
WrisText: One-handed Text Entry on Smartwatch using
Wrist Gestures

Jun Gong1, Zheer Xu1,2, Qifan Guo1,3, Teddy Seyed4, Xiang ‘Anthony’ Chen5, Xiaojun Bi6,
Xing-Dong Yang1

Dartmouth College1, Shanghai Jiao Tong University2, University of Science and Technology of China3,
University of Calgary4, Carnegie Mellon University5, Stony Brook University6

{jun.gong.gr; xing-dong.yang}@dartmouth.edu, zheerxu@outlook.com, guoqifan@mail.ustc.edu.cn,
xiangchen@acm.org, teddy.seyed@ucalgary.ca, xiaojun@cs.stonybrook.edu

Figure 1. (a) One-handed text entry on a smartwatch by whirling the wrist; (b) to enter “you”, a user selects [YZAB] [ONML]

 [TUVWX] by striking the wrist N S W. The entered text and suggested auto-complete are shown on the screen.

ABSTRACT
We present WrisText - a one-handed text entry technique
for smartwatches using the joystick-like motion of the
wrist. A user enters text by whirling the wrist of the watch
hand, towards six directions which each represent a key in
a circular keyboard, and where the letters are distributed in
an alphabetical order. The design of WrisText was an
iterative process, where we first conducted a study to
investigate optimal key size, and found that keys needed to
be 55º or wider to achieve over 90% striking accuracy. We
then computed an optimal keyboard layout, considering a
joint optimization problem of striking accuracy, striking
comfort, word disambiguation. We evaluated the
performance of WrisText through a five-day study with 10
participants in two text entry scenarios: hand-up and hand-
down. On average, participants achieved a text entry speed
of 9.9 WPM across all sessions, and were able to type as
fast as 15.2 WPM by the end of the last day.
Author Keywords
Smartwatch; text entry; one-handed input;
ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces.

INTRODUCTION
Text entry is a common and important task in daily mobile
life [7], comprising of approximately 40% of mobile
activity [10]. However, entering text on a smartwatch is
challenging because of the small form factor and its
wearable context. One of the most commonly observed
problems is the need to use one or both hands for a task
(e.g. driving or walking while holding an umbrella or
shopping bags). This is cumbersome in the context of
smartwatches, as a user is required to interrupt their
ongoing task to enter text, which reduces the
purposefulness of smartwatches, as they are predominantly
valuable for accessing information while on-the-go.

To mitigate this problem, one solution is speech input,
which is socially inappropriate in some situations (e.g., at
meetings or classrooms) [61], and may also expose the
users’ privacy. Another solution is to enable one-handed
interaction for smartwatches using the same-side hand
(SSH) [31]. However, prior work has primarily been
targeted at general interactions, such as assigning discrete
commands to micro-interactions [36, 58], finger postures
[16, 46, 63], continuous gestural input [19, 51]. One-
handed text entry has been largely overlooked.

In this paper, we present WrisText, a one-handed text entry
technique for smartwatches using the wrist’s joystick-like
motion [19] (Figure 1). With it, a user whirls the wrist of
the same-side hand to strike directional marks to select
keys on a circular keyboard on a smartwatch. To explore
the design space of this new text entry technique, we took
an iterative design approach, where we optimized the
keyboard layout based on a number of factors, including
keyboard learnability, striking accuracy, word
disambiguation, and striking comfort. We first conducted a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5620-6/18/04…$15.00
https://doi.org/10.1145/3173574.3173755

target acquisition task to determine the proper size of the
arc-shaped keyboard keys (e.g., 55.4˚). Based on the result,
we designed a keyboard layout with six keys, containing
groups of four to five English letters following an
alphabetical order (Figure 1). Next, we performed a step-
wise search for optimal layout variations, and identify one
that balances striking accuracy, striking comfort, and word
disambiguation (Figure 1). Finally, we conducted a 5-day
study with ten participants to evaluate the speed and
accuracy of WrisText in common smartwatch usage
scenarios, such as holding the smartwatch in front of the
chest and placing the hand downwards, alongside the body.
Our results revealed that participants could achieve an
average of 15.2 (s.e. = 0.5) WPM in the fifth day with 0.1%
uncorrected errors. Extending the study by three more days
with two randomly picked participants improved the speed
further to 24.9 WPM.

Our contributions for this work include: (1) a one-handed
text entry technique on smartwatches using the wrist’s
joystick motion; (2) an optimized keyboard layout design
for WrisText; and (3) a demonstration of the effectiveness
of WrisText through a 5-day user study.
RELATED WORK
In this section, we present existing literature in enabling
one-handed interaction on smartwatches and text entry
methods on mobile and wearable devices.

One-handed Interaction on Smartwatches
Research on one-handed input for smartwatches has
mainly focused discrete and continuous gestural input.

One-handed discrete gestural input. This research area has
mainly focused on detecting pinch (e.g. thumb touching the
other fingers) [2, 6, 16, 24, 36, 47, 63] and different hand
postures (e.g. fist or thumb-up) [11, 16, 18, 46, 63].
GestureWrist [46] exemplifies early work in this category.
The technique uses an array of capacitive sensors to detect
the changes in forearm shape to inform different hand
postures. Fukui, et al. [18] and Ortega-Avila et al. [42]
achieved a similar result using infrared photo reflectors.
More recently, WristFlex [16] and Tomo [63] improved
sensing capability using force resistors or electrical
impedance tomography sensors. Skinput [24] detects pinch
gestures using an array of contact microphones (e.g. piezo
sensors) worn on the upper arm to detect sound waves
generated by fingers tapping each other. Amento et al. [6]
showed that a single piezo sensor placed in a wristband can
help detect similar gestures to those detected by the
commercial product, Aria [2]. Other approaches, including
using EMG sensors [32, 40, 47] and cameras [12, 36],
require the sensor to be worn on the upper arm (or other
body parts), thus being less practical for smartwatch users.

One-handed continuous gestural input. Crossan, et al. [15]
and Strohmeier, et al. [50] use wrist pronation for 1D
gestural input. Rahman et al. [45] studied the number of
discrete levels in each of the wrist tilt axes, the result of

which can be applied to control a 2D cursor by tilting the
watch in the x- and y-axes. This technique has been
developed for hand-held devices [14, 25, 45, 56] and
recently on a smartwatch [22]. Float [51] uses an improved
tilt sensing algorithm, allowing precise control of cursor
movement. Techniques such as using the watch as a
peephole display [30, 59] may be used to control the cursor,
but moving the screen may lead to a loss of visual contact
with the screen as it moves away from a user’s view. This
makes such an approach unusable for text entry tasks.
Waving the hand mid-air shares the same issue. With
existing technologies, hand movement can be tracked using
acoustic [39, 55, 62], IMU [5], WIFI [52], RFID [54] with
relatively good accuracy. Letter identification accuracy can
be further improved using techniques, like EdgeWrite [57].
The issue, however, is that aside from losing visual contact
with the screen, moving the watch with large hand
movement also may impact task completion time [30].

On the other hand, whirling the wrist [19] maintains a
relatively stable screen during a gesture, ensuring constant
visual contact with the display. The technique allows one-
handed input to be carried out in wider smartwatch usage
contexts (e.g., hanging the hand alongside the body),
whereas many other techniques (e.g., tilt) may fail due to
restricted hand movement.
Keyboard Layout Optimization
QWERTY [26] is the de facto standard of keyboard layout
for both physical and virtual keyboards. Though it works
well on a physical keyboard, it is suboptimal as a virtual
keyboard layout for finger or stylus input. As such
researchers have proposed various efficient alternatives [8,
35, 37, 38]. In the mobile context, a sizable amount of
research has been conducted to optimize the keyboard
layout for gestural typing and touch typing. As for the
gestural typing, Smith, et al. [49] used Pareto front
optimization to optimize keyboard layout based on three
metrics, including gesture clarity, gesture speed, and
similarity to QWERTY. Moreover, Bi and Zhai [9]
introduced three types of QWERTY constraints in layout
optimization, and investigated layout learnability and text
entry performance. For the touch typing, Oulasvirta et al.
[43] proposed the KALQ layout, designed to improve two
thumb typing on a split keyboard.

