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Abstract— In this paper' we investigatea problem arising in
decentralizedregistration of sensors.The application we consider
involves a heterogeneouscollection of sensors- some sensors
have on-board Global Positioning System (GPS) capabilities
while others do not. All sensorshave wir elesscommunications
capability but the wirelesscommunication has limited effective
range. Sensorscan communicateonly with other sensorsthat are
within a fixed distanceof eachother. Sensorswith GPS capability
are self-registering Sensors without GPS capability are less
expensve and smaller but they must compute estimatesof their
location using estimatesof the distancesbetweenthemsehesand
other sensorswithin their radio range. GPS-lesssensorsmay be
several radio hopsaway fr om GPS-capablesensorssoregistration
must be inferred transitively. Our approach to solving this
registration problem involves minimizing a global potential or
penalty function by using only local information, determined by
the radio range, available to eachsensor The algorithm we derive
is a specialcaseof a more generalmethodologywe have developed
called "Emer genceEngineering”.

|. INTRODUCTION

Recentinterestin sensorandsureillance systemshasedon
unattemled ground-based sensors(UGS) and unmannedau-
tonomousvehicles (UAV’s) hasledto a prdiferation of devices
with differentcapabilities sizesandcosts.A typical goalis to
deploy mary smallandinexpensve “easy-to-sadfice” sensing
devices with limited radio commuication range that can
form ad-h@ networks for communicating information back
to processing stationsand users.The sensingdevices gather
informationabou the surroindingernvironmer (acotstic, seis-
mic, infrared,temperatte, humdity andsoon) andthenpass
datathroudh neigtbors and ultimately to central processing
or communications stations.Given the low ernvisioned cost
of suchtechndogy, somenunber of sensorfailures can be
toleratedaslong asthe sensingequrements(lik e coverageof
a certainarea)and communicationsconrectiity (for routing
databackto users)aremaintaired. Thereareseveralexanples
of protaype and commecial sensorof this type [1].

In this work, we assumehatsensounitsconsistof differert
compnentssuchas processorsmemory Global Positioning
System(GPS)recevers, radiotransmitterandvarious sensing
modadities. Two specific types of sensorsare consideed -
sensorswith GPS capabilitiesand sensorswithout GPS ca-
pabilities. Sensorswith GPScan of courseself-register using
the GPSsignalwhile sensorsvithout GPSmustestimatetheir
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positiors using information commuicatedwith neighboring
sensorunits. The algoithm we presentfor the registrationof
all sensornoces is iterative and decetralized. Our ultimate
goalis to shawv that networks consistingof different types of
sensorsgxpensie and cheap,canstill be effectively usedif
thesensorgollaboateon their registration Our investigations
have raisedmary interestingquestiondor future work. What
arethe tradedfs betweenprocessingpower and, for examge,
radio bandvidth and range? What density of GPS enatbed
devices is sufiicient, with high probability, to registerall sensor
nocks within a given region, assumingsomesort of randan
distribution of both typesof sensorawithin that region.

Section Il formulates the basic prodem quantitatiely.
Sectionlll describesour decentalized algorithnic appioach,
SectionlV provides convergenceresultswhile SectionV de-
scribesour experimentalanalysis Finally SectionVI discusses
future work required in this area.We arecurrerily condicting
experimentsandwe have implemenedthis algorithmasa web
browser accessibleapplet.?

Il. PROBLEM DEFINITION

Let Dg be an opendisk of radius R, denotingthe planar
region in which the sensorsare deplo/ed. (Note that the
specific size and shapeof the region is largely irrelevant to
the algoithm and analysiswe develgp below.) A collection
of n sensorsS = {s1, s2,...,s,} With equéa radio rangep
are depdoyed in the region D g. The following propertiesare
definedfor eachsensor:

1) A “type” proerty t : S — {G,N}; wheret(s) = G
meansthe sensors is GPS-enablé andt(s) = N means
it is “Not GPS-enabléed

