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Figure 1. (a) One-handed text entry on a smartwatch by whirling the wrist; (b) to enter “you”, a user selects [YZAB]  [ONML] 

 [TUVWX] by striking the wrist N  S  W. The entered text and suggested auto-complete are shown on the screen.

ABSTRACT 
We present WrisText - a one-handed text entry technique 
for smartwatches using the joystick-like motion of the 
wrist. A user enters text by whirling the wrist of the watch 
hand, towards six directions which each represent a key in 
a circular keyboard, and where the letters are distributed in 
an alphabetical order. The design of WrisText was an 
iterative process, where we first conducted a study to 
investigate optimal key size, and found that keys needed to 
be 55º or wider to achieve over 90% striking accuracy. We 
then computed an optimal keyboard layout, considering a 
joint optimization problem of striking accuracy, striking 
comfort, word disambiguation. We evaluated the 
performance of WrisText through a five-day study with 10 
participants in two text entry scenarios: hand-up and hand-
down. On average, participants achieved a text entry speed 
of 9.9 WPM across all sessions, and were able to type as 
fast as 15.2 WPM by the end of the last day. 
Author Keywords 
Smartwatch; text entry; one-handed input;  
ACM Classification Keywords 
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Interfaces. - Graphical user interfaces. 

INTRODUCTION 
Text entry is a common and important task in daily mobile 
life [7], comprising of approximately 40% of mobile 
activity [10]. However, entering text on a smartwatch is 
challenging because of the small form factor and its 
wearable context. One of the most commonly observed 
problems is the need to use one or both hands for a task 
(e.g. driving or walking while holding an umbrella or 
shopping bags). This is cumbersome in the context of 
smartwatches, as a user is required to interrupt their 
ongoing task to enter text, which reduces the 
purposefulness of smartwatches, as they are predominantly 
valuable for accessing information while on-the-go.  

To mitigate this problem, one solution is speech input, 
which is socially inappropriate in some situations (e.g., at 
meetings or classrooms) [61], and may also expose the 
users’ privacy. Another  solution is to enable one-handed 
interaction for smartwatches using the same-side hand 
(SSH) [31]. However, prior work has primarily been 
targeted at general interactions, such as assigning discrete 
commands to micro-interactions [36, 58], finger postures 
[16, 46, 63], continuous gestural input [19, 51]. One-
handed text entry has been largely overlooked.  

In this paper, we present WrisText, a one-handed text entry 
technique for smartwatches using the wrist’s joystick-like 
motion [19] (Figure 1). With it, a user whirls the wrist of 
the same-side hand to strike directional marks to select 
keys on a circular keyboard on a smartwatch. To explore 
the design space of this new text entry technique, we took 
an iterative design approach, where we optimized the 
keyboard layout based on a number of factors, including 
keyboard learnability, striking accuracy, word 
disambiguation, and striking comfort. We first conducted a 
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target acquisition task to determine the proper size of the 
arc-shaped keyboard keys (e.g., 55.4˚). Based on the result, 
we designed a keyboard layout with six keys, containing 
groups of four to five English letters following an 
alphabetical order (Figure 1). Next, we performed a step-
wise search for optimal layout variations, and identify one 
that balances striking accuracy, striking comfort, and word 
disambiguation (Figure 1). Finally, we conducted a 5-day 
study with ten participants to evaluate the speed and 
accuracy of WrisText in common smartwatch usage 
scenarios, such as holding the smartwatch in front of the 
chest and placing the hand downwards, alongside the body. 
Our results revealed that participants could achieve an 
average of 15.2 (s.e. = 0.5) WPM in the fifth day with 0.1% 
uncorrected errors. Extending the study by three more days 
with two randomly picked participants improved the speed 
further to 24.9 WPM. 

Our contributions for this work include: (1) a one-handed 
text entry technique on smartwatches using the wrist’s 
joystick motion; (2) an optimized keyboard layout design 
for WrisText; and (3) a demonstration of the effectiveness 
of WrisText through a 5-day user study.  
RELATED WORK 
In this section, we present existing literature in enabling 
one-handed interaction on smartwatches and text entry 
methods on mobile and wearable devices.  

One-handed Interaction on Smartwatches  
Research on one-handed input for smartwatches has 
mainly focused discrete and continuous gestural input.  

One-handed discrete gestural input. This research area has 
mainly focused on detecting pinch (e.g. thumb touching the 
other fingers) [2, 6, 16, 24, 36, 47, 63] and different hand 
postures (e.g. fist or thumb-up) [11, 16, 18, 46, 63]. 
GestureWrist [46] exemplifies early work in this category. 
The technique uses an array of capacitive sensors to detect 
the changes in forearm shape to inform different hand 
postures. Fukui, et al. [18] and Ortega-Avila et al. [42] 
achieved a similar result using infrared photo reflectors. 
More recently, WristFlex [16] and Tomo [63] improved 
sensing capability using force resistors or electrical 
impedance tomography sensors. Skinput [24] detects pinch 
gestures using an array of contact microphones (e.g. piezo 
sensors) worn on the upper arm to detect sound waves 
generated by fingers tapping each other. Amento et al. [6] 
showed that a single piezo sensor placed in a wristband can 
help detect similar gestures to those detected by the 
commercial product, Aria [2]. Other approaches, including 
using EMG sensors [32, 40, 47] and cameras [12, 36], 
require the sensor to be worn on the upper arm (or other 
body parts), thus being less practical for smartwatch users.  