Text Entry Methods on Mobile and Wearable Devices
The primary challenge of text entry on a smartwatch is to
overcome the “fat finger problem” [53], where keys on a
Qwerty keyboard of a smartwatch are too small to be
selected with efficiency and precision. A large body of
research has been carried out to improve text entry
experience on smartwatches. Most are two-handed
techniques and use finger touch as the input modality [13,
21, 23, 27, 41, 48, 61]. A common technique used in the
existing literature is expanding the size of the Qwerty
keyboard. For example, Zoomboard [41] requires the user
to first zoom into a region containing the desired key to

expend the size of the keyboard. This makes selection
easier. Splitboard [27] took a similar approach by showing
a keyboard larger than the screen of the smartwatch. The
issue is that half of the keyboard gets cut off by the screen
edge, thus requiring the user to scroll if the desired key falls
off-the-screen. DualKey [23] has keys that can be twice as
big, as the technique associates each key with two letters.
Tapping the key using different fingers selects different
letters. TouchOne [3] is a commercially available product
with a circular keyboard designed to be used by both hands.
DriftBoard [48] takes a different approach by allowing a
user to pan a moveable keyboard to position the desired key
under a fixed cursor point.

Aside from these techniques, other approaches avoid
pointing and selection on a keyboard using touch. For
example, Swipeboard [13] addresses the problem using a
hierarchical marking menu. With it, the user first swipes a
directional mark to select a region where the desired letter
resides. Once the region is selected, the user selects the
desired letter by striking another directional mark.
WatchWriter [21] applies the shape writing technique [33]
on a smartwatch. Unlike other techniques, with which the
user enters letters one by one, WatchWriter allows the user
to enter an entire word by drawing a touchscreen gesture.
Last but not least, Compass [61] was designed for non-
touch smartwatches. The technique allows the user to enter
keys on a circular layout by pointing at them using a rotary
bezel of the watch screen.

Within the existing research, the most relevant work to ours
is that of Katsuragawa, et al. [29] , who proposed entering
text entry on a large wall display by detecting hand
movement with a smartwatch’s built-in IMU sensors.
However, the technique was not designed for smartwatch
use as it relies on an external display.
DESIGN CONSIDERATIONS
We consider the following factors for designing an
efficient one-handed text entry method for smartwatches.

Screen Stability
Smartwatches already suffer from limited screen real-
estate. Keeping the watch screen stable becomes even more
crucial for entering text to allow a user to constantly
monitor the screen content (e.g., entered text) to adjust
input behavior or take necessary actions (e.g., backspacing,
selecting suggestions). While it is impossible to completely
eliminate screen movement when a gesture is drawn, our
goal is to ensure this new text entry method can minimize
screen oscillations. It is also important to have the screen
in a reasonable viewing range to provide the same degree
of fidelity as touch interactions. Therefore, techniques that
may impact screen stability or viewing range (e.g.,
peephole display [30, 59] or mid-air hand gestures [39, 55,
62] are not in our considerations. Discrete input operations
[16, 18, 46, 63] do not have this problem but are limited to
a small number of commands insufficient for text entry.

Eyes-free Input.
While viewing range of the screen is our key design
consideration, a text entry method can benefit from eyes-
free input to facilitate common smartwatch use situations,
such as walking with the watch hand hanging along the
body. This introduces a number of challenges for input as
the degree-of-freedom of the wrist is then limited by arm
anatomy. For example, when the arm is hanging vertically,
it may be hard to input by tilting the smartwatch screen in
the x and y directions with the device’s built-in IMU
sensors [29], akin to when the hand is held horizontally in
front of the chest. Output can be another challenge in this
situation as the user loses visual contact with the screen.
Feedback on the entered text can be provided via audio
using a wireless headphone or vision through a near-eye
display (e.g., Google Glass).

Learnability
Learning needs to be reduced for novice users to quickly
transition to expert users. Advanced techniques that may
lead to more efficient input will also need to be considered
allowing users to develop their skills over time to achieve
maximum performance in speed and accuracy. However,
trade-offs may exist between efficiency and learnability.
For example, letter gesture input methods (e.g.,
Zoomboard [41]) require less learning efforts than word
gesture input methods (e.g., WatchWriter [21]) but can be
slower in entering text. In our current exploration, we focus
on letter gesture input for the sake of learnability.

WRISTEXT
Considering these factors, we designed our one-handed
text entry techniques based on wrist whirling gestures [19].
The technique is effective for drawing common
touchscreen gestures using the same-side hand in varying
mobile contexts, such as standing or walking. Whirling the
wrist also allows the smartwatch screen to be maintained
in a relatively stable position during the gesture.

Our technique works on a round watch face by allowing a
user to enter English letters by striking a sequence of
directional marks on a circular keyboard (similar to a
marking menu [34]) (Figure 1). The keyboard contains
keys, each associated with a group of letters. Based on the
user’s input, the system searches (in a dictionary) all the
words corresponding to the sequence of the selected keys,
and provides a list of candidate words ordered by
frequency of use (like T9). The user then pinches their
thumb and index finger (detected using a piezo, similar to
the one used in WristWhirl [19]) to switch to the selection
mode, in which the first word is highlighted. If it is the
desired word, the word will be committed automatically
(auto-commit) upon the user typing the next word (e.g.,
striking the first letter of the next word), after which, a
space will be inserted automatically. Otherwise, the user
must locate the word in the list before typing the next one.
Navigating the list can be carried out using pinch. The word
can also be committed manually by rubbing the thumb and
index finger. Auto-complete and auto-correct were

implemented following the algorithm described in [20, 61]
(see details later). With auto-complete, the user can pick
the desired word from the candidate list (in the selection
mode) without having to input all the letters. Finally, the
user can rub their fingers (thumb and index finger) twice to
delete the last letter. The keyboard can be integrated into
an existing app or activated using the pinch gesture.

Figure 2. WrisText hardware.

WrisText Hardware
Our hardware is similar to the one presented in WristWhirl
[19]. The device contains a Ticwatch 2 and a plastic watch
strap augmented with 12 infrared proximity sensors
(LITON LTE-301 & 302) placed approximately 0.4 cm
apart from each other (Figure 2). The proximity sensor
operates at 940nm with a maximum sensing distance of
approximately 12cm. We connected the sensors to an
Arduino DUE microcontroller, which is connected to a
laptop reading sensor data at a speed of 9600 Hz. Data is
then sent and visualized on the Ticwatch 2 through
Bluetooth. Pinch and rub is detected using piezo vibration
sensors placed inside the wrist strap [6]. Prior to using the
device, it needs to be calibrated by rotating the wrist in a
circular motion several times. Once the device is calibrated,
the user can whirl their wrist to control the movement of a
cursor to draw gestures. The wrist’s joystick-like motion is
tracked through the infrared proximity sensors. Tracking
and cursor control was implemented following the
algorithm presented in WristWhirl [19].

USER STUDY 1: KEYBOARD KEY SIZE
Keys need to be large enough to facilitate pointing;
however, large keys may cause ambiguity issues when
associated with multiple letters. A one-on-one mapping
between keys and letters (e.g., target size of 360˚/26 = 13.8˚)
is ideally unambiguous; yet our initial test with three
participants suggested that such pointing resolution was
nearly impossible to achieve using the wrist. The goal of
this study was thus to investigate the performance of target
acquisition using wrist whirling, which led to learning the
optimal target size to inform our keyboard design. Further,
we also investigated if a target’s location affects the users’
performance as well as physical comfort.

Participants
Fifteen right-handed participants (3 female) between the
ages of 22 and 30 participated in the study.

Apparatus
The study was conducted using our prototype device
described in the WrisText section without the Ticwatch.
Participants were asked to wear the device on the wrist of
their left hand during the study. As a common practice, the
experimental interface was shown on a laptop screen
instead of the smartwatch. The 14-inch screen had a
resolution of 1920 × 1080, and was placed at a comfortable
distance from participants. A computer mouse was used by
participants to indicate the start of a trial.

Study Design
The experiment employed an 8 × 5 within subject factorial
design. The independent variables were: (i) Target
Location, which is defined by the eight typical gesturing
directions: East, North-East, North, North-West, West,
South-West, South, and South-East; and (ii) Target Size,
which is defined as multiples of 13.8˚: 27.6˚, 41.4˚, 55.2˚,
69˚, 82.8˚. In each trial, participants performed tasks in one
of the Target Location × Target Size combinations. Each
condition repeated 5 times. The Target Location × Target
Size combinations were randomized among trials. The
experiment can be summarized as 8 Target Locations × 5
Target Sizes × 5 Repetitions × 15 Participants = 3000 trials.