2) A “position” function P : S — Dg whereP(s) € Dg;

3) A “cost”, ¢(s) > 0, for eachsensar

Assumingthat the m sensordabelled sy, so, ..., s,,, are of
type G (thatis, have GPScapaliity), a fundamentalprodem
is to positionthe m < n GPS-enablegensorsfrom S and
place them on a given disk Dg of radius R so that the
following condtions hold:

« The totality of sensorsprovide sensingcoverageof the
whole disk Dg;

« The nonGPS sensorsare able to infer algoithmically
their absolutepositionby locally exchanginginformation

2Seehttp://actcomm.damouth.edusk/Demos/SesorsAppletsensors.html



with the neighlors;thatis, with the othersensorghatfall
within their radio communicationsrancg.

o The numter of expensie, GPS-enaled sensors,m is

minimized.

Thequariification of thetradeoffs shouldnow beclear The
prodem is to minimize the use of sophisticatedbut costly
devices at the expensesof lessexpersive ones.This tradeof
requies having enowgh compuational and communications
power to compeate for less capale, nonGPS devices. In
geneal, precisepositioring of devices, either GPS or non-
GPSenabledis not possiblebecauseof how the sensorsare
deplo/ed. They may be deplog/ed to maxinize coverage of
subrgjions of high value or they may be literally dropped,
as from an aircrat, and therebre end up with more or less
random positiors within the region.

Below, we describea decentralizd, iterative algorithm for
non-GPS enalted sensorsto self-register We also presenta
preliminary expeaimental analysis of the required dersities
of GPS capablesensorsto ensure,with high probaility,
self-rggistration of the whole sensorgrid. The minimal such
density for a given probability of successfukelf-registration,
would clearly berelatedto the prodem of minimizing the cost
of the overall sensorgrid deployment.

I1l. COMPUTING ABSOLUTE POSITIONS

We appoach the prodem of inferring absolutepositions
of nonGPS equpped sensorsdeplogyed on a disk areaD g
following a top-down methalology for the designof desired
emegent behaiors in multiple agen-basedsystems(MAS)
(2], [3], [4].

Assume that we are given a placemeh P, of sen-
sors from S. Without loss of generality let A =
{51,82,- -+, Sk, Sk+1,---,8m} C S, wheret(s;) = G for
1 <i < kandi(s;) = N for k+ 1 < i < m. This meansthat
the first k£ sensorsare GPS-enablednd the remaining ones
arenot. Let P(s;) = P; € Dg the true position of sensors;
on Dg. By definition the first & sensorsare fully aware of
their position P; € Dg while the remainirg m — k sensors
must deternine their positiors through a local compuation
and communicationwith their neightors.

The basic idea behird the algorithm is as follows: each
non-GPS sensornocke starts with an initial randon guess
of its true positionwithin D and then proceads iteratively
to successie refinemets of that position estimateuntil the
differencebetweertwo successie iteratesbecanesngligible.
The goal of this process is for the position estimatesto
corverge to the true values, Pi+1, Pet2,- -, P

Our techniqe is basedon a global potenial function to
be minimized with a decentalized, possibly asyncihonots,
gradient descentmethal [5]. The effectivenessof the ap-
proad relies upa the fact that the gradent vecta is locally
computable. This is one of the key aspectsof our top-cown
methodlogy in which the computationof a function requring
globd resoucescanbecomputedor estimatedisingonly local
resouces.

A. Artificial Potentialsand Algorithms

Formally, let X(t) = {x;(t) € R*|1 < i < m} be the
hypothesizedositiors of the sensorsat time ¢. By definition
X;(t) = P; forallt > 0if 1 <4 < k. Thatis, when s;
is a GPS-enableasensorits position is known for all time.
The problemis to definea potertial function V' (X) suchthat
VV (X) is locally compuable andthe following sequene

{ Xi(t+1) = Xi(t) — v - Vx, V(X(2))
xi(0) = P{” € Dy

convergesto P; ast — oo , for all ¢ > k. Thatis,

{ Xi(t) = P;
Xi(t) = P;
where v; is a suitable nonircreasingsequene of positive
nunbers(the “stepsize”).