One-handed continuous gestural input. Crossan, et al. [15] 
and Strohmeier, et al. [50] use wrist pronation for 1D 
gestural input. Rahman et al. [45] studied the number of 
discrete levels in each of the wrist tilt axes, the result of 

which can be applied to control a 2D cursor by tilting the 
watch in the x- and y-axes. This technique has been 
developed for hand-held devices [14, 25, 45, 56] and 
recently on a smartwatch [22]. Float [51] uses an improved 
tilt sensing algorithm, allowing precise control of cursor 
movement. Techniques such as using the watch as a 
peephole display [30, 59] may be used to control the cursor, 
but moving the screen may lead to a loss of visual contact 
with the screen as it moves away from a user’s view. This 
makes such an approach unusable for text entry tasks. 
Waving the hand mid-air shares the same issue. With 
existing technologies, hand movement can be tracked using 
acoustic [39, 55, 62], IMU [5], WIFI [52], RFID [54] with 
relatively good accuracy. Letter identification accuracy can 
be further improved using techniques, like EdgeWrite [57]. 
The issue, however, is that aside from losing visual contact 
with the screen, moving the watch with large hand 
movement also may impact task completion time [30]. 

On the other hand, whirling the wrist [19] maintains a 
relatively stable screen during a gesture, ensuring constant 
visual contact with the display. The technique allows one-
handed input to be carried out in wider smartwatch usage 
contexts (e.g., hanging the hand alongside the body), 
whereas many other techniques (e.g., tilt) may fail due to 
restricted hand movement. 
Keyboard Layout Optimization 
QWERTY [26] is the de facto standard of keyboard layout 
for both physical and virtual keyboards. Though it works 
well on a physical keyboard, it is suboptimal as a virtual 
keyboard layout for finger or stylus input. As such 
researchers have proposed various efficient alternatives [8, 
35, 37, 38]. In the mobile context, a sizable amount of 
research has been conducted to optimize the keyboard 
layout for gestural typing and touch typing. As for the 
gestural typing, Smith, et al. [49] used Pareto front 
optimization to optimize keyboard layout based on three 
metrics, including gesture clarity, gesture speed, and 
similarity to QWERTY. Moreover, Bi and Zhai [9] 
introduced three types of QWERTY constraints in layout 
optimization, and investigated layout learnability and text 
entry performance. For the touch typing, Oulasvirta et al. 
[43] proposed the KALQ layout, designed to improve two 
thumb typing on a split keyboard.   

Text Entry Methods on Mobile and Wearable Devices 
The primary challenge of text entry on a smartwatch is to 
overcome the “fat finger problem” [53], where keys on a 
Qwerty keyboard of a smartwatch are too small to be 
selected with efficiency and precision. A large body of 
research has been carried out to improve text entry 
experience on smartwatches. Most are two-handed 
techniques and use finger touch as the input modality [13, 
21, 23, 27, 41, 48, 61]. A common technique used in the 
existing literature is expanding the size of the Qwerty 
keyboard. For example, Zoomboard [41] requires the user 
to first zoom into a region containing the desired key to 



expend the size of the keyboard. This makes selection 
easier. Splitboard [27] took a similar approach by showing 
a keyboard larger than the screen of the smartwatch. The 
issue is that half of the keyboard gets cut off by the screen 
edge, thus requiring the user to scroll if the desired key falls 
off-the-screen. DualKey [23] has keys that can be twice as 
big, as the technique associates each key with two letters. 
Tapping the key using different fingers selects different 
letters. TouchOne [3] is a commercially available product 
with a circular keyboard designed to be used by both hands. 
DriftBoard [48] takes a different approach by allowing a 
user to pan a moveable keyboard to position the desired key 
under a fixed cursor point.  

Aside from these techniques, other approaches avoid 
pointing and selection on a keyboard using touch. For 
example, Swipeboard [13] addresses the problem using a  
hierarchical marking menu. With it, the user first swipes a 
directional mark to select a region where the desired letter 
resides. Once the region is selected, the user selects the 
desired letter by striking another directional mark. 
WatchWriter [21] applies the shape writing technique [33] 
on a smartwatch. Unlike other techniques, with which the 
user enters letters one by one, WatchWriter allows the user 
to enter an entire word by drawing a touchscreen gesture. 
Last but not least, Compass [61] was designed for non-
touch smartwatches. The technique allows the user to enter 
keys on a circular layout by pointing at them using a rotary 
bezel of the watch screen.  

Within the existing research, the most relevant work to ours 
is that of  Katsuragawa, et al. [29] , who proposed entering 
text entry on a large wall display by detecting hand 
movement with a smartwatch’s built-in IMU sensors. 
However, the technique was not designed for smartwatch 
use as it relies on an external display. 
DESIGN CONSIDERATIONS 
We consider the following factors for designing an 
efficient one-handed text entry method for smartwatches. 

Screen Stability 
Smartwatches already suffer from limited screen real-
estate. Keeping the watch screen stable becomes even more 
crucial for entering text to allow a user to constantly 
monitor the screen content (e.g., entered text) to adjust 
input behavior or take necessary actions (e.g., backspacing, 
selecting suggestions). While it is impossible to completely 
eliminate screen movement when a gesture is drawn, our 
goal is to ensure this new text entry method can minimize 
screen oscillations. It is also important to have the screen 
in a reasonable viewing range to provide the same degree 
of fidelity as touch interactions. Therefore, techniques that 
may impact screen stability or viewing range (e.g., 
peephole display [30, 59] or mid-air hand gestures [39, 55, 
62] are not in our considerations. Discrete input operations 
[16, 18, 46, 63] do not have this problem but are limited to 
a small number of commands insufficient for text entry. 

Eyes-free Input.  
While viewing range of the screen is our key design 
consideration, a text entry method can benefit from eyes-
free input to facilitate common smartwatch use situations, 
such as walking with the watch hand hanging along the 
body. This introduces a number of challenges for input as 
the degree-of-freedom of the wrist is then limited by arm 
anatomy. For example, when the arm is hanging vertically, 
it may be hard to input by tilting the smartwatch screen in 
the x and y directions with the device’s built-in IMU 
sensors [29], akin to when the hand is held horizontally in 
front of the chest. Output can be another challenge in this 
situation as the user loses visual contact with the screen. 
Feedback on the entered text can be provided via audio 
using a wireless headphone or vision through a near-eye 
display (e.g., Google Glass).  