Figure 3. User Study 1 setup.

Task and Procedure
Prior to the study, the device was calibrated for each
participant, followed by a training session. The task
required participants to select an arc-shaped target by
striking the wrist towards its direction. The target with one
of the five sizes was placed in one of the eight regions,
within which the target was placed randomly as long its
center fell inside the region. Participants were asked to
perform the task in a sitting position. A trial started after
participants clicked the computer mouse using their right
hand. Once started, participants were instructed to perform
the pointing task using their left hand as fast and as
accurately as possible (Figure 3). Selection was made by
crossing [4]. In other words, a target was selected once the
cursor passed a threshold distance from the center of the
circle. Based on our test, we set the threshold to 54.5% of
the radius. A trial failed if the cursor crossed the threshold
from outside the target. A trial ended regardless if the target
was selected successfully or not. Upon the end of a trial, a
new target of a random size appeared in a random location.
We repeated this process until participants completed all
the trials, at which point participants were asked to rate the
level of comfort for each of the eight directions.
Results
Dependent measures included the number of errors and
average task completion time. An error was recorded when

participants failed to select the target. Task completion
time was recorded as the time elapsed from when the
mouse is clicked to the end of a trial.

Data was analyzed using a two-way repeated measures
ANOVA and Bonferroni corrections for pair-wise
comparisons. For violations to sphericity, we used a
Greenhouse-Geisser adjustment for degrees of freedom.

Task Completion Time
There was no significant effect of Target Location (F3.34,

46.76 = 0.81, p = 0.5) and Target Size (F4, 56 = 1.50, p = 0.22).
There was also no significant interaction effect on Target
Location × Target Size (F28, 392 = 1.148, p = 0.28).

Overall, participants spent on average 402ms (s.e. = 28ms)
per strike. Interestingly, task completion time was not
affected by either size or location. We attributed this result
primarily to the crossing mechanism, which prevented
participants from making fine adjustment once the cursor
passed the threshold distance.

Accuracy
The overall average accuracy was 85.4%. ANOVA yielded
a significant effect of Target Size (F1.61, 22.47 = 78.52, p <
0.001). We found no significant effect of Target Location
(F3.75, 52.43 = 2.30, p = 0.07) but there was a distinct trend
toward significance. We also found no significant
interaction effect for Target Location × Target Sizes (F28,

392 = 1.16, p = 0.27). Post-hoc pair-wise comparisons
revealed significant differences between all pairs of Target
Size (all p < 0.05). As expected, accuracy increased with
the size of the target increasing (Figure 4 right). The targets
around 55.2˚ appeared to be well balanced between striking
accuracy (≥ 90%) and key size.

Figure 4. Left: striking accuracy shown by target location;
Right: striking accuracy shown by target size. Error bars

show ±2 SE in all figures.

Comfort Ratings
In addition to quantitative measurements, we also surveyed
subjective ratings of the physical exertion of the eight
striking directions on a continuous numeric scale: 0
(extremely easy); 1 (easy); 2 (somewhat easy); 3
(moderate); 4 (somewhat hard); 5 (hard); 6 (extremely
hard)). Overall, the directional strikes were rated somewhat
easy to perform (avg. = 2.6; s.e. = 0.3). One-way ANOVA
yielded a significant effect of Target Location (F3.42, 47.88 =
4.12, p < 0.05). The virtual directions were rated easy to
perform with the average rating for the North and South
locations being 1.2 and 0.5 respectively. With respect to

the 55.2˚ target, this finding is consistent with the
quantitative result, which revealed a high level of accuracy
in these two locations (e.g., 89% and 88%). Note that such
consistency is not always the case (Figure 5). For example,
the backslash directions (e.g., North-West and South-East)
were rated among the hardest to strike (e.g., 3.9 and 4) but
not the least in accuracy. Horizontal directions were rated
somewhat easy to perform (East: 2.87 and West: 2.53) but
their accuracies were on the lower end (although
statistically no difference in all locations).

Figure 5. Comfort vs accuracy. (a) comfort ratings and (b)

accuracy of the 55˚ target shown by target location.

Our observations suggest that this is mainly attributed to
the inconsistency between people’s perceived direction
that a certain wrist strike may produce and the actual
direction the wrist strike produces. Striking horizontally,
for example, is harder than perceived. Participants often
overshot the target and landed somewhere near the South-
West and South-East locations, depending on strike
direction. Training can help solve this problem. Backslash
was also hard to perform, so participants required practice.
Once learned, gesture performance was fairly good. This is
consistent with the findings from WristWhirl [19].

To summarize, the results confirmed that aside from size,
striking comfort is another important factor to consider for
the design of WrisText. The level of overall striking
comfort depends on the location of the target keys. There
is also a trend for the location to influence target
acquisition accuracy. We considered both in our design.

KEYBOARD KEY CONFIGURATION DESIGN
Study 1’s results suggest that a target needs to be at least
55.2˚ for participants to maintain a reasonable pointing
accuracy (e.g., ≥ 90%). Keys, however, are preferred to be
small to avoid input ambiguation. With this constraint, we
considered the following three types of configurations.

Figure 6. From left to right, Configuration 1,2, and 3.

Configuration 1: This configuration contains keys of the
same size (e.g., 60˚ each). Figure 6a shows an example of
this configuration with a minimum variance in the number
of letters between keys.

Configuration 2: This configuration constrains the size of
the letters (e.g., 13.8˚ each), thus keys are different in size.
Figure 6b shows an example, containing 4 four-letter keys
(55.2˚) and 2 five-letter keys (69˚).

Configuration 3: A variation of Configuration 2 (Figure
6c), containing 5 four-letter keys and 1 six-letter key
(82.8˚).

To understand the performance difference between the
options, we estimated the overall striking accuracy for each
of them using the result from Study 1. For example, the
overall accuracy of Configuration 2 can be estimated by
averaging the accuracies of four 55.2˚ targets and two 69˚
targets, e.g., (90% × 4 + 96% × 2) / 6 = 92%. Similarly, the
estimated accuracy for Configuration 3 is (90% × 5 + 99%
× 1) / 6 = 91.5%. We did not have the accuracy data for
Configuration 1, as the 60° target was not tested in the
study. However, this missing data can be estimated by
curve-fitting using a polynomial regression (Figure 7). The
result revealed that the estimated accuracy of the 60˚ key is
around 92%. Since the difference between the three options
is small, we decided to use Configuration 1 for aesthetic
reasons (as the keyboard is symmetrically divided).

Figure 7. Accuracy regression curve.

The next step was to assign letters to the layout. We began
with the first five-letter key, which can be placed in 26
different locations (each starting with one of the 26 letters).
Once the first is set, the second five-letter key can only be
placed at 5 locations, which also sets the locations of the
rest of the keys (all four-letter keys). Thus, in total there are
26 × 5 = 130 ways of distributing the letters by bucketing
them into keys. Note that half of these 130 combinations
are redundant versions, generated by swapping the first and
second five-letter keys yielding a total of 130 / 2 = 65
unique key configurations.

GENERAL OPTIMIZATION APPROACH
This section presents an optimization approach developed
based on Smith et al.’s work [49]. The goal is to find a
keyboard layout that can improve overall striking accuracy,
comfort, input clarity, and is relatively easy to learn.

Optimization Metrics
We frame the problem of designing a circular keyboard
layout as a multi-objective optimization problem, where
the four objectives are to improve: (1) striking comfort, (2)
striking accuracy, (3) word disambiguation, and (4) layout
learnability.

Striking Comfort. Striking comfort considers placing
frequently used letters near the locations most comfortable
for users to strike.

Striking Accuracy. Frequently used letters should also be
placed near locations where effective accuracy can be
achieved. As suggested by Study 1, a balance needs to be
stricken between comfort and accuracy.

Word Disambiguation. Each keyboard key will be
associated with a number of letters. Thus, a series of key
strikes may map to a set of different words. To minimize
ambiguity, a brute-force search can be employed to try all
the possible mappings between keys and letters, and
identify the layouts that introduce minimum word
ambiguation (details are discussed later).

Layout Learnability. Placing the letters in an alphabetical
order can help users learn and locate the target keys
quickly. Organizing the letters to the maximize comfort,
accuracy, and word disambiguation may lead to an
unfamiliar layout. Alternatively, a hybrid approach is
swapping the keys while retaining the order of the letters
inside the keys.
Optimization Procedure
To maximize the objectives based on these metrics, a step-
wise search can be employed by iterating all the possible
layout variations based on these metrics and their weights.
Below we explain our optimization procedure.