Let d; ; = || P; — Pj||2 bethe actual,true distancebetween
sensors; andsensors;. By usingradiosignalstrengthwe are
assumingthat sensorscan effectively estimatethe distances
betweenthemseles and othe sensorswith which they can
communicate,regardlessof whetherthey are GPSenabledor
not. Thatis, d; ; is known to bothsensors; ands; providing
d;; < p, whererecallthat p is the effective communications
range of the radio links. Note that while d; ; = ||P; — Pj||2
is known, the true positionsof nonGPSsensomodes,P(s ;)
for j > k, arenot known but the estimatesof P(s;), namrely
X;, are maintaned on sensors; locally.

The poternial function we consideris

> ki =il = d)” -

d;,j<p

for 1<i<k
for k+1<i<m

VX) =

This poterial function is compsed of terms that are es-
sentially the differencesbetweenthe required intersersor
distancespamelyd; ; andthe currently obsered inter-sersor
distancesas determired by the positionsestimatesx;. Con-
sider the autoromous system describedby the differential
equatio:

X =

—VV(X) .

Thenwe can statethe following facts:

@)

« V can be expandedinto a quartic polynomial and is
contiruously differentiable at least twice in R*™. This
implies, amorg the othes, that its partial dervatives
Vx V(X):

ov

o () =1

> (ki = %5113 — d2) - (xi — %)

J: dij<p

are cortinuously differentiableand so VV is Lipschitz
contiruouson ary bounndeddomain B C R2™ [6]:

3Kp > 0VX,YE€B ||VV(X)-VV ()2 < Kp||X-Y2.



« FunctionV (X (t)), where X (t) is ary trajectoryof the
system(1), satisfiesin DE: V =VV - X =
ov
02

Z (_ oV n ov. [
— 6:611 Oi1 Oi2
=1

. V(Xl,Xg,...,
V(P,Ps,...,P,;) = 0. Thus V' hasan absolutemin-
imum which is attainedat x; = P; Vi.

« In geneal, the absolute minimum may be attained

at mary points. For exampe, ary rotaranslation of
(P, Ps,...,Pp)isasolutionto theequation V(X) = 0.

The assumptia of having £ GPS-enabledievices allows the
introduction of an addtional function:

U(Xk) = Ur(Xet1,Xet2, - .-
- V(P,P,,...

6x,

2

s Xm)

7Pkaxk+15"-7xm)-

The following lemma is instrumemal to the study of the
stability of the dynanic systemdescribedby the equatia

X = —VUR(X%)

usingthe Lyapuna’s direct methal [7].

Lemmal: Assumewe aregiven asetA of m > 1 deploed
sensorsas specifiedabove. Let G = (S, E) be an undrected
graphdefinedas: S = {s1,52,...,5m} and {s;,s;} € E if
andonly if d; ; = ||P;— P;|| < p. Morewer assumehatG is
conrected.Thenthe set L = {X, e R*™Y | U (X,) < ¢}
is bourdedfor everyc € R™.

Proof: Assume for simplicity that the origin of the
coordnate system is centere at point P;. Let X; =
(X2,...,%,) € L and,without loss of geneality, let m =
argmax{||x;|| | 7 > 2}, sothatx,, is the farthestpoint from
P;. The cordition U (X1) < ¢ impliesthat

||XZ_X]||S Vd +\/_ ’LJ7 7.7

Let B = max{b;; | i,j} avalue thatdepemsonly on G and
¢. Thenby the connectiity of G' theremustexist a path in
G labeledasn = [sj,,8j;,-- -, S5 ], WhereP(s;,) = P, = O,
that veiifies the following inequalities

-1
||Xm||2 < Z ”in
i=1

But this implies that .. mustbe bownded.