Learnability 
Learning needs to be reduced for novice users to quickly 
transition to expert users. Advanced techniques that may 
lead to more efficient input will also need to be considered 
allowing users to develop their skills over time to achieve 
maximum performance in speed and accuracy. However, 
trade-offs may exist between efficiency and learnability. 
For example, letter gesture input methods (e.g., 
Zoomboard [41]) require less learning efforts than word 
gesture input methods (e.g., WatchWriter [21]) but can be 
slower in entering text. In our current exploration, we focus 
on letter gesture input for the sake of learnability. 

WRISTEXT 
Considering these factors, we designed our one-handed 
text entry techniques based on wrist whirling gestures [19]. 
The technique is effective for drawing common 
touchscreen gestures using the same-side hand in varying 
mobile contexts, such as standing or walking. Whirling the 
wrist also allows the smartwatch screen to be maintained 
in a relatively stable position during the gesture.  

Our technique works on a round watch face by allowing a 
user to enter English letters by striking a sequence of 
directional marks on a circular keyboard (similar to a 
marking menu [34]) (Figure 1). The keyboard contains 
keys, each associated with a group of letters. Based on the 
user’s input, the system searches (in a dictionary) all the 
words corresponding to the sequence of the selected keys, 
and provides a list of candidate words ordered by 
frequency of use (like T9). The user then pinches their 
thumb and index finger (detected using a piezo, similar to 
the one used in WristWhirl [19]) to switch to the selection 
mode, in which the first word is highlighted. If it is the 
desired word, the word will be committed automatically 
(auto-commit) upon the user typing the next word (e.g., 
striking the first letter of the next word), after which, a 
space will be inserted automatically. Otherwise, the user 
must locate the word in the list before typing the next one. 
Navigating the list can be carried out using pinch. The word 
can also be committed manually by rubbing the thumb and 
index finger. Auto-complete and auto-correct were 



implemented following the algorithm described in [20, 61] 
(see details later). With auto-complete, the user can pick 
the desired word from the candidate list (in the selection 
mode) without having to input all the letters. Finally, the 
user can rub their fingers (thumb and index finger) twice to 
delete the last letter. The keyboard can be integrated into 
an existing app or activated using the pinch gesture. 

 
Figure 2. WrisText hardware.  

WrisText Hardware  
Our hardware is similar to the one presented in WristWhirl 
[19]. The device contains a Ticwatch 2 and a plastic watch 
strap augmented with 12 infrared proximity sensors 
(LITON LTE-301 & 302) placed approximately 0.4 cm 
apart from each other (Figure 2). The proximity sensor 
operates at 940nm with a maximum sensing distance of 
approximately 12cm. We connected the sensors to an 
Arduino DUE microcontroller, which is connected to a 
laptop reading sensor data at a speed of 9600 Hz. Data is 
then sent and visualized on the Ticwatch 2 through 
Bluetooth. Pinch and rub is detected using piezo vibration 
sensors placed inside the wrist strap [6]. Prior to using the 
device, it needs to be calibrated by rotating the wrist in a 
circular motion several times. Once the device is calibrated, 
the user can whirl their wrist to control the movement of a 
cursor to draw gestures. The wrist’s joystick-like motion is 
tracked through the infrared proximity sensors. Tracking 
and cursor control was implemented following the 
algorithm presented in WristWhirl [19]. 

USER STUDY 1: KEYBOARD KEY SIZE 
Keys need to be large enough to facilitate pointing; 
however, large keys may cause ambiguity issues when 
associated with multiple letters. A one-on-one mapping 
between keys and letters (e.g., target size of 360˚/26 = 13.8˚) 
is ideally unambiguous; yet our initial test with three 
participants suggested that such pointing resolution was 
nearly impossible to achieve using the wrist. The goal of 
this study was thus to investigate the performance of target 
acquisition using wrist whirling, which led to learning the 
optimal target size to inform our keyboard design. Further, 
we also investigated if a target’s location affects the users’ 
performance as well as physical comfort. 

Participants 
Fifteen right-handed participants (3 female) between the 
ages of 22 and 30 participated in the study.  

Apparatus 
The study was conducted using our prototype device 
described in the WrisText section without the Ticwatch. 
Participants were asked to wear the device on the wrist of 
their left hand during the study. As a common practice, the 
experimental interface was shown on a laptop screen 
instead of the smartwatch. The 14-inch screen had a 
resolution of 1920 × 1080, and was placed at a comfortable 
distance from participants. A computer mouse was used by 
participants to indicate the start of a trial.  

Study Design 
The experiment employed an 8 × 5 within subject factorial 
design. The independent variables were: (i) Target 
Location, which is defined by the eight typical gesturing 
directions: East, North-East, North, North-West, West, 
South-West, South, and South-East; and (ii) Target Size, 
which is defined as multiples of 13.8˚: 27.6˚, 41.4˚, 55.2˚, 
69˚, 82.8˚. In each trial, participants performed tasks in one 
of the Target Location × Target Size combinations. Each 
condition repeated 5 times. The Target Location × Target 
Size combinations were randomized among trials. The 
experiment can be summarized as 8 Target Locations × 5 
Target Sizes × 5 Repetitions × 15 Participants = 3000 trials.  

Figure 3. User Study 1 setup.  