Calculating Disambiguation Scores
For each of the 65 key configurations, a program can
simulate key strikes for each word in a chosen corpus. Due
to the ambiguity of words, a series of key strikes can be
mapped to a list of (at least one) candidate words. This list
is then ordered based on word frequency provided by the
corpus. The rate of the target word that appears on the top
of the list is used as the disambiguation score for each key
configuration. Higher scores are preferred.

Calculating Accuracy and Comfort Scores
For each variation of the keyboard key configuration, the
comfort and accuracy scores are assigned to each of the six
keys. The comfort score of a key depicts how comfortable
users feel when striking in the direction of that key. The
accuracy score depicts how accurate users can select the
key using the wrist. Both scores can be determined through
an empirical study. Furthermore, each key will be assigned
a weight based on the frequency of the encapsulated letters.
For example, a key associated with more frequently used
letters received higher weight those associated with less
frequently used letters. Weight was calculated using the
average letter frequency of that key since average was an
intuitive way to represent the overall frequency of the
letters. For example, the weight for [A B C D] is (8.7% +
2% + 4.3% + 3.8%) / 4 = 4.7%. Finally, the accuracy score
for a keyboard layout was simply the sum of the weighted
accuracy scores of the six keys. Comfort scores were
calculated in the same manner.

Metric Normalization
Scores need to be normalized to be appropriately weighted.
For example, they can be normalized in a linear fashion, so
that the worst possible score is mapped to a 0 and the best
possible score is mapped to a 1.

Weight Iteration
Users may weigh the three metrics differently, depending
on usage scenarios. This may impact the layout of the
keyboard. Therefore, the last step is to iterate different
weight combinations (e.g., using a step size of 0.01) and
identify an optimized layout for each combination by
maximizing the following objective function.

F(Com, Acc, DisAmb) = α × Com + β × Acc + γ × DisAmb
where α, β, and γ is the weight of comfort (Com), accuracy
(Acc) and disambiguation (DisAmb), and α + β + γ = 1.

WRISTEXT KEYBOARD LAYOUT
We used the aforementioned approach to optimize our
keyboard layout, where we approximated the accuracy and
comfort scores using the results from Study 1. For each
key, the comfort score was approximated by using the
average subjective rating from the location closest to the
center of the key. The accuracy score was approximated
using a similar technique of selecting the accuracy data
from the location closest to the center of the key. For the
sake of learnability, the letters were organized in an
alphabetical order, in a clockwise direction, similar to [44,
61]. Assuming the keyboard can be rotated in the clockwise
direction with a resolution of 1˚, there are 23400 (65 × 360)
variations of keyboard layouts. For the corpus, we used the
top 15,000 words from the American National Corpus [1],
which covers over 95% of common English words [61].

Figure 8. Optimized keyboard layouts shown by accuracy,

comfort, and disambiguation.

For each weight combination, we iterated all 23400
keyboard layouts, and identified the one with the highest
score from function F as the optimal layout. Among all the
optimal layouts, many were to be identical, indicating that
only a relatively small set of the layouts performed well on
the three metrics. We plot these optimal layouts in Figure
8, in which the x-axis, y-axis, z-axis represent comfort,
accuracy and disambiguation respectively. Since the
comfort and accuracy scores were estimated using the
discrete values from the 8 directions, each point in the
figure represents multiple layouts with the same x, y, and z
values. Each layout represents a compromise between the
three metrics: a high value in one metric does not
necessarily lead to similarly high values in the other

metrics. The choice of layout for a user depends on the
importance of each metric in different usage scenarios. A
new user who is less accurate may prefer a layout biased
towards accuracy, while a user who can strike accurately
may prefer a layout biased toward clarity. Our result guides
users to choose one to satisfy their needs.

In our case, we wished to choose a layout that balances all
metrics, so we used one that is near the line where x = y =
z. It represents a layout that perform equally well over the
three metrics. Fifteen layouts satisfied this requirement. As
expected, all share the same key configuration with only
slight differences in the orientation of the dial, e.g., ±1˚
between two adjacent variations. We chose the one
residing in the center of the variations (Figure 1). In
comparison to the worst performance in each individual
metric, this layout has 27%, 10.85% and 5.76%
improvements on striking comfort, striking accuracy and
word disambiguation respectively. With this layout, 85.9%
of the words in the corpus are the first one in the candidate
list and 95.3% were among the top three.
AUTO-COMPLETE & AUTO-CORRECT
Like many modern smart keyboards [21, 61], we developed
a feature to support automatic completion and correction.
Our technique built on [61] for auto-complete and [20] for
auto-correct. We employed a Bayesian model to predict a
target word W based on user’s input S (e.g., a series of key
strikes). The system then calculates the probability of W in
a dictionary using:

 𝑃𝑃(𝑊𝑊|𝑆𝑆) ∝ 𝑃𝑃(𝑆𝑆|𝑊𝑊)×𝑃𝑃(𝑊𝑊)
As with many smart keyboard techniques [28], we assume
that users generate no insertion or omission errors and we
treat each key strike independently [17, 20]. Thus, we have:

𝑃𝑃(𝑆𝑆|𝑊𝑊) = �𝑃𝑃(𝑆𝑆𝑖𝑖|𝑊𝑊𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 × 𝛼𝛼𝑚𝑚−𝑛𝑛

where Si refers to the ith letter of the word entered by the
user, and Wi is the ith letter of W. When calculating P(S|W)
for auto-complete, we consider all W in the dictionary
whose length is between S and S+8, with 8 being
determined based on our test. Here, α is the penalty to
prevent long, high-frequency words from dominating
short, low-frequency words, and m is the length of W,
where m ≥ n. Thus, the larger the difference in length
between W and S, the more a penalty is given to W. We
tested α from 0.3 to 0.7 in our simulation, and found α =
0.62 yields the best compromise between the
aggressiveness of auto-completion and coverage of
candidates.

Auto-correct deals with cases where the user fails to select
a desired key. Our estimated striking accuracy for a 60˚ key
is 92%. We thus used 0.92% for P(Si|Wi) if Si and Wi were
from the same key. In the case when Si and Wi belonged to
keys that were adjacent to each other or separated by a third
key, we chose 0.035 and 0.005 respectively. These
numbers worked well in our present work. Future

development can infer the numbers using an experiment
similar to Study 1.

USER STUDY 2: PERFORMANCE EVALUATION
We conducted a five-day user study to investigate the
performance of WrisText. The goal of the study was to
measure how well people could perform text entry using
our technique in common smartwatch usage conditions.
We were also interested in knowing how user performance
can be improved through practice over time.

Participants
Ten right-handed participants (4 female) between the ages
of 20 and 25 participated in the study.

Figure 9. Study setup. (a) hand-up condition; (b) hand-down

condition; and (c) capacitive sensors.

Apparatus and Task Conditions
The device was similar to the one described in the
WrisText section earlier, except that we used finger-worn
capacitive sensors to detect pinch gestures to eliminate
errors caused by pinch detection (Figure 9). The rub
gesture was replaced by pinching the thumb and middle
finger. Participants were asked to wear the device on the
wrist of the non-dominant left hand to perform a series of
text entry tasks in two different hand postures, hand-up and
hand-down (Figure 9). They were also required to perform
the tasks while standing to simulate smartwatch usage
situations. In the hand-up condition, participants held the
watch in front of their chest. This allowed them to see the
keyboard and the gesture trace they were drawing on the
watch screen. The text entered by participants, along with
the top three candidates generated by our software, was
also shown on the screen of the smartwatch (Figure 1). In
the hand-down condition, participants were required to
have the watch hand hanging naturally alongside the body.
In this condition, no visual feedback of the keyboard was
given. Text entry was carried out eyes-free. The top three
candidates and the text entered by the user were shown on
a 27-inch monitor, placed at a comfortable distance from
the participant. This was to simulate the situation where a
near-eye display (e.g. Google Glass) is available to the user.
In both conditions, test phrases were shown on the monitor.
Procedure and Design
The study consisted of a series of sessions, with one session
occurring per day. In each session, participants typed 18
phrases with each hand posture, the same across all
participants, randomly picked from [60]. No phrases were
repeated across different sessions. Thus, we used 144
different phrases (18 phrases × 8 sessions) in the study.
Prior to the experiment, participants were asked to practice

for as long as they wanted. Participants were encouraged to
take breaks during the session. Each experimental session
lasted around 40 minutes, depending on participant speed.
Hand postures were counter-balanced among participants.
We collected subjective feedback from participants in the
last session. In total, we collected 10 participants × 5
sessions × 18 phrases × 2 postures = 1800 phrases.

