Coordinating Aerial Robots and Sensor Networks for
Localization and Navigation

Peter Corke!, Ron Peterson?, and Daniela Rus®

' CSIRO ICTC Centre,

Brisbane, 4069 Australia
peter.corkel@csiro.au

Dartmouth Computer Science Department,
Hanover, NH 03755 USA
rapjr@cs.dartmouth.edu

Computer Science and Artificial Intelligence Lab
Cambridge, MA 02139

rus@csail.mit.edu

We consider multi-robot systems that include sensor nodes and aerial or ground
robots networked together. We describe two cooperative algorithms that allow robots
and sensors to enhance each other’s performance. In the first algorithm, an aerial
robot assists the localization of the sensors. In the second algorithm, a localized
sensor network controls the navigation of an aerial robot. We present physical exper-
iments with an flying robot and a large Mica Mote sensor network.

1 Introduction

We wish to develop distributed networks of sensors and robots that perceive their
environment and respond to it, anticipating information needed by the network and
by users of the network, repositioning and organizing themselves to best acquire
and deliver that information. These networks, thousands of small sensors, equipped
with limited memory, sensing, communication, and actuation capabilities will au-
tonomously organize themselves and move to track a source and convey information
about its location to a human user, and to the rest of the system.

In this paper we discuss the cooperation between a ground sensor-network and a
flying robot. We assume that the flying robot is connected by point-to-point commu-
nication with a ground sensor network. The nodes of the sensor network are simple
and they support local sensing, communication, and computation. The communica-
tion range of all nodes is limited, but the resulting mobile sensor network supports
multi-hop messaging. The flying robot makes the sensor network localization easy
by providing access to GPS data to all nodes. In turn, the sensor network helps the
navigation of the flying robot by providing information outside the robot’s imme-

2 Corke, Peterson and Rus

diate sensor range. In our previous work [2] we discuss the details of robot-assisted
localization. In this paper we summarize robot-assisted localization, discuss why it is
hard, and present a new sensor-assisted robot guidance algorithm. We also describe
new experimental results with an integrated testbed for robot-assisted localization
and sensor-assisted guidance.

2 Robot-assisted localization

Ground sensor networks are usually deployed on-demand, so that the location of
the sensors may not always be presettable by the deployment system. Once on the
ground the sensors acquire location information autonomously and form a distributed
system. The individual sensor nodes are too simple to include complex sensors such
as GPS, or to support complex information processing tasks estimating location from
range measurements.

The node localization problem has been previously discussed by others and usu-
ally requires estimates of inter-node distance, a difficult problem. Simi¢ and Sas-
try [8] present a distributed algorithm that localizes a field of nodes in the case
where a fraction of nodes are already localized. Bulusu etal. [1] propose a local-
ization method that uses fixed beacons with known position. Galystyan etal. [3] de-
scribed a constraint-based method whereby an individual node refines its position
estimate based on location broadcasts from a moving agent. We wish to address the
sensor localization problem in a uniform and localized way, without relying on bea-
cons or pre-localized nodes, while minimizing the number of broadcasts required.

In [2] we introduced the idea of robot-assisted localization, an approach to local-
ization that is orthogonal to this previous work, does not require inter-node commu-
nication, and is suitable for sensor networks deployed outdoors. For a large sensor
network the location requirement could be limiting since it would be impractical
(for reasons of cost and power consumption) for each node to have GPS capability.
However, a mobile aerial robot equipped with a GPS system can assist the sensors to
localize. The aerial robot sweeps across the area of the sensor network, for example
along a random path or a path defining a grid, broadcasting GPS coordinates. The
sensors process all broadcasts they hear and estimate their location. If the mobile
node beams messages containing its position p; = (z;, y;) any sensors receive the
message with signal strength s;, a simple averaging procedure can estimate a sensor’s
location as the centroid of the set of GPS locations heard over time. Other methods
discussed in [2] include taking just the strongest received signal, a signal strength
weighted mean, a median, a set intersection approach as suggested by Galystyan
etal. [3]. The latter requires a parameter which is the notional reception range of the
radio, assumed to be circular. Note that algorithms mean, wmean and median can
be modified so that the estimate is only updated when s; > $,,;, which artificially
reduces the size of the radio communications region.

Robot Localization and Navigation using Sensor Networks 3
2.1 Challenges with Distributed Localization

In the robot-assisted localization algorithm, the robot regularly broadcasts its loca-
tion. When within the reception range of the sensor, these broadcasts provide input
to the localization algorithm. The reception range is not symmetrical due to the lobe
shape of both the transmitting and receiving radios involved, terrain, etc. Since the
asymmetry depends on the relative orientation of both antennas it will vary from
encounter to encounter, which highlights two problems.

