zhican Yang, Xin Yi, Hengliang Luo, and Yuanchun Shi.
2017. Tap, Dwell or Gesture?: Exploring Head-Based Text Entry Techniques for
HMDs. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (Denver, Colorado, USA) (CHI ’17). ACM, New York, NY, USA, 4479–4488.
https://doi.org/10.1145/3025453.3025964

[59] Shumin Zhai and Per-Ola Kristensson. 2003. Shorthand Writing on Stylus Key-
board. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Ft. Lauderdale, Florida, USA) (CHI ’03). ACM, New York, NY, USA,
97–104. https://doi.org/10.1145/642611.642630

[60] Shumin Zhai and Per Ola Kristensson. 2012. The Word-gesture Keyboard:
Reimagining Keyboard Interaction. Commun. ACM 55, 9 (Sept. 2012), 91–101.
https://doi.org/10.1145/2330667.2330689

[61] Shumin Zhai, Per Ola Kristensson, Pengjun Gong, Michael Greiner, Shilei Allen
Peng, Liang Mico Liu, and Anthony Dunnigan. 2009. Shapewriter on the Iphone:
From the Laboratory to the Real World. In CHI ’09 Extended Abstracts on Human
Factors in Computing Systems (Boston, MA, USA) (CHI EA ’09). ACM, New York,
NY, USA, 2667–2670. https://doi.org/10.1145/1520340.1520380

[62] Cheng Zhang, Anhong Guo, Dingtian Zhang, Caleb Southern, Rosa Arriaga,
and Gregory Abowd. 2015. BeyondTouch: Extending the Input Language with
Built-in Sensors on Commodity Smartphones. In Proceedings of the 20th In-
ternational Conference on Intelligent User Interfaces (Atlanta, Georgia, USA)
(IUI ’15). Association for Computing Machinery, New York, NY, USA, 67–77.
https://doi.org/10.1145/2678025.2701374

[63] Shengdong Zhao and Ravin Balakrishnan. 2004. Simple vs. Compound Mark
Hierarchical Marking Menus. In Proceedings of the 17th Annual ACM Symposium
on User Interface Software and Technology (Santa Fe, NM, USA) (UIST ’04). ACM,
New York, NY, USA, 33–42. https://doi.org/10.1145/1029632.1029639

[64] Jingjie Zheng, Xiaojun Bi, Kun Li, Yang Li, and Shumin Zhai. 2018. M3 Gesture
Menu: Design and Experimental Analyses of Marking Menus for Touchscreen
Mobile Interaction. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New York, NY,
USA, Article 249, 14 pages. https://doi.org/10.1145/3173574.3173823

[65] Suwen Zhu, Yoonsang Kim, Jingjie Zheng, Jennifer Yi Luo, Ryan Qin, Liuping
Wang, Xiangmin Fan, Feng Tian, and Xiaojun Bi. 2020. Using Bayes’ Theorem
for Command Input: Principle, Models, and Applications. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI,
USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–15.
https://doi.org/10.1145/3313831.3376771

[66] Suwen Zhu, Tianyao Luo, Xiaojun Bi, and Shumin Zhai. 2018. Typing on an
Invisible Keyboard. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New York, NY,
USA, Article 439, 13 pages. https://doi.org/10.1145/3173574.3174013

[67] Suwen Zhu, Jingjie Zheng, Shumin Zhai, and Xiaojun Bi. 2019. I’sFree: Eyes-
Free Gesture Typing via a Touch-Enabled Remote Control. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). ACM, New York, NY, USA, Article 448, 12 pages. https:
//doi.org/10.1145/3290605.3300678

https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1145/1851600.1851630
https://doi.org/10.1145/1851600.1851630
https://doi.org/10.1145/2785830.2785890
https://doi.org/10.1145/1152215.1152243
https://doi.org/10.1145/3290605.3300445
https://doi.org/10.1145/3290605.3300821
https://doi.org/10.1145/1294211.1294259
https://doi.org/10.1145/1166253.1166294
https://doi.org/10.1016/j.ijhcs.2008.03.004
https://doi.org/10.1016/j.ijhcs.2008.03.004
https://doi.org/10.1145/2522848.2522850
https://doi.org/10.1145/3025453.3025520
https://doi.org/10.1145/3025453.3025701
https://doi.org/10.1145/3025453.3025964
https://doi.org/10.1145/642611.642630
https://doi.org/10.1145/2330667.2330689
https://doi.org/10.1145/1520340.1520380
https://doi.org/10.1145/2678025.2701374
https://doi.org/10.1145/1029632.1029639
https://doi.org/10.1145/3173574.3173823
https://doi.org/10.1145/3313831.3376771
https://doi.org/10.1145/3173574.3174013
https://doi.org/10.1145/3290605.3300678
https://doi.org/10.1145/3290605.3300678

CHI ’21, May 8–13, 2021, Yokohama, Japan Cui, et al.

A COMMANDS IN EXPERIMENT 2
Thirty commands were used in Experiment 2. Each command could be triggered by one of the two words, as shown in Table 2.

Table 2: The 30 commands and the corresponding words used to trigger them in Experiment 2.

camera, lens copy, replicate cut, trim delete, remove download, browse
edit, revise file, folder keyboard, typing mail, email print, publish
rotate, spin search, find network, internet clock, timer calculator, computer
help, assist recent, latest share, exchange weather, forecast zoom, enlarge

contact, association date, calendar night, dark bluetooth, connection photo, gallery
settings, ambience message, letter flashlight, torch sound, voice notebook, binder

	Abstract
	1 Introduction
	2 Related Work
	2.1 Word-Gesture Input for Text and Command Input
	2.2 Back-of-device Interaction on Smartphones

	3 Experiment 1: Understanding Back-of-Device Word-Gesture Input
	3.1 Design and Tasks
	3.2 Participants and Apparatus
	3.3 Results

	4 Back-of-Device Word-Gesture Decoding
	4.1 Spatial Probability
	4.2 Language Probability
	4.3 Decoder Architecture
	4.4 BackSwipe for Text Entry and Command Input

	5 Experiment 2: Evaluating BackSwipe for Command Input
	5.1 Design
	5.2 Procedure
	5.3 Participants and Apparatus
	5.4 Results
	5.5 Discussion

	6 Experiment 3: Evaluating BackSwipe for Text Entry
	6.1 Design and Tasks
	6.2 Participants and Apparatus
	6.3 Results
	6.4 Discussion

	7 Conclusions
	Acknowledgments
	References
	A Commands in Experiment 2