Results
We analyzed the data using a two-way repeated measures
ANOVA and Bonferroni corrections for pair-wise
comparisons. For violations to sphericity, we used a
Greenhouse-Geisser adjustment for degrees of freedom.

Text-Entry Speed
ANOVA yielded a significant effect of Session (F1.96, 17.65
= 311.20, p < 0.001) and a marginal significance of Hand
Posture (F1, 9 = 5.21, p = 0.048). There was also significant
interaction effect on Session × Hand Posture (F4, 36 = 7.55,
p < 0.001), suggesting more improvement in the hand-
down condition than in the hand-up condition. Post-hoc
pair-wise comparisons revealed significant differences
between all pairs of Session (all p < 0.05).

Figure 10. Mean text entry speed over 5 days.

Overall, the average text entry speed across all tested
conditions was 9.9 WPM (s.e. = 1.1). In particular,
participants achieved 9.7 WPM (s.e. = 1.0) and 10.1 WPM
(s.e. = 0.9) in the hand-down and hand-up conditions
respectively. Figure 10 shows the mean WPM by
session/day. The steep curve over five days shows a
substantial performance improvement. The average speed
for the first session was 5.8 WPM (s.e. = 0.1). It bumped
up to 15.2 WPM (s.e. = 0.5) in the last session, with an
increase of 162%. As expected, it was easier for
participants to start the first day with hand-up (6.3 WPM;
s.e. = 0.1) than with hand-down (5.4 WPM; s.e. = 0.2) as
they relied on visual cues to get familiar with the keyboard
layout. However, as their skills improved over time, the
speed in the hand-down condition (11.6 WPM; s.e. = 0.4)
caught up in Session 4 (hand-up speed: 11.3 WPM; s.e. =
0.3). The result of this study is promising. Since the trend
was still increasing, we picked two participants based on
availability with gender balanced, and asked them to do
three more sessions.

Figure 11 shows the data from these two participants for all
eight sessions. As shown in the figure, the speed continued
to increase after session 5, and finally achieved an average
of 24.9 WPM (s.e. = 0.1) in session 8. The highest speed

(e.g., 27.2 WPM) was observed from P1 in the last session
in the hand-down condition. After eight sessions, the
average speed reached 26.9 WPM (s.e. = 0.3) in the hand-
down condition and 22.8 WPM (s.e. = 0.4) in the hand-up
condition. Interestingly, typing with hand-down
outperformed hand-up. This is consistent with the trend
from the main sessions. Our observations suggest that this
is primarily because participants tended to slow down to
ensure that they could strike precisely when they saw the
cursor on the watch screen. This is consistent with the
findings from WristWhirl [19]. However, formal
investigation is needed to confirm the trend and findings.

Figure 11. Text entry speed of the two extra participants

over 8 days.

Error Rate
Error rate is reported based on uncorrected error rate (UER)
and total error rate (TER). Uncorrected errors were the
errors found in the final input phrases whereas total errors
included both corrected and uncorrected errors.

For UER, ANOVA yielded a marginal significance of
Session (F2.33, 20.93 = 3.35, p = 0.048). There was no
significant effect of Hand Posture (F1, 9 = 0.89, p = 0.37)
and no significant interaction effect on Session × Hand
Posture (F1.51, 13.55 = 1.71, p = 0.219). For TER, ANOVA
yielded a significant effect of Session (F1.74, 15.63 = 96.19, p
< 0.001) and Hand Posture (F1, 9 = 18.09, p < 0.005). There
was also a significant interaction effect on Session × Hand
Posture (F2.27, 20.46 = 8.10, p < 0.005), suggesting that TER
dropped quicker in the hand-down condition than in the
hand-up condition. Post-hoc pair-wise comparisons
showed significant differences between all pairs of Session
(all p < 0.05).

Overall, the average TER and UER across all study
conditions was 5.92% (s.e. = 1.43%) and 0.16% (s.e. =
0.03%) respectively. In particular, the average TER and
UER was 4.98% (s.e. = 1.13%) and 0.13% (s.e. = 0.03%)
in the hand-up condition, and 6.87% (s.e. = 1.75%) and
0.19% (s.e. = 0.05%) in the hand-down condition. Figure
12 shows UER and TER by Session in two different hand
conditions. TER was higher in the hand-down condition
than in the hand-up condition for the first three sessions,
but reached a similar level in the last two sessions with the
improvement of participants’ skill. The average TER in the
hand-up condition in Session 1 was 10.47%. It improved
significantly after practice. As such, we expect that the
pointing accuracy by striking with the wrist will also
increase with more practice.

Figure 12. Mean UER and TER over 5 days.

Auto-Complete Rate
Auto-complete rating of a word was found by dividing the
number of automatically filled letters by the length of that
word. Thus, average auto-complete rate was the average of
the auto-complete rate of all the tested words.

Overall, auto-complete accounted for 21.55% (s.e. =
1.55%) of the input words across all tested conditions with
20.43% (s.e. = 0.33%) occurring in the hand-up condition
and 22.68% (s.e. = 0.99%) in the hand-down condition. For
example, text entry speed without auto-complete on Day 5
was 15.2 × (100% - 21.55%) = 11.9 WPM. ANOVA
yielded a significant effect of Session (F4, 36 = 3.735, p <
0.05) but no significant effect on Hand Posture (F1, 9 = 3.97,
p = 0.078) and Session × Hand Posture (F1.67, 14.99 = 2.61, p
= 0.113).

Figure 13. Mean auto-complete rate over 5 days.

Examining the auto-complete rates separately for the hand-
down and hand-up conditions, we found that the
significance in Session only existed in the hand-down
condition (F1.55, 13.95 = 60.8, p < 0.05). In particular, we
found a significant drop between Session 1 and Session 2
(p < 0.05) and no significant difference between the
remaining sessions (all p > 0.05) (Figure 13). This suggests
that participants relied on auto-completion more at the
beginning when they were new to the technique, especially
when the keyboard layout was not visually available. Many
of the instances showed an inefficient use of auto-
complete. For example, participants tended to use auto-
complete even though the desired word was not on the top
of the candidate list as this allowed them to strike less, thus
having less of a chance to make pointing errors, but with
the cost of visual search time. It did not take them long to
develop sufficient confidence for their striking skills.

Subjective Feedback
Overall, participants welcomed the idea of WrisText for
one-handed text entry on a smartwatch. Most were amazed

at the speed they had achieved even though some felt
slightly awkward about whirling the wrist at the beginning.
A participant commented “I cannot believe I can enter text
in such a fast speed, even faster than I could on my
smartphone!” (P1). Everyone agreed that auto-correct and
auto-complete were useful for saving time. Interestingly,
once participants were familiar with our technique and
keyboard layout, they preferred to enter text with their
hand-down due to the lack of fatigue. For example, a
participant reported “After I got familiar with the keyboard
layout and striking directions, it was much easier for me to
enter text when my hand down.” (P2).

DISCUSSION, LIMITATIONS, AND FUTURE WORK
We present insights we learned from this work, discuss the
limitations, and propose future research.

Text entry speed and error rate. The average speed of
WrisText across the first five sessions is 9.9 WPM.
Participants were able to achieve 15.2 WPM in the last
session. This is comparable to some of the two-handed
techniques. For example, the users of Zoomboard [41],
Swipeboard [13], Splitboard [27] and WatchWriter [21]
were able to achieve 9.8 WPM, 9.1 WPM, 15.3 WPM and
24 WPM after 15 minutes of practice. Longer practice with
Zoomboard [41] and Swipeboard [13] led to 17.1 WPM
and 19.6 WPM respectively. As for TER, WrisText
achieved 5.92% across the five sessions. This is lower than
Zoomboard (19.6%) [41] and Swipeboard (17.5%) [13] . It
is also promising to observe the increase in speed after
Session 5. This suggests that expert performance could be
even higher, which warrants a longer-term study.