1. The asymmetry is not known apriori, so the best we can do is to approximate
the center of the radio reception range, i.e., assume the sensor is at the center
of the radio reception range. Node 7 in Figure 3(a) shows an extreme case of
directional reception.

2. With relatively few measurements occurring within the reception range the esti-
mate of centroid will be biased.

The first problem is not solvable given current radios Multiple encounters at dif-
ferent relative antenna orientations might provide some relief, but would increase the
time and cost of any post-deployment localization phase.

There are ways to improve the second problem however:

1. Increase the rate at which position broadcasts are sent, giving more samples
within the reception range, and improving the estimate of the centroid.

2. Increase the size of the reception range in order to acquire more samples. One
way to do this would be to relay messages between close neighbors, perhaps
based on a hop-count estimate of distance. A disadvantage of this method is that
the asymmetry problem is likely to be exacerbated.

3. Decrease the size of the reception range, perhaps combined with improvement
#1, so that those broadcasts that are received originate very close to the sensor.

In early simulation studies we observed that the localization result is strongly
dependent on the path of the robot with respect to the deployed nodes. To sidestep
this dependence while testing observations (1-3) above our simulation uses a fixed
serpentine robot path and 100 sensors deployed randomly with a uniform distribution
in a square region 100 x 100m (mean inter-node spacing is 17m). The robot starts
at the origin in the lower-left corner, moves 100m to the right, up 20m, 100m to the
left, then up another 20m and repeats the cycle. The total time to execute this path
is 1 unit, and we investigate the effect of changing the broadcast interval. The radio
propagation model assumes that signal strength decreases with distance and becomes
zero at the maximum distance parameter which we also vary.

For each set of simulation parameters, such as radio range or position broadcast
rate, we compute mean and maximum localization error. We repeat the experiment
100 times, and compute second-order statistics. For each experiment, for each node,
we run the 5 localization algorithms previously described. Figure 1 shows some of
the results.

4 Corke, Peterson and Rus

mean error mean error

— strongest
mean

— w/mean
median {]

— constr

— strongest
mean

7 —- w/mean |7
Y median

/ — constr

error (m)
error (m)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 5 10 15 20 25 30 35
dt(s)

(a) ()

Fig. 1. Mean localization error from the Monte Carlo study using the five methods of [2].
(a) Effect of varying the broadcast interval (transmit range = 15m). (b) Effect of varying the
transmission radius (dt=0.02).

We observe that as the number of broadcasts increases (ie. broadcasts are closer
together) the localization error decreases and reaches a plateau at around 5m or bet-
ter. The method strongest performs least well while constr performs best. For a
given number of broadcasts, 50, along the path we investigate the performance of
the methods for varying transmit radius. We see that the method constr, previously
a strong performer, breaks down when the actual and assumed transmit radii are not
equal. The best performer in this test is wmean, though mean also behaves well.

3 Sensor-assisted navigation

A localized set of sensors can facilitate the aerial robot’s navigation by encoding
path information which provides the robot with point-by-point navigation directions
using networking. The path can be communicated to the robot by the ground sensors.
The sensor network can employ mapping algorithms such as those described in [6]
to compute adaptive, time-varying paths to events. One application of this approach
is in the area of monitoring and surveillance, where the sensor network may detect
something that requires further investigation with a more complex sensor, say with
the camera on board of the flying robot.

Suppose a path is stored in the sensor field. Sensor-assisted navigation for the
flying robot has two phases: firstly getting to where the path starts, and secondly
being guided along the path. In some situations the first phase may not be needed
(e.g., the path may always be computed to include the known location of the robot
or the robot could always be told where the start of the path is.)

One important goal in this first phase is to avoid flooding the entire network with
messages in an attempt to discover location. Algorithm 1 summarizes a method for
guiding the robot to the path. For example, for the robot to find the path, first one (or

Robot Localization and Navigation using Sensor Networks 5

Algorithm 1 The FindPath algorithm to get the robot to the start of the path.

The sensor does this to announce the location of a path start to the robot.

if Incoming message is a PathMessage AND this sensor is at the start of a path then
Broadcast FindRobotMessage with 0 degree heading to MAXRANGE distance
Broadcast FindRobotMessage with 120 degree heading to MAXRANGE distance
Broadcast FindRobotMessage with 240 degree heading to MAXRANGE distance
else if Incoming message is a FindPathMessage then
if This sensor is storing a path start location then
Broadcast a PathStartMessage
else if Incoming message is a PathStartMessage then
Compute distance to vector from path start to robot.
if distance < PathMessage.PathWidth then
/! Forward message towards the robot.
Rebroadcast PathStartMessage

The robot does this to find the start of the path.

while forever do

/I Seek the path start
Broadcast FindPathMessage with O degree heading to MAXRANGE distance
Broadcast FindPathMessage with 120 degree heading to MAXRANGE distance
Broadcast FindPathMessage with 240 degree heading to MAXRANGE distance
if A PathStartMessage is received then

Store location of start of path.