Task and Procedure 
Prior to the study, the device was calibrated for each 
participant, followed by a training session. The task 
required participants to select an arc-shaped target by 
striking the wrist towards its direction. The target with one 
of the five sizes was placed in one of the eight regions, 
within which the target was placed randomly as long its 
center fell inside the region. Participants were asked to 
perform the task in a sitting position. A trial started after 
participants clicked the computer mouse using their right 
hand. Once started, participants were instructed to perform 
the pointing task using their left hand as fast and as 
accurately as possible (Figure 3).  Selection was made by 
crossing [4]. In other words, a target was selected once the 
cursor passed a threshold distance from the center of the 
circle. Based on our test, we set the threshold to 54.5% of 
the radius. A trial failed if the cursor crossed the threshold 
from outside the target. A trial ended regardless if the target 
was selected successfully or not. Upon the end of a trial, a 
new target of a random size appeared in a random location. 
We repeated this process until participants completed all 
the trials, at which point participants were asked to rate the 
level of comfort for each of the eight directions.  
Results 
Dependent measures included the number of errors and 
average task completion time. An error was recorded when 



participants failed to select the target. Task completion 
time was recorded as the time elapsed from when the 
mouse is clicked to the end of a trial.   

Data was analyzed using a two-way repeated measures 
ANOVA and Bonferroni corrections for pair-wise 
comparisons. For violations to sphericity, we used a 
Greenhouse-Geisser adjustment for degrees of freedom. 

Task Completion Time 
There was no significant effect of Target Location (F3.34, 

46.76 = 0.81, p = 0.5) and Target Size (F4, 56 = 1.50, p = 0.22). 
There was also no significant interaction effect on Target 
Location × Target Size (F28, 392 = 1.148, p = 0.28). 

Overall, participants spent on average 402ms (s.e. = 28ms) 
per strike. Interestingly, task completion time was not 
affected by either size or location. We attributed this result 
primarily to the crossing mechanism, which prevented 
participants from making fine adjustment once the cursor 
passed the threshold distance. 

Accuracy  
The overall average accuracy was 85.4%. ANOVA yielded 
a significant effect of Target Size (F1.61, 22.47 = 78.52, p < 
0.001). We found no significant effect of Target Location 
(F3.75, 52.43 = 2.30, p = 0.07) but there was a distinct trend 
toward significance. We also found no significant 
interaction effect for Target Location × Target Sizes (F28, 

392 = 1.16, p = 0.27). Post-hoc pair-wise comparisons 
revealed significant differences between all pairs of Target 
Size (all p < 0.05). As expected, accuracy increased with 
the size of the target increasing (Figure 4 right). The targets 
around 55.2˚ appeared to be well balanced between striking 
accuracy (≥ 90%) and key size. 

 
Figure 4. Left: striking accuracy shown by target location; 
Right: striking accuracy shown by target size. Error bars 

show ±2 SE in all figures. 

Comfort Ratings 
In addition to quantitative measurements, we also surveyed 
subjective ratings of the physical exertion of the eight 
striking directions on a continuous numeric scale: 0 
(extremely easy); 1 (easy); 2 (somewhat easy); 3 
(moderate); 4 (somewhat hard); 5 (hard); 6 (extremely 
hard)). Overall, the directional strikes were rated somewhat 
easy to perform (avg. = 2.6; s.e. = 0.3). One-way ANOVA 
yielded a significant effect of Target Location (F3.42, 47.88 = 
4.12, p < 0.05). The virtual directions were rated easy to 
perform with the average rating for the North and South 
locations being 1.2 and 0.5 respectively. With respect to 

the 55.2˚ target, this finding is consistent with the 
quantitative result, which revealed a high level of accuracy 
in these two locations (e.g., 89% and 88%). Note that such 
consistency is not always the case (Figure 5). For example, 
the backslash directions (e.g., North-West and South-East) 
were rated among the hardest to strike (e.g., 3.9 and 4) but 
not the least in accuracy. Horizontal directions were rated 
somewhat easy to perform (East: 2.87 and West: 2.53) but 
their accuracies were on the lower end (although 
statistically no difference in all locations).  

 
Figure 5. Comfort vs accuracy. (a) comfort ratings and (b) 

accuracy of the 55˚ target shown by target location. 

Our observations suggest that this is mainly attributed to 
the inconsistency between people’s perceived direction 
that a certain wrist strike may produce and the actual 
direction the wrist strike produces. Striking horizontally, 
for example, is harder than perceived. Participants often 
overshot the target and landed somewhere near the South-
West and South-East locations, depending on strike 
direction. Training can help solve this problem. Backslash 
was also hard to perform, so participants required practice. 
Once learned, gesture performance was fairly good. This is 
consistent with the findings from WristWhirl [19].  

To summarize, the results confirmed that aside from size, 
striking comfort is another important factor to consider for 
the design of WrisText. The level of overall striking 
comfort depends on the location of the target keys. There 
is also a trend for the location to influence target 
acquisition accuracy. We considered both in our design. 

KEYBOARD KEY CONFIGURATION DESIGN 
Study 1’s results suggest that a target needs to be at least 
55.2˚ for participants to maintain a reasonable pointing 
accuracy (e.g., ≥ 90%). Keys, however, are preferred to be 
small to avoid input ambiguation. With this constraint, we 
considered the following three types of configurations. 

 
Figure 6. From left to right, Configuration 1,2, and 3.  

Configuration 1: This configuration contains keys of the 
same size (e.g., 60˚ each). Figure 6a shows an example of 
this configuration with a minimum variance in the number 
of letters between keys. 



Configuration 2: This configuration constrains the size of 
the letters (e.g., 13.8˚ each), thus keys are different in size. 
Figure 6b shows an example, containing 4 four-letter keys 
(55.2˚) and 2 five-letter keys (69˚).  

Configuration 3: A variation of Configuration 2 (Figure 
6c), containing 5 four-letter keys and 1 six-letter key 
(82.8˚). 

To understand the performance difference between the 
options, we estimated the overall striking accuracy for each 
of them using the result from Study 1. For example, the 
overall accuracy of Configuration 2 can be estimated by 
averaging the accuracies of four 55.2˚ targets and two 69˚ 
targets, e.g., (90% × 4 + 96% × 2) / 6 = 92%. Similarly, the 
estimated accuracy for Configuration 3 is (90% × 5 + 99% 
× 1) / 6 = 91.5%. We did not have the accuracy data for 
Configuration 1, as the 60° target was not tested in the 
study. However, this missing data can be estimated by 
curve-fitting using a polynomial regression (Figure 7). The 
result revealed that the estimated accuracy of the 60˚ key is 
around 92%. Since the difference between the three options 
is small, we decided to use Configuration 1 for aesthetic 
reasons (as the keyboard is symmetrically divided). 