Sensor and device form factor. WrisText is based on the
wrist’s joystick motion so it shares the same limitations as
WristWhirl [19]. For example, WrisText needs extra
sensors to detect the wrist’s striking motion but we believe
the sensors may be found in future smartwatches. For
future research, we are interested in extending this work by
exploring one-handed text entry technique using the
existing sensors in the smartwatches. Additionally,
WrisText was designed for smartwatches with a round
screen. We foresee that the concept can be extended to
rectangular screens, which warrants future investigation.

Improving keyboard layout. This work makes the first
attempt to design a one-handed text entry technique for
smartwatches. Our current keyboard layout was optimized
based on the data we collected and the algorithm we used
(e.g., how the accuracy and comfort scores were assigned).
It is a reasonably designed keyboard layout to demonstrate
the feasibility of our technique. However, just like
QWERTY, we see it as a long-term research effort to keep
improving the design of our keyboard layout. For example,
the 5-day study indicates pointing accuracy could be
significantly improved with practice. It is thus reasonable
to assume that the size of the keys can be reduced to further
reduce input ambiguity. Additionally, pointing accuracy
can be further improved using static decoding. We plan to

collect more striking data, to understand and model users’
pointing behavior. With this model, we will be able to
create key configurations that can better balance striking
accuracy and comfort. In this work, the keys’ comfort and
accuracy scores were estimated based on the location of the
eight samples to the center of the key. This rough
estimation can be improved by collecting data with a finer
sampling resolution. Furthermore, the accuracy and
comfort data were means but treated as single numbers in
the layout optimization. As such, the variance in the data
was overlooked. Future research will explore better
optimization methods. Finally, our keyboard layout was
optimized based on the data collected in the hand-up
condition. It worked well in the hand-down condition but
an interesting future research direction could be studying
what the user preferred posture is in common smartwatch
us conditions, upon which, the layout can be optimized.

Fatigue and RSI. WrisText is ideal for entering short
messages over a brief period of time when the other hand
is occupied. It is not meant to replace the existing two-
handed text entry methods. We expect that prolonged use
of wrist motion may cause RSI but users can switch back
to a traditional method (e.g., touchscreen) if there is any
discomfort.

User study. Aside from the two tested hand postures, many
smartwatch usage scenarios warrant careful investigation
(e.g., walking with the non-watch hand carrying objects).
Future research will test WrisText in more usage scenarios.
We will also deploy our device in the field and evaluate the
effectiveness of WrisText in real-world environments.

CONCLUSION
In this paper, we proposed, designed, and studied a one-
handed text entry technique on smartwatches. The
technique allows users to enter text using the same hand
wearing the smartwatch, by whirling the wrist in six
directions to select letters in a circular keyboard. We
designed the layout of the keyboard in an iterative
approach, where we first studied the optimal size of the
keyboard keys, and found that keys needed to be 55º or
wider to achieve over 90% striking accuracy. We then
optimized the keyboard layout by considering factors,
including keyboard learnability, striking accuracy, striking
comfort, and word disambiguation. This led to a final
design which was evaluated in a 5-day study with 10
participants. The result indicates that participants could
achieve an average text entry speed of 9.9 WPM across all
the sessions, and were able to type as fast as 15.2 WPM in
the last day. We believe smartwatches will become the
major platform for mobile text entry, and our technique
may serve as important groundwork for future work on
new text entry techniques for wearable devices.

ACKNOWLEDGEMENTS
This work was supported by William H. Neukom 1964
Institute for Computational Science of Dartmouth College.

REFERENCES
1. American National Corpus. 2016. Retrieved April 20,

2017 from http://www.anc.org/
2. Aria Wearable. 2014. Retrieved July 15, 2017 from

http://www.ariawearables.com/
3. TouchOne Keyboard. 2015. Retrieved July 15, 2017

from http://www.touchone.net/
4. Johnny Accot and Shumin Zhai. 2002. More than

dotting the i's - foundations for crossing-based
interfaces. In Proceedings of the 20th Annual ACM
Conference on Human Factors in Computing Systems
(CHI'02), 73-80.

 DOI=http://dx.doi.org/10.1145/503376.503390
5. Sandip Agrawal, Ionut Constandache, Shravan

Gaonkar, Romit Roy Choudhury, Kevin Caves and
Frank DeRuyter. 2011. Using mobile phones to write
in air. In Proceedings of the 9th international
conference on Mobile Systems, Applications, and
Services (MobiSys'11), 15-28.

 DOI=http://dx.doi.org/10.1145/1999995.1999998
6. Brian Amento, Will Hill and Loren Terveen. 2002.

The sound of one hand: a wrist-mounted bio-acoustic
fingertip gesture interface. In CHI '02 Extended
Abstracts on Human Factors in Computing Systems
(CHI EA'02), 724-725.

 DOI=http://dx.doi.org/10.1145/506443.506566
7. Xiaojun Bi, Tomer Moscovich, Gonzalo Ramos,

Ravin Balakrishnan and Ken Hinckley. 2008. An
exploration of pen rolling for pen-based interaction.
In Proceedings of the 21st Annual ACM Symposium
on User Interface Software and Technology
(UIST'08), 191-200.

 DOI=https://doi.org/10.1145/1449715.1449745
8. Xiaojun Bi, Barton A. Smith and Shumin Zhai. 2010.

Quasi-qwerty soft keyboard optimization. In
Proceedings of the 28th Annual ACM Conference on
Human Factors in Computing Systems (CHI'10), 283-
286.

 DOI=https://doi.org/10.1145/1753326.1753367
9. Xiaojun Bi and Shumin Zhai. 2016. IJQwerty: What

Difference Does One Key Change Make? Gesture
Typing Keyboard Optimization Bounded by One Key
Position Change from Qwerty. In Proceedings of the
34th Annual ACM Conference on Human Factors in
Computing Systems (CHI'16), 49-58.

 DOI=https://doi.org/10.1145/2858036.2858421
10. Barry Brown, Moira McGregor and Donald

McMillan. 2014. 100 days of iPhone use:
understanding the details of mobile device use. In
Proceedings of the 16th international conference on
Human-computer interaction with mobile devices and
services (MobileHCI'14), 223-232.

 DOI=http://dx.doi.org/10.1145/2628363.2628377
11. Vikram Cannanure, Xiang 'Anthony' Chen and

Jennifer Mankoff. 2016. Twist'n'Knock: A One-
handed Gesture for Smart Watches. In Proceedings of

the 42nd Graphics Interface Conference (GI'16),
189-193.

 DOI=https://doi.org/10.20380/GI2016.24
12. Liwei Chan, Yi-Ling Chen, Chi-Hao Hsieh, Rong-

Hao Liang and Bing-Yu Chen. 2015. CyclopsRing:
Enabling Whole-Hand and Context-Aware
Interactions Through a Fisheye Ring. In Proceedings
of the 28th Annual ACM Symposium on User
Interface Software and Technology (UIST'15), 549-
556.

 DOI=https://doi.org/10.1145/2807442.2807450
13. Xiang 'Anthony' Chen, Tovi Grossman and George

Fitzmaurice. 2014. Swipeboard: a text entry
technique for ultra-small interfaces that supports
novice to expert transitions. In Proceedings of the
27th annual ACM symposium on User interface
software and technology (UIST'14), 615-620.

 DOI=https://doi.org/10.1145/2642918.2647354
14. Andrew Crossan and Roderick Murray-Smith. 2004.

Variability in Wrist-Tilt Accelerometer Based
Gesture Interfaces. In International Conference on
Mobile Human-Computer Interaction
(MobileHCI'04), 144-155.

 DOI= https://doi.org/10.1007/978-3-540-28637-0_13
15. Andrew Crossan, John Williamson, Stephen Brewster

and Rod Murray-Smith. 2008. Wrist rotation for
interaction in mobile contexts. In Proceedings of the
10th International conference on Human computer
interaction with mobile devices and services
(MobileHCI'08), 435-438.

 DOI=http://dx.doi.org/10.1145/1409240.1409307
16. Artem Dementyev and Joseph A. Paradiso. 2014.

WristFlex: low-power gesture input with wrist-worn
pressure sensors. In Proceedings of the 27th Annual
ACM Symposium on User Interface Software and
Technology (UIST'14), 161-166.

 DOI=https://doi.org/10.1145/2642918.2647396
17. Leah Findlater and Jacob Wobbrock. 2012.