—in+1||<l-B§m-B.

|
This result can be easily genealized to k£ sensorpositions
P, P,,..., P,. Of particdar interestis the situation where
equatia

Ur(Xx) =0 (2

is unigLely sohable becase, in that case, U turns out
to be a Lyapurov function for the autoromows system (1)
and (Pgy1,...,Py) is a point of stability in DR~ [7].

Xm) > 0 in the openset D7. Besides,

Charactdration of uniguenessdoesnot seemvety easyand
is actually one of the challengs of this work.

It would be also very interestingto establishcondtions
uncer which equation 2 hasonly a finite numbe of solutions
and corsequentlyidentify a subsetQ2 C Dg‘k on which Uy,
is a Lyapwov function. We canusethis property, wherever it
holds, in orderto prove the corvergence of the asynchroous
gradent descentalgorithm.

IV. CONVERGENCE

We now focus on proving the convergenceof our iterative
decetralized gradent descentalgoritbm. We deternine a
bound for ~ that ensurescorvergenceto a stationarypoint (a
zeroof the gradent) although, sometimesthis mightbealocal
minimum or a point of inflectionaswe verified expeimentally
(seelV-A). We proceedasfollows.

« We first identify a bounded region that encleses the
area on which our sensorswill be placed. Assuming
that eachsensoris placedin a squareof side L: B =
[-L/2,L/2] x [-L/2,L/2] centerd in the origin of the
coodinate system,we considerthe disk D = D(0, R),
centeed in the origin and having radius R = @L (the
diagmal of the square).

« We establisrabourd ontheLipschitzconstantk” of VU,
in D™k,

« We prove the validity of the Descent_emma[8] relative
to D™k,

« Finally we prove the corvergerce theoremof the method

Let us startwith the Lipschitz constah

Theoem2: Assumewe aregivenasetA of m > 1 sensors
deployyedonasquareB = [-L/2,L/2] x[-L/2,L/2] andbe
D = D(0, R) the disk that circunscribesit. Let G = (S, E)
be an undrectedgraphdefinedas: S = {s1, s2,...,sm} and
{si,s;} € E if andonly if d;; = ||P; — P;|| < p andlet
dy bethe highestdegreein G. Set Ky = 96d,,v/2mR? and
K, = 96dy,v/2R?. ThenVX,,Y;, € D™ *

IVUL(Xk) = VUL (Ye)ll2 < Ki-[|[ Xk — Yil2
IVx, Ur(Xk) = Vx, Up(Yi)ll2 < Ko || Xg — Yill2 -

Proof: We know from basiccalculusthatfor afunction f
of h variatlesthatis in C(1) onabowndedcornvex setZ C R"
andfor whichVi,x € Z |V, f(X)| < M it holdsthat

|F(x+y) = FO)| < M - lyll

Furthemore,if F' = (f;) is avectorfuncion of ¢ commnents
all ™ on Z and whose partial derivatives are similarly
boundedby M then

[F(x+y) = F(¥)[2 = \ Z lfi(x+y) = fi(0)?

t

< \Z(hM-||y||2)2
< AMVE-|yl2 .



So,to prove thetheoremwe needto considethesecondartial
derivatives’ of V andfind anupperbourd M for themon D ™:

—8(zin — xy 1) (@i —xp j) {si,s0} €E

PV (X) =A% =% [ = d3 )
6xi,18xi:,j o
0 {Si, Si/} 7é E
It is not hardto seethatin the worst possiblecasewe have
Uy (Xy) *V(X) 2
< 48R° .
6.’E,”18:L‘i1,j - a'ﬂz',laxz”,j -

This correspadsto the caseof estimateof very closepoints
(d; i = 0) thatarevery far from eachother (2R). The claim
now follows from the fact that in the first caset = 2m and
h = 2d,, wherea in the secondcaset = 2 andh = 2d ;.
[ |
Let us now discussthe DescentLemma.Before doing this
we needto anticipatethe following result:
Lemma3: Let K; and K, be the Lipschitz constats es-
H 1
tablishedbefae andy < KTk Then

X € D™k — —VU(Xg) € D™k

Proof:
We show thatVi, k+1 <i<m || —yVx,Ue(Xi)|]2 < R.
Let X* € D™~k pea point of globd minimum for Uj. Then
VUL(X*) =0. So

| =¥V, Up(Xk)ll2 Y- IV U (X*) = Vx, U (Xg) 2
VK[| X — Xil|2
vKs - 2Rvm =k

R.