Head for start of path.

break

all) of the sensors that know they are near the start of the path send out three messages
that contain the location of the start of the path. The messages also each contain a
heading, set 120 degrees apart*, a width for the vector they will travel along, and
a maximum range beyond which they are not intended to travel. The messages are
forwarded out to that range in each of the three directions. The sensors that forward
the messages store the location of the start of the path.

The robot at some later time sends out the same sort of messages in three direc-
tions. If the robot and path start are in range of each other’s messages, the message
paths will cross (due to using a 120 degree dispersal angle.) The sensor(s) at the
crossing will have a stored location for the start of the path and a location for the
robot and can send a directional message (perhaps with a gradually increasing width
since the robot may have moved slightly) back to the robot telling it where the start of
the path is. In this way only the sensors along specific lines extending to a maximum
range carry messages instead of the entire network.

4Other patterns of radiation (a star pattern of 72 degrees) might increase the likelihood of
intercepts occurring, though they also increase the number of sensors involved.

6 Corke, Peterson and Rus

Algorithm 2 The QueryPath algorithm for robot guidance.
while forever do
/I Seek path information from the sensors
Broadcast a QueryOnPath message
Listen for the first sensor to reply
if a sensor replies with an OnPathAck message then
Send a QueryPath message to that sensor
/I 'The sensor should reply with a list of PathSegments it is on
if that sensor replies with a QueryAck message then
Store the PathSegments from the QueryAck message in order of precedence.
/I Guide the robot
if Robot has reached current Waypoint then
Get next Waypoint from list in order of precedence
Head for next Waypoint

After the initialization phase that places the robot on the path, the navigation
guidance algorithm summarized as Algorithm 2 is used to control the motion direc-
tion of the robot. The robot starts by broadcasting a QueryOnPath message which
includes the sender’s id and location. A sensor on the path that receives this message
replies with a QueryAck message which includes the path section, some consec-
utive way points, and an indication of where these way points fit into the path. By
gathering lists of segments from multiple sensors the entire path can be assembled
incrementally as the robot moves. Paths that cross themselves allow for some fault
tolerance in the robot’s knowledge of the path, since if the robot loses the path, it
may have a future segment of it already stored if it has passed an intersection.

Once the robot has acquired path segments from a sensor, it can then arrange
them in order of precedence and follow them in order. Thus the path itself is inde-
pendent of the sensor’s own location and can be specified to any level of precision
needed.

4 Experiments

4.1 Experimental Testbed

The experiments were carried out on September 17, 2003 in the Planetary Robotics
Building at CMU. We implemented the robot-assisted localization algorithm and the
sensor-assisted guidance algorithm on an experimental testbed consisting of a sen-
sor network with 54 Mica Motes [4, 5] and a flying robot. The flying robot consists
of 4 computer controlled winches (implemented using Animatics Smart motors) lo-
cated at the corners of a square with cables going up to pulleys at roof height then
down to a common point above the ‘flying’ platform. The crane is controlled by
a server program running on a PC. Commands and status are communicated using
the TPC protocol(see www.cs.cmu.edu/afs/cs/project/TCA/www/ipc). The platform
comprises a single-board Pentium-based computer running Linux, with an 802.11

Robot Localization and Navigation using Sensor Networks 7

Fig. 2. The experimental testbed consisting of 49 Motes on the ground and the flying robot.

link and an on-board serially connected basestation Mote, to communicate with the
sensor field. The robot has a workspace almost 10 m square and 4 m high.

We used a 7x7 grid of sensors, laid out with a 1 meter spacing. The center of the
grid was (0,0) and the sensors were placed starting 0.5 meters from the center, see
Figure 3(a) where the diamonds represent the surveyed positions of the motes.

The Flashlight sensor interface [7] was used to adjust the RF power of the sen-
sors in the grid to an optimal level for communication with the robot as it traveled 1-2
meters above the sensors (this was a trial-and-error adjustment, gradually increment-
ing the mote power until the robot was getting good communications) The motes ran
TinyOS 0.6 with long (120 byte payload) messages.

4.2 Localization results

During localization the flying robot followed a preprogrammed serpentine path, see
Figure 3(a). Once per second the flying computer obtained its current coordinate
from the control computer using IPC over the 802.11 link, and broadcast this via
the basestation mote. Each ground mote used the broadcasts to compute a centroid
based location for itself. Figure 3(a) shows the robot path and the location of each of
the broadcasts the motes received. It is clear that the motes do not receive messages
uniformly from all directions, motes 6 and 7 are good examples of this. We specu-
late that this is due to the non-spherical antenna patterns for transmitter and receiver
motes, as well as masking by the body of the flying platform itself. The motes re-
ceived between about 2 and 16 broadcasts each as can be seen in Figure 3(b) with
a median value of 10. Figure3(c) shows a histogram of the distances over which the
broadcast messages were received, a maximum of 3m and a median of 1m.