 
Figure 7. Accuracy regression curve. 

The next step was to assign letters to the layout. We began 
with the first five-letter key, which can be placed in 26 
different locations (each starting with one of the 26 letters). 
Once the first is set, the second five-letter key can only be 
placed at 5 locations, which also sets the locations of the 
rest of the keys (all four-letter keys). Thus, in total there are 
26 × 5 = 130 ways of distributing the letters by bucketing 
them into keys. Note that half of these 130 combinations 
are redundant versions, generated by swapping the first and 
second five-letter keys yielding a total of 130 / 2 = 65 
unique key configurations.  

GENERAL OPTIMIZATION APPROACH  
This section presents an optimization approach developed 
based on Smith et al.’s work [49]. The goal is to find a 
keyboard layout that can improve overall striking accuracy, 
comfort, input clarity, and is relatively easy to learn. 

Optimization Metrics 
We frame the problem of designing a circular keyboard 
layout as a multi-objective optimization problem, where 
the four objectives are to improve: (1) striking comfort, (2) 
striking accuracy, (3) word disambiguation, and (4) layout 
learnability.  

Striking Comfort. Striking comfort considers placing 
frequently used letters near the locations most comfortable 
for users to strike.  

Striking Accuracy. Frequently used letters should also be 
placed near locations where effective accuracy can be 
achieved. As suggested by Study 1, a balance needs to be 
stricken between comfort and accuracy.  

Word Disambiguation. Each keyboard key will be 
associated with a number of letters. Thus, a series of key 
strikes may map to a set of different words. To minimize 
ambiguity, a brute-force search can be employed to try all 
the possible mappings between keys and letters, and 
identify the layouts that introduce minimum word 
ambiguation (details are discussed later). 

Layout Learnability. Placing the letters in an alphabetical 
order can help users learn and locate the target keys 
quickly. Organizing the letters to the maximize comfort, 
accuracy, and word disambiguation may lead to an 
unfamiliar layout. Alternatively, a hybrid approach is 
swapping the keys while retaining the order of the letters 
inside the keys. 
Optimization Procedure 
To maximize the objectives based on these metrics, a step-
wise search can be employed by iterating all the possible 
layout variations based on these metrics and their weights. 
Below we explain our optimization procedure.   

Calculating Disambiguation Scores  
For each of the 65 key configurations, a program can 
simulate key strikes for each word in a chosen corpus. Due 
to the ambiguity of words, a series of key strikes can be 
mapped to a list of (at least one) candidate words. This list 
is then ordered based on word frequency provided by the 
corpus. The rate of the target word that appears on the top 
of the list is used as the disambiguation score for each key 
configuration. Higher scores are preferred.  

Calculating Accuracy and Comfort Scores 
For each variation of the keyboard key configuration, the 
comfort and accuracy scores are assigned to each of the six 
keys. The comfort score of a key depicts how comfortable 
users feel when striking in the direction of that key. The 
accuracy score depicts how accurate users can select the 
key using the wrist. Both scores can be determined through 
an empirical study. Furthermore, each key will be assigned 
a weight based on the frequency of the encapsulated letters. 
For example, a key associated with more frequently used 
letters received higher weight those associated with less 
frequently used letters. Weight was calculated using the 
average letter frequency of that key since average was an 
intuitive way to represent the overall frequency of the 
letters. For example, the weight for [A B C D] is (8.7% + 
2% + 4.3% + 3.8%) / 4 = 4.7%. Finally, the accuracy score 
for a keyboard layout was simply the sum of the weighted 
accuracy scores of the six keys. Comfort scores were 
calculated in the same manner. 



Metric Normalization  
Scores need to be normalized to be appropriately weighted. 
For example, they can be normalized in a linear fashion, so 
that the worst possible score is mapped to a 0 and the best 
possible score is mapped to a 1.  

Weight Iteration 
Users may weigh the three metrics differently, depending 
on usage scenarios. This may impact the layout of the 
keyboard. Therefore, the last step is to iterate different 
weight combinations (e.g., using a step size of 0.01) and 
identify an optimized layout for each combination by 
maximizing the following objective function.  

F(Com, Acc, DisAmb) = α × Com + β × Acc + γ × DisAmb 
where α, β, and γ is the weight of comfort (Com), accuracy 
(Acc) and disambiguation (DisAmb), and α + β + γ = 1. 

WRISTEXT KEYBOARD LAYOUT 
We used the aforementioned approach to optimize our 
keyboard layout, where we approximated the accuracy and 
comfort scores using the results from Study 1. For each 
key, the comfort score was approximated by using the 
average subjective rating from the location closest to the 
center of the key. The accuracy score was approximated 
using a similar technique of selecting the accuracy data 
from the location closest to the center of the key. For the 
sake of learnability, the letters were organized in an 
alphabetical order, in a clockwise direction, similar to [44, 
61]. Assuming the keyboard can be rotated in the clockwise 
direction with a resolution of 1˚, there are 23400 (65 × 360) 
variations of keyboard layouts. For the corpus, we used the 
top 15,000 words from the American National Corpus [1], 
which covers over 95% of common English words [61].  

 
Figure 8. Optimized keyboard layouts shown by accuracy, 

comfort, and disambiguation.   