IANIN N IA

[ |
Let usnow rephiasethe Descent emmarelative to a cornvex
bourdedset:

Lemmad: Let F': R® — R beacontiruouslydifferentiable
function suchthat VF' is Lipschitz contiruous, on a corvex
bourdedset Z, with constantK. ThenVz,y € Z:

K
F(z+y) <F(z)+y" -VF(z) + 5 Iyl -

Proof: SinceZ is convex thenVt € [0,1] z +ty € Z
and so the prod provided in [8] for the DescentLemmaon
R™ immediatelygeneralizs. [ |

Finally we can deliver the prod of corvergence of the
methodthat provides alsoa bourd for the stepvalue-y.

Theoem5: Assumewe aregivenasetA of m > 1 sensors
deployedonasquareB = [-L/2,L /2] x[-L/2,L/2] andbe
D = D(0, R) the disk that circumscibesit. Let G = (S, E)
be an undrectedgraphdefinal as: S = {s1, s2,...,sm} and
{si,s;} € E if andonly if d;; = ||P; — Pj|l < p andlet
dyr be the maximun degree in G. Furthemore, let K, =

3In our notaion x; = (x;,1,%;,2).

96dxv/2R? and K, = /mK, be the Lipschitz constats for
Vx, U, andVU;, on D respectiely.

Set < v < ﬁ Thenthe sequene { X (t)} generéed by
analgorithmof theform X (¢t +1) = X (¢) —v- VUR(Xx(¢))
satisfies

Jlim VU(Xk() =0.

Proof: By definition we have Up(Xi(t + 1)) =
Uk(Xk(t) — v - VUR(Xk(t))) andby hypothesisy < 57—

s < sy S0, by Lemma3, —y - VUL(X,(t))) €

D™~k _ But this allows usto apgy Lemma4 to obtain

Up(Xi(t+1)) < Un(Xi(t) +
—YVUR(Xk (1) - VUL (Xk(t))

B v )3
Ur(Xk (1) +

— (1 - ﬂ) VU (X (1) 2.

IN

2

Our choiceof v ensureghattheterm g =~ (1 — % >0
and so now the prod proceed as in [8] (Propgition 2.1):
eachvalue of ¢ > 0 provides one suchinequdity. Summirg
for r=0,1,...,t we obtainthe inequality

0 < U(Xi(t+ 1)) < Up(X1(0) = B IVU(Xk(T)I3 ,

7=0

true for all t. Then in the limit

t
S IVUXer)I < 5UL(X(0) < o0
7=0
andso, necessarilylim;_, oo VU (X (t)) = 0.
]

Let us concluck this sectionwith a resultthat establishes
sufficient condtion for the uniquenessof the solutionto the
equatio Ug(Xy) = 0.

Let usfirst proof the following lemma.

Lemma6: Let Py, P,..., P, Ps,1 beasequeneof points
on the planewith s > 3 andlet d; ; = ||P; — Pj||». Assume
that thereare at least3 points amongthe first s that are not
aligned Thenthe equation

8

S P =X — & ,41)% = 0

i=1
hasexactly one solutiongiven by X = P,1.