Each mote computes its location using the centroid of all received broadcasts,
but can store up to 200 localization broadcasts for download and analysis. Figure
4(a) shows the true and estimated mote locations. We can see a general bias inward

8 Corke, Peterson and Rus

number of messages received
Number of occurences

30 35 0

15 2 2
mote id Distance from broadcast to mote (m)

(a) (b)

Fig. 3. Localization results. (a) Mote field showing path of robot and broadcast positions,
and all broadcasts received. (b) Number of localization messages received by each node. (c)
Histogram of distances from mote to broadcast.

and this would be expected given the the bias in the direction from which broadcasts
were received. Figure 4(b) shows a histogram of the error magnitudes and indicates
a maximum value of 1.4m and a median of 0.6m which is approximately half the
grid spacing. This level of performance matches our previous results obtained with
experiments with a real helicopter and differential GPS [2].

Robot Localization and Navigation using Sensor Networks 9

TRV VY
N I

03/**010 L O 03 T 05 #hgs
£ ot el/ié @18 <gz\eaz o5 *\646

| XZJI
1 78ys b

3 49 4

error (m)

(a) (b)

Fig. 4. Localization performance using centroid method. (a) Actual (¢) and estimated (*) lo-
cation. (b) Histogram of error vector length.

3+

Fig. 5. Path following performance. The actual path followed by the robot is shown in black,
and the asterisks indicate waypoints. The path started at node 7.

4.3 Path following results

Once localized, a PATH message was sent from a basestation to establish a path
through the mote field. The PATH message propagated using the algorithm described
in [2]. Then the robot was turned loose in a path following mode, using the path fol-
lowing algorithm in [2]. It queried for path waypoints and built up a list of waypoints
as it followed the path. We experimented with a square path (around the border of
the grid) and an X shaped path (corner to center to corner). The robot followed both
types of path perfectly. Even though the localization of the motes was not perfect, it
was sufficient to support the geographic routing of the PATH message with a 1 me-
ter width. The actual path itself was stored as perfectly precise information in these

10 Corke, Peterson and Rus

motes and hence the robot was able to get precise waypoints to follow, resulting in
perfect path following (within the tolerances of the system) as shown in Figure 5.

Since there were multiple motes along each segment of the path, there was re-
dundant information in the sensor field in case any of the motes were not working
(and as it later turned out about 6-7 of them were not during each test, either due to
defunct radios, or due to not hearing any messages for other reasons.)

5 Conclusion

We have described how robots and sensor networks can function synergistically to
perform tasks such as localization and guidance. Simulation studies provide insight
into the achievable performance of various localization methods, and experimental
results are provided. The localization approach does not require inter-sensor commu-
nications. New algorithms for path following are presented along with experimental
validation.

Acknowledgments

This work is done as part of the First Responder Project at the Institute of Security
Technology Studies at Dartmouth College and is a collaborative project between the
labs at Dartmouth, MIT, and CSIRO. The authors would like to thank Dr. Sanjiv
Singh for facilitating the physical experiments at CMU. Support for this work has
also been provided in part through the NSF award 0225446, ONR award N00O14-
01-1-0675, the Darpa TASK program, MIT project Oxygen, and Intel.

References

1. N. Bulusu, J. Heidemann, and D. Estrin. Adaptive beacom placement. In Proceedings of
the 215" Conference on Distributed Computing Systems, Phoenix, AZ, 2001.

2. P. Corke, R. Peterson, and D. Rus. Networked robots: Flying robot navigation with a
sensor net. In Proc. of the 2003 International Symposium on Robotics Research, Siena,
Italy, 2003.

3. A. Galstyan, B. Krishnamachari, and K. Lerman. Distributed online localization in sensor
networks using a moving target. submitted to 2003 acm senssys.

4. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture
directions for network sensors. In ASPLOS, 2000.

5. Jason Hill, Philip Bounadonna, and David Culler. Active message communication for tiny
network sensors. In INFOCOM, 2001.

6. Qun Li, Michael de Rosa, and Daniela Rus. Distributed algorithms for guiding navigation
across a sensor net. In Proceedings of MobiCom 2003, 2003.

7. Ron Peterson and Daniela Rus. Interacting with a sensor network. In Proceedings of the
2002 Australian Conference on Robotics and Automation, Auckland, NZ, November 2002.

8. S. Simic and S. Sastri. Distributed localization in wireless sensor networks, Available at
citeseer.nj.nec.com/464015.html, 2002.