Personalized input: improving ten-finger touchscreen
typing through automatic adaptation. In Proceedings
of the 30th Annual ACM Conference on Human
Factors in Computing Systems (CHI'12), 815-824.

 DOI=http://dx.doi.org/10.1145/2207676.2208520
18. Rui Fukui, Masahiko Watanabe, Tomoaki Gyota,

Masamichi Shimosaka and Tomomasa Sato. 2011.
Hand shape classification with a wrist contour sensor:
development of a prototype device. In Proceedings of
the 13th international conference on Ubiquitous
computing (Ubicomp'11), 311-314.

 DOI=https://doi.org/10.1145/2030112.2030154
19. Jun Gong, Xing-Dong Yang and Pourang Irani. 2016.

WristWhirl: One-handed Continuous Smartwatch
Input using Wrist Gestures. In Proceedings of the
29th Annual Symposium on User Interface Software
and Technology (UIST'16), 861-872.

 DOI=https://doi.org/10.1145/2984511.2984563

20. Joshua Goodman, Gina Venolia, Keith Steury and
Chauncey Parker. 2002. Language modeling for soft
keyboards. In Proceedings of the 7th international
conference on Intelligent user interfaces (IUI'02),
194-195.

 DOI=http://dx.doi.org/10.1145/502716.502753
21. Mitchell Gordon, Tom Ouyang and Shumin Zhai.

2016. WatchWriter: tap and gesture typing on a
smartwatch miniature keyboard with statistical
decoding. In Proceedings of the 34th Annual ACM
Conference on Human Factors in Computing Systems
(CHI'16), ACM, 3817-3821.

 DOI=https://doi.org/10.1145/2858036.2858242
22. Anhong Guo and Tim Paek. 2016. Exploring tilt for

no-touch, wrist-only interactions on smartwatches. In
Proceedings of the 18th International Conference on
Human-Computer Interaction with Mobile Devices
and Services (MobileHCI'16), 17-28.

 DOI=https://doi.org/10.1145/2935334.2935345
23. Aakar Gupta and Ravin Balakrishnan. 2016.

DualKey: Miniature Screen Text Entry via Finger
Identification. In Proceedings of the 34th Annual
ACM Conference on Human Factors in Computing
Systems (CHI'16), 59-70.

 DOI=https://doi.org/10.1145/2858036.2858052
24. Chris Harrison, Desney S. Tan and Dan Morris. 2010.

Skinput: appropriating the body as an input surface.
In Proceedings of the 28th Annual ACM Conference
on Human Factors in Computing Systems (CHI'10),
453-462.

 DOI=https://doi.org/10.1145/1753326.1753394
25. Ken Hinckley, Jeff Pierce, Mike Sinclair and Eric

Horvitz. 2000. Sensing techniques for mobile
interaction. In Proceedings of the 13th annual ACM
symposium on User interface software and
technology (UIST '00), 91-100.

 DOI=http://dx.doi.org/10.1145/354401.354417
26. Yamada Hisao. 1980. A Historical Study of

Typewriters and Typing Methods: from the Position
of Planning Japanese Parallels. Journal of
Information Processing, 175-202.

27. Jonggi Hong, Seongkook Heo, Poika Isokoski and
Geehyuk Lee. 2015. SplitBoard: A Simple Split Soft
Keyboard for Wristwatch-sized Touch Screens. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI'15),
1233-1236.

 DOI=https://doi.org/10.1145/2702123.2702273
28. Akiyo Kano and Janet C Read. 2009. Text input error

categorisation: solving character level insertion
ambiguities using Zero Time analysis. In
Proceedings of the 23rd British HCI Group Annual
Conference on People and Computers: Celebrating
People and Technology (BSC-HCI'09), 293-302.

29. Keiko Katsuragawa, James R. Wallace and Edward
Lank. 2016. Gestural Text Input Using a Smartwatch.
In Proceedings of the International Working

Conference on Advanced Visual Interfaces (AVI'16),
220-223.

 DOI=https://doi.org/10.1145/2909132.2909273
30. Frederic Kerber, Antonio Krüger and Markus

Löchtefeld. 2014. Investigating the effectiveness of
peephole interaction for smartwatches in a map
navigation task. In Proceedings of the 16th
international conference on Human-computer
interaction with mobile devices and services
(MobileHCI'14), 291-294.

 DOI=http://dx.doi.org/10.1145/2628363.2628393
31. Frederic Kerber, Markus Lochtefeld, Antonio Kruger,

Jess McIntosh, Charlie McNeill and Mike Fraser.
2016. Understanding Same-Side Interactions with
Wrist-Worn Devices. In Proceedings of the 9th
Nordic Conference on Human-Computer Interaction
(NordiCHI'16), 1-10.

 DOI=https://doi.org/10.1145/2971485.2971519
32. Frederic Kerber, Pascal Lessel and Antonio Kruger.

2015. Same-side Hand Interactions with Arm-placed
Devices Using EMG. In Proceedings of the 33rd
Annual ACM Conference Extended Abstracts on
Human Factors in Computing Systems (CHI EA'15),
1367-1372.

 DOI=https://doi.org/10.1145/2702613.2732895
33. Per-Ola Kristensson and Shumin Zhai. 2004. SHARK

2: a large vocabulary shorthand writing system for
pen-based computers. In Proceedings of the 17th
annual ACM symposium on User interface software
and technology (UIST'04), 43-52.

 DOI=http://dx.doi.org/10.1145/1029632.1029640
34. Gordon P. Kurtenbach, Abigail J. Sellen and William

A. S. Buxton. 1993. An empirical evaluation of some
articulatory and cognitive aspects of marking menus.
Journal of Human-Computer Interaction, 1-23.

 DOI=http://dx.doi.org/10.1207/s15327051hci0801_1
35. James R. Lewis, Peter J. Kennedy and Mary J.

LaLomia. 1999. Development of a Digram-Based
Typing Key Layout for Single-Finger/Stylus Input. In
Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 415-419.
DOI=http://dx.doi.org/10.1177/15419312990430050
5

36. Christian Loclair, Sean Gustafson and Patrick
Baudisch. 2010. PinchWatch: a wearable device for
one-handed microinteractions. In Proceedings of the
12th international conference on Human-computer
interaction with mobile devices and services
(MobileHCI'10).

37. I. Scott MacKenzie and Shawn X. Zhang. 1999. The
design and evaluation of a high-performance soft
keyboard. In Proceedings of the 17th Annual ACM
conference on Human Factors in Computing Systems
(CHI'99), 25-31.

 DOI=http://dx.doi.org/10.1145/302979.302983
38. Jennifer Mankoff and Gregory D. Abowd. 1998.

Cirrin: a word-level unistroke keyboard for pen input.

In Proceedings of the 11th annual ACM symposium
on User interface software and technology
(UIST'98), 213-214.

 DOI=http://dx.doi.org/10.1145/288392.288611
39. Wenguang Mao, Jian He and Lili Qiu. 2016. CAT:

high-precision acoustic motion tracking.In
Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking
(MobiCom'16), 69-81.

 DOI=https://doi.org/10.1145/2973750.2985617
40. Sachi Mizobuchi, Shinya Terasaki, Turo Keski-

Jaskari, Jari Nousiainen, Matti Ryynanen and Miika
Silfverberg. 2005. Making an impression: force-
controlled pen input for handheld devices. In CHI '05
Extended Abstracts on Human Factors in Computing
Systems (CHI EA '05), 1661-1664.

 DOI=http://dx.doi.org/10.1145/1056808.1056991
41. Stephen Oney, Chris Harrison, Amy Ogan and Jason

Wiese. 2013. ZoomBoard: a diminutive qwerty soft
keyboard using iterative zooming for ultra-small
devices. In Proceedings of the 31th Annual ACM
Conference on Human Factors in Computing Systems
(CHI'13), 2799-2802.

 DOI=https://doi.org/10.1145/2470654.2481387
42. Santiago Ortega-Avila, Bogdana Rakova, Sajid Sadi

and Pranav Mistry. 2015. Non-invasive optical
detection of hand gestures. In Proceedings of the 6th
Augmented Human International Conference
(AH'15), 179-180.

 DOI=http://dx.doi.org/10.1145/2735711.2735801
43. Antti Oulasvirta, Anna Reichel, Wenbin Li, Yan

Zhang, Myroslav Bachynskyi, Keith Vertanen and
Per Ola Kristensson. 2013. Improving two-thumb text
entry on touchscreen devices. In Proceedings of the
31th Annual ACM Conference on Human Factors in
Computing Systems (CHI'13), 2765-2774.