Proof: Clearly P, ; satisfieghe equationsinced; s4+1 =

[|P; — Psy1|l2- The prodem is to show that the solution
is uniqgue We can obseve that the equationis a sum of
squars andso equiaentto the following systemof quadatic
equatims: {||P; — |3 = df ,,, | 1 < i < s}. Equation i
|P; — x||3 = d; ,,, in the systemis the equatim of a circle
centerd at P; and having radiusd; s41. Thus ary solution
will be givenby the intersectionof all the circles.Sincethere
areat leastthreepoints not alignedthenthe intersectiormust



B

Fig. 1. Degenerncgy dueto alignmentof the centers.

be unique In fact,two circlesintersectin at mosttwo points,
say A and B. If we pick a third point the only way for it to
be at the samedistancefrom A and B is to lie on the axis
perpadicularto the line passingthrough A and B. But this
meansthat the threecenterswould be perfedly alignedalong
that axis againstthe hypahesis.This situationof degenerag
is depictedin Fig. 1.

[ |
Let us now corsiderthe following Coloring Algorithm.

1) Input: a set A of m > 1 depoyed sensorsas specified
abose. Let G = (S, E) be an undrected graph defined
as: S = {s1,82,...,8m} and {s;,s;} € E if andonly
if di,j = ||P; — Pj||2 < p. Let thefirst k nodesin S be
coloredwith black paintwheraslet ary othernoce in S
be paintedwith a white paint.

2) If a white nock is conneted to at least3 black nodes
whosepositiors on the planeare not alignedthenlet it
be blackened

3) Repeatstep?2 until no blackenirg is possible.

Theoem7: Assumewe are given a set A of m > 1
deplg/ed sensorsas specifiedbefoe. Let G = (S, E) be

an undrected graph definel as: S = {s1,82,...,8,} and
{si,s;} € E if andonly if d;; = ||Pi — Pjll2 < p.
Furthemore, assumethat sq, s2,..., s, With 3 < k£ < m,

have beenblackened.If the cololing algotithm blackens all
the remaning nodesin S thanthe equatiao

Uk(Xk) = V(Pl,Pg,...,Pk,X/H_h...,Xm) =0

is uniqudy sohable.

Proof: Obsere thatG is not necessarilyconnectd. Let
p be the numkber of iterations neededfor the algorittm to
competeandlet A; bethe setof sensorghatareblackenedat
the i*? iterationof the coloring algorithm Thenthe following
sequeneof setsB; = U;<; A; verifiesthefollowing properties

. 30:{81,82,...,8k};
e B; C Bijjq;
. B,=8.

Let us now defineG; = (B;, E;) asthe full subgaphof G
having noces B;. By full we meanthat wherever an edge
e = {si,s;} € E joins two nodesin B; then it must be
e € E;. Now, equation V(Py, P, ..., Py, Xgt1,---,Xm) =0
is equivalentto thefollowing systemH of quadatic equatiams:

{ ”Pu - Xv||§ = d2121,v
||Xu - Xv||2 = du,v

{su, S0} €EEANLI<u<k v>k
{Su; 80} € EANu,v >k

Furthemore,eachsubgaphG; determiresa subsystent; C
H of equatims

| P, — X,,||‘§ = d‘i’v, {5u,$v} € E; A sy € Bo A\ sy, € B;\By
Xy = Xul5 = d2 , {Su, 50} € Ei A $u,5, € Bi\By .

We shallprove, by inductionon the numker m of nodes of G,
that, givenary ¢ > k, the only possiblesolutionfor varieble
X; in systemH is P;.
« Base:k = m. In thiscaseclearlythe systenof equaions
Hy is atrivial identity.
« Induction Step:Let uspick anodes; in positionP;, with
i > k. Supposethat s; was blackenedduiing iterationt
of thealgoithm. ThengraphG; _; mustcontainat least3
neigtborsof s; whosepositionsarenotaligned.Let those
positiors be P, , P;,, P;,. Since|B;_1| < |B¢| < m, we
can apply the inductin hypothesisto G'; ;. So all the
equdions in the correspading system H; ; involving
variadles X, , X;,, Xj, mustbe uniquely solvable and so
P;,, P;,, P;, aretheonly canddatesolutiors to equdions
in H; — H;_, involving variablesx;;. But thoseinclude

the threeequatiors
1P, —xill3 = d5, ;
1P =xill3 = di, ;
1Py =il = dj,

thatareuniquely solvalde by Lemmaé. So P; is theonly
canddate solutionto all the equatios in the big system
H involving Xx;.