For each weight combination, we iterated all 23400 
keyboard layouts, and identified the one with the highest 
score from function F as the optimal layout. Among all the 
optimal layouts, many were to be identical, indicating that 
only a relatively small set of the layouts performed well on 
the three metrics. We plot these optimal layouts in Figure 
8, in which the x-axis, y-axis, z-axis represent comfort, 
accuracy and disambiguation respectively. Since the 
comfort and accuracy scores were estimated using the 
discrete values from the 8 directions, each point in the 
figure represents multiple layouts with the same x, y, and z 
values. Each layout represents a compromise between the 
three metrics: a high value in one metric does not 
necessarily lead to similarly high values in the other 

metrics. The choice of layout for a user depends on the 
importance of each metric in different usage scenarios. A 
new user who is less accurate may prefer a layout biased 
towards accuracy, while a user who can strike accurately 
may prefer a layout biased toward clarity. Our result guides 
users to choose one to satisfy their needs. 

In our case, we wished to choose a layout that balances all 
metrics, so we used one that is near the line where x = y = 
z. It represents a layout that perform equally well over the 
three metrics. Fifteen layouts satisfied this requirement. As 
expected, all share the same key configuration with only 
slight differences in the orientation of the dial, e.g., ±1˚ 
between two adjacent variations. We chose the one 
residing in the center of the variations (Figure 1). In 
comparison to the worst performance in each individual 
metric, this layout has 27%, 10.85% and 5.76% 
improvements on striking comfort, striking accuracy and 
word disambiguation respectively. With this layout, 85.9% 
of the words in the corpus are the first one in the candidate 
list and 95.3% were among the top three. 
AUTO-COMPLETE & AUTO-CORRECT 
Like many modern smart keyboards [21, 61], we developed 
a feature to support automatic completion and correction. 
Our technique built on [61] for auto-complete and [20] for 
auto-correct. We employed a Bayesian model to predict a 
target word W based on user’s input S (e.g., a series of key 
strikes). The system then calculates the probability of W in 
a dictionary using: 

     𝑃𝑃(𝑊𝑊|𝑆𝑆) ∝ 𝑃𝑃(𝑆𝑆|𝑊𝑊)×𝑃𝑃(𝑊𝑊) 
As with many smart keyboard techniques [28], we assume 
that users generate no insertion or omission errors and we 
treat each key strike independently [17, 20]. Thus, we have: 

𝑃𝑃(𝑆𝑆|𝑊𝑊) =  �𝑃𝑃(𝑆𝑆𝑖𝑖|𝑊𝑊𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 × 𝛼𝛼𝑚𝑚−𝑛𝑛 

where Si refers to the ith letter of the word entered by the 
user, and Wi is the ith letter of W. When calculating P(S|W) 
for auto-complete, we consider all W in the dictionary 
whose length is between S and S+8, with 8 being 
determined based on our test. Here, α is the penalty to 
prevent long, high-frequency words from dominating 
short, low-frequency words, and m is the length of W, 
where m ≥ n. Thus, the larger the difference in length 
between W and S, the more a penalty is given to W. We 
tested α from 0.3 to 0.7 in our simulation, and found α = 
0.62 yields the best compromise between the 
aggressiveness of auto-completion and coverage of 
candidates.  

Auto-correct deals with cases where the user fails to select 
a desired key. Our estimated striking accuracy for a 60˚ key 
is 92%. We thus used 0.92% for P(Si|Wi) if Si and Wi were 
from the same key. In the case when Si and Wi belonged to 
keys that were adjacent to each other or separated by a third 
key, we chose 0.035 and 0.005 respectively. These 
numbers worked well in our present work. Future 



development can infer the numbers using an experiment 
similar to Study 1.  

USER STUDY 2: PERFORMANCE EVALUATION 
We conducted a five-day user study to investigate the 
performance of WrisText. The goal of the study was to 
measure how well people could perform text entry using 
our technique in common smartwatch usage conditions. 
We were also interested in knowing how user performance 
can be improved through practice over time.  

Participants 
Ten right-handed participants (4 female) between the ages 
of 20 and 25 participated in the study. 

 
Figure 9. Study setup. (a) hand-up condition; (b) hand-down 

condition; and (c) capacitive sensors.  

Apparatus and Task Conditions 
The device was similar to the one described in the 
WrisText section earlier, except that we used finger-worn 
capacitive sensors to detect pinch gestures to eliminate 
errors caused by pinch detection (Figure 9). The rub 
gesture was replaced by pinching the thumb and middle 
finger. Participants were asked to wear the device on the 
wrist of the non-dominant left hand to perform a series of 
text entry tasks in two different hand postures, hand-up and 
hand-down (Figure 9). They were also required to perform 
the tasks while standing to simulate smartwatch usage 
situations. In the hand-up condition, participants held the 
watch in front of their chest. This allowed them to see the 
keyboard and the gesture trace they were drawing on the 
watch screen. The text entered by participants, along with 
the top three candidates generated by our software, was 
also shown on the screen of the smartwatch (Figure 1). In 
the hand-down condition, participants were required to 
have the watch hand hanging naturally alongside the body. 
In this condition, no visual feedback of the keyboard was 
given. Text entry was carried out eyes-free. The top three 
candidates and the text entered by the user were shown on 
a 27-inch monitor, placed at a comfortable distance from 
the participant. This was to simulate the situation where a 
near-eye display (e.g. Google Glass) is available to the user. 
In both conditions, test phrases were shown on the monitor. 
Procedure and Design 
The study consisted of a series of sessions, with one session 
occurring per day. In each session, participants typed 18 
phrases with each hand posture, the same across all 
participants, randomly picked from [60]. No phrases were 
repeated across different sessions. Thus, we used 144 
different phrases (18 phrases × 8 sessions) in the study. 
Prior to the experiment, participants were asked to practice 

for as long as they wanted. Participants were encouraged to 
take breaks during the session. Each experimental session 
lasted around 40 minutes, depending on participant speed. 
Hand postures were counter-balanced among participants. 
We collected subjective feedback from participants in the 
last session. In total, we collected 10 participants × 5 
sessions × 18 phrases × 2 postures = 1800 phrases.  