 DOI=https://doi.org/10.1145/2470654.2481383
44. Morten Proschowsky, Nette Schultz and Niels Ebbe

Jacobsen. 2006. An intuitive text input method for
touch wheels. In Proceedings of the 24th Annual
ACM Conference on Human Factors in Computing
Systems (CHI'06), 467-470.

 DOI=http://dx.doi.org/10.1145/1124772.1124842
45. Mahfuz Rahman, Sean Gustafson, Pourang Irani and

Sriram Subramanian. 2009. Tilt techniques:
investigating the dexterity of wrist-based input In
Proceedings of the 27th Annual ACM Conference on
Human Factors in Computing Systems (CHI'09),
1943-1952.

 DOI=https://doi.org/10.1145/1518701.1518997
46. Jun Rekimoto. 2001. GestureWrist and GesturePad:

Unobtrusive Wearable Interaction Devices. In
Proceedings of the 5th IEEE International
Symposium on Wearable Computers (ISWC'01), 21.

47. T. Scott Saponas, Desney S. Tan, Dan Morris, Ravin
Balakrishnan, Jim Turner and James A. Landay.
2009. Enabling always-available input with muscle-

computer interfaces. In Proceedings of the 22nd
annual ACM symposium on User interface software
and technology (UIST '09), 167-176.

 DOI=https://doi.org/10.1145/1622176.1622208
48. Tomoki Shibata, Daniel Afergan, Danielle Kong,

Beste F. Yuksel, I. Scott MacKenzie and Robert J.K.
Jacob. 2016. DriftBoard: A Panning-Based Text
Entry Technique for Ultra-Small Touchscreens. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST'16), 575-
582.

 DOI=https://doi.org/10.1145/2984511.2984591
49. Brian A. Smith, Xiaojun Bi and Shumin Zhai. 2015.

Optimizing Touchscreen Keyboards for Gesture
Typing. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI'15), 3365-3374.

 DOI=https://doi.org/10.1145/2702123.2702357
50. Paul Strohmeier, Roel Vertegaal and Audrey

Girouard. 2012. With a flick of the wrist: stretch
sensors as lightweight input for mobile devices. In
Proceedings of the Sixth International Conference on
Tangible, Embedded and Embodied Interaction
(TEI'12), 307-308.

 DOI=https://doi.org/10.1145/2148131.2148195
51. Ke Sun, Yuntao Wang, Chun Yu, Yukang Yan,

Hongyi Wen and Yuanchun Shi. 2017. Float: One-
Handed and Touch-Free Target Selection on
Smartwatches. In Proceedings of the 35th Annual
ACM Conference on Human Factors in Computing
Systems (CHI'17), 692-704.

 DOI=https://doi.org/10.1145/3025453.3026027
52. Li Sun, Souvik Sen, Dimitrios Koutsonikolas and

Kyu-Han Kim. 2015. WiDraw: Enabling Hands-free
Drawing in the Air on Commodity WiFi Devices. In
Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking
(MobiCom'15), 77-89.

 DOI=http://dx.doi.org/10.1145/2789168.2790129
53. Daniel Vogel and Patrick Baudisch. 2007. Shift: a

technique for operating pen-based interfaces using
touch. In Proceedings of the 25th Annual ACM
Conference on Human Factors in Computing Systems
(CHI '07), 657-666.

 DOI=https://doi.org/10.1145/1240624.1240727
54. Jue Wang, Deepak Vasisht and Dina Katabi. 2014.

RF-IDraw: virtual touch screen in the air using RF
signals. In Proceedings of the 2014 ACM conference
on SIGCOMM (SIGCOMM '14), 235-246.
DOI=https://doi.org/10.1145/2619239.2626330

55. Wei Wang, Alex X. Liu and Ke Sun. 2016. Device-
free gesture tracking using acoustic signals. In
Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking
(MobiCom'16), 82-94.

 DOI=https://doi.org/10.1145/2973750.2973764

56. Lars Weberg, Torbjörn Brange and Åsa Wendelbo
Hansson. 2001. A piece of butter on the PDA display.
In CHI '01 Extended Abstracts on Human Factors in
Computing Systems (CHI EA'01), 435-436.

 DOI=http://dx.doi.org/10.1145/634067.634320
57. Jacob O. Wobbrock, Brad A. Myers and John A.

Kembel. 2003. EdgeWrite: a stylus-based text entry
method designed for high accuracy and stability of
motion. In Proceedings of the 16th annual ACM
symposium on User interface software and
technology (UIST'03), 61-70.

 DOI=https://doi.org/10.1145/964696.964703
58. Katrin Wolf, Anja Naumann, Michael Rohs and Jorg

Muller. 2011. Taxonomy of microinteractions:
defining microgestures based on ergonomic and
scenario-dependent requirements. In Proceedings of
the 13th IFIP TC 13 international conference on
Human-computer interaction - Volume Part I
(INTERACT'11), 559-575.

59. Ka-Ping Yee. 2003. Peephole displays: pen
interaction on spatially aware handheld computers. In
Proceedings of the 21th Annual ACM Conference
Conference on Human Factors in Computing Systems
(CHI'03), 1-8.

 DOI=http://dx.doi.org/10.1145/642611.642613

60. Xin Yi, Chun Yu, Weinan Shi, Xiaojun Bi and
Yuanchun Shi. 2017. Word Clarity as a Metric in
Sampling Keyboard Test Sets. In Proceedings of the
35th Annual ACM Conference on Human Factors in
Computing Systems (CHI'17), 4216-4228.

 DOI=https://doi.org/10.1145/3025453.3025701
61. Xin Yi, Chun Yu, Weijie Xu, Xiaojun Bi and

Yuanchun Shi. 2017. COMPASS: Rotational
Keyboard on Non-Touch Smartwatches. In
Proceedings of the 35th Annual ACM Conference on
Human Factors in Computing Systems (CHI'17), 705-
715.

 DOI=https://doi.org/10.1145/3025453.3025454
62. Sangki Yun, Yi-Chao Chen and Lili Qiu. 2015.

Turning a Mobile Device into a Mouse in the Air. In
Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and
Services (MobiSys'15), 15-29.

 DOI=http://dx.doi.org/10.1145/2742647.2742662
63. Yang Zhang and Chris Harrison. 2015. Tomo:

Wearable, Low-Cost Electrical Impedance
Tomography for Hand Gesture Recognition. In
Proceedings of the 28th Annual ACM Symposium on
User Interface Software and Technology (UIST'15),
167-173.
DOI=http://dx.doi.org/10.1145/642611.642613

	WrisText: One-handed Text Entry on Smartwatch using Wrist Gestures
	Jun Gong1, Zheer Xu1,2, Qifan Guo1,3, Teddy Seyed4, Xiang ‘Anthony’ Chen5, Xiaojun Bi6,
	Xing-Dong Yang1
	Dartmouth College1, Shanghai Jiao Tong University2, University of Science and Technology of China3, University of Calgary4, Carnegie Mellon University5, Stony Brook University6
	{jun.gong.gr; xing-dong.yang}@dartmouth.edu, zheerxu@outlook.com, guoqifan@mail.ustc.edu.cn, xiangchen@acm.org, teddy.seyed@ucalgary.ca, xiaojun@cs.stonybrook.edu
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	Related work
	One-handed Interaction on Smartwatches
	Keyboard Layout Optimization
	Text Entry Methods on Mobile and Wearable Devices

	Design Considerations
	Screen Stability
	Eyes-free Input.
	Learnability

	Wristext
	WrisText Hardware

	user study 1: keyboard key size
	Participants
	Apparatus
	Study Design
	Task and Procedure
	Results
	Task Completion Time
	Accuracy
	Comfort Ratings

	keyboard key configuration Design
	general Optimization approach
	Optimization Metrics
	Optimization Procedure
	Calculating Disambiguation Scores
	Calculating Accuracy and Comfort Scores
	Metric Normalization
	Weight Iteration

	wristext keyboard layout
	auto-complete & auto-correct
	user study 2: performance evaluation
	Participants
	Apparatus and Task Conditions
	Procedure and Design
	Results
	Text-Entry Speed
	Error Rate

	Discussion, limitations, and future work
	Conclusion
	ACKNOWLEDGEMENTS
	REFERENCES