[ |

A. TheSpecialCase:n =4 andk =3

Herewe investigde the very specialcaseof 3 GPS-enaled
sensorsplus a fourth device, within the range of all the
previous threeones,that needsto self-register.

Assumethat the GPS-enaled sensorshave position P; =
{z1,11}, P> = {x2,92}, Ps = {x3,y3}, whereasthe fourth
device be placedat position Py = {z4,y4}. The potential
function to be minimized will be:

3
> 1P = x[I3 = 1Py = Pull3)?
i=1
(& —21)* + (y —91)” — di 1)* +
(@ —22)” + (y — ) —d54)° +
(= 23)” + (y —y3)* — d34)* -

We veiify numerically the existenceof local minima of the
scalar function V. First we run our Matlab simulation on
rancdom degoymentsof the sensorsauntil the gradent descent
processterminate®n a stationarypoint otherthan Py, say Py
Thenwe analyzethe behaior of the secondbartialderivatives
on Py, to verify thatit is a relative (local) minimum (andnot
a saddlepoirt). This verificatian, of couse, doesnot rule out
the existenceof saddlepoints. However, here we focus on
local minima becausehoseconstitutethe worst situationin a
gradent descentappoach.

Il

V(z,y)
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Fig. 2. A caseof locd minimum (Py) forn =4, k = 3.

We apply standad technigies from Calculus based on
expanding V/, by Taylors theoem, with a remainetr of the
third order arownd a stationary point x and studying the
sign of Q(h, k) = Viz (X)h? + 2V4, (X)hk + V,, (X)k2. Those
techniqies provide us with the following sufficient condition
for a stationarypoint x to be a relative minimumfor V' [6]:

Vez(X) - Vyy (X) = Vay () > 0
Vez(X) > 0
whereV,, = ‘327‘2’, Vyy = %27‘2’ and Vg, = %.

Figure2 repats onesucha case Theseresultsrevealthatin
geneal we shouldexpectour algoiithm to reachlocal minima
andsowe needto idertify methalsto premmputecorvenient
initial valuesin order to avoid thosetrapsin adwarce.

V. GENERAL EXPERIMENTS

In this sectionwe presentthe resultsof our experimental
analysis.We searchcritical values of the percetageof GPS-
enableddevices abore which the algorithm corverges with
very high probability given a randan deployment of sensors.
We disseminatauniformly at rancom n sensorshaving fixed
communication range,on a squareof side 1, then we run
the gradent descentalgorithm starting from randomiinitial
values.Figure 3 repots the estimatecdcorvergerce probability
P(m) asm, the number of GPS-enabledevices, rangesfrom
3 to n. Intuitively the corvergence processdepend on the
degree of connetivity of the gragh G which is much higher
for high valuesof the range to sideratio. For exanple, if the
commuicationrange is infinite andthereare at least3 GPS-
enabledunitswe would expectthe algorithm to converge with
very high prabability. So, as p tendsto infinity, our expected
curvewill beastepfunctionwith discontinuty at pointm = 3.
As p tendsto 0 insteadthe curve becones more smooth.The
conclwsion is that thereare no nontrivial critical poirts.

VI. PLAN AND FUTURE WORK
The following issuesneedto be explored in future work:
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Fig. 3. Probablity of corverging to the right positions as the nhumber of
GPS units increases:(above) n = 50, p € {0.5,0.75} (belov) n = 25,
p €{0.5,0.75,2}.

1) Undestandthe structue of local minima better:do they
occurin specificgeanetric structues?

2) Establishconditiors on G' that rule out the existenceof
local minima and in gereral, of undesirale stationary
poirts. In such cases,equationU(X) = 0 would be
unicuely solvableandin additin U, < 0 on R%™~*),

3) Characterie unique solvability of equatia U (X}) = 0.
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