Results  
We analyzed the data using a two-way repeated measures 
ANOVA and Bonferroni corrections for pair-wise 
comparisons. For violations to sphericity, we used a 
Greenhouse-Geisser adjustment for degrees of freedom. 

Text-Entry Speed 
ANOVA yielded a significant effect of Session (F1.96, 17.65 
= 311.20, p < 0.001) and a marginal significance of Hand 
Posture (F1, 9 = 5.21, p = 0.048). There was also significant 
interaction effect on Session × Hand Posture (F4, 36 = 7.55, 
p < 0.001), suggesting more improvement in the hand-
down condition than in the hand-up condition. Post-hoc 
pair-wise comparisons revealed significant differences 
between all pairs of Session (all p < 0.05). 

 
Figure 10. Mean text entry speed over 5 days. 

Overall, the average text entry speed across all tested 
conditions was 9.9 WPM (s.e. = 1.1). In particular, 
participants achieved 9.7 WPM (s.e. = 1.0) and 10.1 WPM 
(s.e. = 0.9) in the hand-down and hand-up conditions 
respectively. Figure 10 shows the mean WPM by 
session/day. The steep curve over five days shows a 
substantial performance improvement. The average speed 
for the first session was 5.8 WPM (s.e. = 0.1). It bumped 
up to 15.2 WPM (s.e. = 0.5) in the last session, with an 
increase of 162%. As expected, it was easier for 
participants to start the first day with hand-up (6.3 WPM; 
s.e. = 0.1) than with hand-down (5.4 WPM; s.e. = 0.2) as 
they relied on visual cues to get familiar with the keyboard 
layout. However, as their skills improved over time, the 
speed in the hand-down condition (11.6 WPM; s.e. = 0.4) 
caught up in Session 4 (hand-up speed: 11.3 WPM; s.e. = 
0.3). The result of this study is promising. Since the trend 
was still increasing, we picked two participants based on 
availability with gender balanced, and asked them to do 
three more sessions.  

Figure 11 shows the data from these two participants for all 
eight sessions. As shown in the figure, the speed continued 
to increase after session 5, and finally achieved an average 
of 24.9 WPM (s.e. = 0.1) in session 8. The highest speed 



(e.g., 27.2 WPM) was observed from P1 in the last session 
in the hand-down condition. After eight sessions, the 
average speed reached 26.9 WPM (s.e. = 0.3) in the hand-
down condition and 22.8 WPM (s.e. = 0.4) in the hand-up 
condition. Interestingly, typing with hand-down 
outperformed hand-up. This is consistent with the trend 
from the main sessions. Our observations suggest that this 
is primarily because participants tended to slow down to 
ensure that they could strike precisely when they saw the 
cursor on the watch screen. This is consistent with the 
findings from WristWhirl [19]. However, formal 
investigation is needed to confirm the trend and findings.  

 
Figure 11. Text entry speed of the two extra participants 

over 8 days. 

Error Rate 
Error rate is reported based on uncorrected error rate (UER) 
and total error rate (TER). Uncorrected errors were the 
errors found in the final input phrases whereas total errors 
included both corrected and uncorrected errors. 

For UER, ANOVA yielded a marginal significance of 
Session (F2.33, 20.93 = 3.35, p = 0.048). There was no 
significant effect of Hand Posture (F1, 9 = 0.89, p = 0.37) 
and no significant interaction effect on Session × Hand 
Posture (F1.51, 13.55 = 1.71, p = 0.219). For TER, ANOVA 
yielded a significant effect of Session (F1.74, 15.63 = 96.19, p 
< 0.001) and Hand Posture (F1, 9 = 18.09, p < 0.005). There 
was also a significant interaction effect on Session × Hand 
Posture (F2.27, 20.46 = 8.10, p < 0.005), suggesting that TER 
dropped quicker in the hand-down condition than in the 
hand-up condition. Post-hoc pair-wise comparisons 
showed significant differences between all pairs of Session 
(all p < 0.05).  

Overall, the average TER and UER across all study 
conditions was 5.92% (s.e. = 1.43%) and 0.16% (s.e. = 
0.03%) respectively. In particular, the average TER and 
UER was 4.98% (s.e. = 1.13%) and 0.13% (s.e. = 0.03%) 
in the hand-up condition, and 6.87% (s.e. = 1.75%) and 
0.19% (s.e. = 0.05%) in the hand-down condition. Figure 
12 shows UER and TER by Session in two different hand 
conditions. TER was higher in the hand-down condition 
than in the hand-up condition for the first three sessions, 
but reached a similar level in the last two sessions with the 
improvement of participants’ skill. The average TER in the 
hand-up condition in Session 1 was 10.47%. It improved 
significantly after practice. As such, we expect that the 
pointing accuracy by striking with the wrist will also 
increase with more practice.  

 
Figure 12. Mean UER and TER over 5 days. 

Auto-Complete Rate 
Auto-complete rating of a word was found by dividing the 
number of automatically filled letters by the length of that 
word. Thus, average auto-complete rate was the average of 
the auto-complete rate of all the tested words.  

Overall, auto-complete accounted for 21.55% (s.e. = 
1.55%) of the input words across all tested conditions with 
20.43% (s.e. = 0.33%) occurring in the hand-up condition 
and 22.68% (s.e. = 0.99%) in the hand-down condition. For 
example, text entry speed without auto-complete on Day 5 
was 15.2 × (100% - 21.55%) = 11.9 WPM. ANOVA 
yielded a significant effect of Session (F4, 36 = 3.735, p < 
0.05) but no significant effect on Hand Posture (F1, 9 = 3.97, 
p = 0.078) and Session × Hand Posture (F1.67, 14.99 = 2.61, p 
= 0.113).   

 
Figure 13. Mean auto-complete rate over 5 days. 

Examining the auto-complete rates separately for the hand-
down and hand-up conditions, we found that the 
significance in Session only existed in the hand-down 
condition (F1.55, 13.95 = 60.8, p < 0.05). In particular, we 
found a significant drop between Session 1 and Session 2 
(p < 0.05) and no significant difference between the 
remaining sessions (all p > 0.05) (Figure 13). This suggests 
that participants relied on auto-completion more at the 
beginning when they were new to the technique, especially 
when the keyboard layout was not visually available. Many 
of the instances showed an inefficient use of auto-
complete. For example, participants tended to use auto-
complete even though the desired word was not on the top 
of the candidate list as this allowed them to strike less, thus 
having less of a chance to make pointing errors, but with 
the cost of visual search time. It did not take them long to 
develop sufficient confidence for their striking skills.  

Subjective Feedback 
Overall, participants welcomed the idea of WrisText for 
one-handed text entry on a smartwatch. Most were amazed 



at the speed they had achieved even though some felt 
slightly awkward about whirling the wrist at the beginning. 
A participant commented “I cannot believe I can enter text 
in such a fast speed, even faster than I could on my 
smartphone!” (P1). Everyone agreed that auto-correct and 
auto-complete were useful for saving time. Interestingly, 
once participants were familiar with our technique and 
keyboard layout, they preferred to enter text with their 
hand-down due to the lack of fatigue. For example, a 
participant reported “After I got familiar with the keyboard 
layout and striking directions, it was much easier for me to 
enter text when my hand down.” (P2).   

DISCUSSION, LIMITATIONS, AND FUTURE WORK 
We present insights we learned from this work, discuss the 
limitations, and propose future research.  

Text entry speed and error rate. The average speed of 
WrisText across the first five sessions is 9.9 WPM. 
Participants were able to achieve 15.2 WPM in the last 
session. This is comparable to some of the two-handed 
techniques. For example, the users of Zoomboard [41], 
Swipeboard [13], Splitboard [27] and WatchWriter [21] 
were able to achieve 9.8 WPM, 9.1 WPM, 15.3 WPM and 
24 WPM after 15 minutes of practice. Longer practice with 
Zoomboard [41] and Swipeboard [13] led to 17.1 WPM 
and 19.6 WPM respectively. As for TER, WrisText 
achieved 5.92% across the five sessions. This is lower than 
Zoomboard (19.6%) [41] and Swipeboard (17.5%) [13] . It 
is also promising to observe the increase in speed after 
Session 5. This suggests that expert performance could be 
even higher, which warrants a longer-term study. 

Sensor and device form factor. WrisText is based on the 
wrist’s joystick motion so it shares the same limitations as 
WristWhirl [19]. For example, WrisText needs extra 
sensors to detect the wrist’s striking motion but we believe 
the sensors may be found in future smartwatches. For 
future research, we are interested in extending this work by 
exploring one-handed text entry technique using the 
existing sensors in the smartwatches. Additionally, 
WrisText was designed for smartwatches with a round 
screen. We foresee that the concept can be extended to 
rectangular screens, which warrants future investigation.   

Improving keyboard layout. This work makes the first 
attempt to design a one-handed text entry technique for 
smartwatches. Our current keyboard layout was optimized 
based on the data we collected and the algorithm we used 
(e.g., how the accuracy and comfort scores were assigned). 
It is a reasonably designed keyboard layout to demonstrate 
the feasibility of our technique. However, just like 
QWERTY, we see it as a long-term research effort to keep 
improving the design of our keyboard layout. For example, 
the 5-day study indicates pointing accuracy could be 
significantly improved with practice. It is thus reasonable 
to assume that the size of the keys can be reduced to further 
reduce input ambiguity. Additionally, pointing accuracy 
can be further improved using static decoding. We plan to 

collect more striking data, to understand and model users’ 
pointing behavior. With this model, we will be able to 
create key configurations that can better balance striking 
accuracy and comfort. In this work, the keys’ comfort and 
accuracy scores were estimated based on the location of the 
eight samples to the center of the key. This rough 
estimation can be improved by collecting data with a finer 
sampling resolution. Furthermore, the accuracy and 
comfort data were means but treated as single numbers in 
the layout optimization. As such, the variance in the data 
was overlooked. Future research will explore better 
optimization methods. Finally, our keyboard layout was 
optimized based on the data collected in the hand-up 
condition. It worked well in the hand-down condition but 
an interesting future research direction could be studying 
what the user preferred posture is in common smartwatch 
us conditions, upon which, the layout can be optimized.  

Fatigue and RSI. WrisText is ideal for entering short 
messages over a brief period of time when the other hand 
is occupied. It is not meant to replace the existing two-
handed text entry methods. We expect that prolonged use 
of wrist motion may cause RSI but users can switch back 
to a traditional method (e.g., touchscreen) if there is any 
discomfort.  

User study. Aside from the two tested hand postures, many 
smartwatch usage scenarios warrant careful investigation 
(e.g., walking with the non-watch hand carrying objects). 
Future research will test WrisText in more usage scenarios. 
We will also deploy our device in the field and evaluate the 
effectiveness of WrisText in real-world environments.  

CONCLUSION 
In this paper, we proposed, designed, and studied a one-
handed text entry technique on smartwatches. The 
technique allows users to enter text using the same hand 
wearing the smartwatch, by whirling the wrist in six 
directions to select letters in a circular keyboard. We 
designed the layout of the keyboard in an iterative 
approach, where we first studied the optimal size of the 
keyboard keys, and found that keys needed to be 55º or 
wider to achieve over 90% striking accuracy. We then 
optimized the keyboard layout by considering factors, 
including keyboard learnability, striking accuracy, striking 
comfort, and word disambiguation. This led to a final 
design which was evaluated in a 5-day study with 10 
participants. The result indicates that participants could 
achieve an average text entry speed of 9.9 WPM across all 
the sessions, and were able to type as fast as 15.2 WPM in 
the last day. We believe smartwatches will become the 
major platform for mobile text entry, and our technique 
may serve as important groundwork for future work on 
new text entry techniques for wearable devices. 
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